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Abstract

Many real-world domains anelational in nature, consisting of a set of objects
related to each other in complex ways. This paper focusesredigbing the
existence and the type of links between entities in such dmnaVe apply the
relational Markov network framework of Taskaet al. to define a joint probabilis-
tic model over the entire link graph — entity attributes ainét$. The application
of the RMN algorithm to this task requires the definition ofipabilistic patterns
over subgraph structures. We apply this method to two nestioglal datasets,
one involving university webpages, and the other a socialork. We show that
the collective classification approach of RMNs, and theoihtiction of subgraph
patterns over link labels, provide significant improvensentaccuracy over flat
classification, which attempts to predict each link in itiola

1 Introduction

Many real world domains are richly structured, involvingiges of multiple types that
are related to each other through a network of differentgypfelinks. Such data poses
new challenges to machine learning. One challenge arises fhe task of predicting
which entities are related to which others and what are thesyf these relationships. For
example, in a data set consisting of a set of hyperlinkedeugity webpages, we might
want to predict not just which page belongs to a professoméridh to a student, but also
which professor is which student’s advisor. In some casesexistence of a relationship
will be predicted by the presence of a hyperlink between dgep, and we will have only
to decide whether the link reflects an advisor-adviseeioglship. In other cases, we might
have to infer the very existence of a link from indirect evide, such as a large number
of co-authored papers. In a very different application, wighthwant to predict links
representing participation of individuals in certain teist activities.

One possible approach to this task is to consider the presami/or type of the link
using only attributes of the potentially linked entitiesdanf the link itself. For example,
in our university example, we might try to predict and clfs#ie link using the words on
the two webpages, and the anchor words on the link (if pri¢sditis approach has the
advantage that it reduces to a simple classification taskvarchn apply standard machine
learning techniques. However, it completely ignores a sobrce of information that is
unique to this task — the graph structure of the link graph.éx@ample, a strong predictor
of an advisor-advisee link between a professor and a stusl¢hé fact that they jointly
participate in several projects. In general, the link griggpiically reflects common patterns
of interactions between the entities in the domain. Takivggé patterns into consideration
should allow us to provide a much better prediction for links

In this paper, we tackle this problem using tikational Markov network (RMN) frame-
work of Taskaret al. [14]. We use this framework to define a single probabilistimoel
over the entire link graph, including both object labels émhrelevant) and links between



objects. The model parameters are trained discrimingtit@lmaximize the probability

of the (object and) link labels given the known attributeg (ehe words on the page, hy-
perlinks). The learned model is then applied, using prdlsdibiinference, to predict and

classify links using any observed attributes and links.

2 Link Prediction

A relational domain is described byralational schema, which specifies a set of object
types and attributes for them. In our web example, we hatehbpage type, where each
page has a binary-valued attribute for each word in theatietiy, denoting whether the
page contains the word. It also has an attribute repregptiten“class” of the webpage,
e.g., a professor's homepage, a student’s homepage, etc.

To address the link prediction problem, we need to make liingsclass citizens in our
model. Following [5], we introduce into our schema objeqdy that correspond to links
between entities. Each link objetts associated with a tuple of entity objeéts, . . . , o)
that participate in the link. For exampleHyperlink link object would be associated with
a pair of entities — the linking page, and the linked-to pagkich are part of the link
definition. We note that link objects may also have otheitattes; e.g., a hyperlink object
might have attributes for the anchor words on the link.

As our goal is to predict link existence, we must considekdithat exist and links that
do not. We therefore consider a setpotential links between entities. Each potential link
is associated with a tuple of entity objects, but it may or maiactually exist. We denote
this event using a binargxistence attribute Exists, which istrue if the link between the
associated entities exists afalse otherwise. In our example, our model may contain a
potential link? for each pair of webpages, and the value of the variélie sts determines
whether the link actually exists or not. The link predicttask now reduces to the problem
of predicting the existence attributes of these link olgect

An instantiation Z specifies the set of entities of each entity type and the sadfiall
attributes for all of the entities. For example, an institn of the hypertext schema is
a collection of webpages, specifying their labels, the \®wdtey contain, and which links
between them exist. A partial instantiation specifies th@febjects, and values for some
of the attributes. In the link prediction task, we might alvseall of the attributes for all
of the objects, except for the existence attributes forithies| Our goal is to predict these
latter attributes given the rest.

3 Reéational Markov Networks

We begin with a brief review of the framework of undirectedghical models oMarkov
Networks[13], and their extension to relational domains presemdd4].

Let V denote a set of discrete random variables arah assignment of values ¥.

A Markov network forV defines a joint distribution ovey. It consists of an undirected
dependency graph, and a set of parameters associated wigraph. For a grapy, a
clique ¢ is a set of node¥ . in G, not necessarily maximal, such that ea¢hV; € V.
are connected by an edgeGh Each clique: is associated with dique potential ¢.(V.),
which is a non-negative function defined on the joint domdiVe. Letting C'(G) be the
set of cliques, the Markov network defines the distributiofv) = + [Lecca) Pe(ve),
whereZ is the standard normalizirggartition function.

A relational Markov network (RMN) [14] specifies the cliques and potentials between
attributes of related entities at a template level, so dsimpdel provides a coherent distri-
bution for any collection of instances from the schema. RMpscify the cliques using the
notion of arelational clique template, which specify tuples of variables in the instantiation
using a relational query language. (See [14] for details.)

For example, if we want to define cliques between the classidatif linked pages,
we might define a clique template that applies to all ppagel,page? andlink of types



Webpage, Webpage and Hyperlink, respectively, such thdink points frompagel to
page2. We then define a potential template that will be used for aitgpof variables
pagel.Category andpage?.Category for suchpagel andpage?.

Given a particular instantiatioft of the schema, the RMM produces amnrolled
Markov network over the attributes of entitiesZnin the obvious way. The cliques in the
unrolled network are determined by the clique templates\Ve have one clique for each
c € C(Z), and all of these cliques are associated with the same gligieatialec.

Taskaret al. show how the parameters of an RMN over a fixed set of clique ketem
can be learned from data. In this case, the training dataiisgéesnstantiatiorZ, where
the same parameters are used multiple times — once for effiehedi entity that uses
a feature. A choice of clique potential parameterspecifies a particular RMN, which
induces a probability distributioR,, over the unrolled Markov network.

Gradient descent over is used to optimize the conditional likelihood of the targzt-
ables given the observed variables in the training set. Tadignt involves a term which
is the posterior probability of the target variables giviee bbserved, whose computation
requires that we run probabilistic inference over the entinrolled Markov network. In
relational domains, this network is typically large and skdg connected, making exact
inference intractable. Tasketral. therefore propose the use of belief propagation [13, 17].

4 Subgraph Templatesin aLink Graph

The structure of link graphs has been widely used to inferoirigmce of documents in
scientific publications [4] and hypertext (PageRank [12]psland Authorities [8]). Social
networks have been extensively analyzed in their own riglarder to quantify trends in
social interactions [16]. Link graph structure has alsonbesed to improve document
classification [7, 6, 15].

In our experiments, we found that the combination of a refeti language with a prob-
abilistic graphical model provides a very flexible framelwfar modeling complex patterns
common in relational graphs. First, as observed by Getbal. [5], there are often cor-
relations between the attributes of entities and the miatin which they participate. For
example, in a social network, people with the same hobby are tlikely to be friends.

We can also exploit correlations between lhigel s of entities and the relation type. For
example, only students can be teaching assistants in aecoles can easily capture such
correlations by introducing cliques that involve theseilattes. Importantly, these cliques
are informative even when attributes are not observed itetstedata. For example, if we
have evidence indicating an advisor-advisee relationshipprobability that X is a faculty
member increases, and thereby our belief that X particspiate teaching assistant link
with some entity Z decreases.

We also found it useful to consider richer subgraph templater the link graph. One
useful type of template is similarity template, where objects that share a certain graph-
based property are more likely to have the same label. Cenda example, a professor
X and two other entities Y and Z. If X's webpage mentions Y arid the same context, it
is likely that the X-Y relation and the Y-Z relation are of tkeme type; for example, if Y
is Professor X's advisee, then probably so is Z. Our framkwocomodates these patterns
easily, by introducing pairwise cliques between the appad@relation variables.

Another useful type of subgraph template involtremsitivity patterns, where the pres-
ence of an A-B link and of a B-C link increases (or decreasesliltelihood of an A-C link.
For example, students often assist in courses taught bydteisor. Note that this type
of interaction cannot be accounted for just using pairwlgpies. By introducing cliques
over triples of relations, we can capture such patterns dls Wé can incorporate even
more complicated patterns, but of course we are limited bathility of belief propagation
to scale up as we introduce larger cliques and tighter laogisa Markov network.

We note that our ability to model these more complex grapteps relies on our use
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Figure 1:(a) Relation prediction with entity labels given. Relaibmodels on average performed
better than the baselirfdat model. (b) Entity label prediction. Relational modétigh performed
significantly better. (c) Relation prediction without eptiabels. Relational models performed better
most of the time, even though there are schools that somelsnpeidormed worse.

of an undirected Markov network as our probabilistic modelcontrast, the approach of
Getooret al. uses directed graphical models (Bayesian networks and HBJM® repre-
sent a probabilistic model of both relations and attribufEseir approach easily captures
the dependence of link existence on attributes of enties.the constraint that the prob-
abilistic dependency graph be a directed acyclic graph mikerd to see how we would
represent the subgraph patterns described above. For Exdorthe transitivity pattern,
we might consider simply directing the correlation edgesvien link existence variables
arbitrarily. However, it is not clear how we would then pasdarize a link existence vari-
able for a link that is involve in multiple triangles. See [1&r further discussion.

5 Experimentson Web Data

We collected and manually labeled a new relational datasgired by WebKB [2]. Our
dataset consists of Computer Science department webpegas3fschools: Stanford,
Berkeley, and MIT. A total 02954 of pages are labeled into one of eight categories: faculty,
student, research scientist, staff, research group,n&speoject, course and organization
(organization refers to any large entity that is not a redegroup).Owned pages, which
are owned by an entity but are not the main page for that emtége manually assigned to
that entity. The average distribution of classes acrossdslis: organization (9%), student
(40%), research group (8%), faculty (11%), course (16%gaech project (7%), research
scientist (5%), and staff (3%).

We established a set of candidate links between entitiesdb@s evidence of a relation
between them. One type of evidence for a relation is a hygefilom an entity page or one
of its owned pages to the page of another entity. A seconddfgeidence is airtual
link: We assigned a number of aliases to each page using the gagthé anchor text of
incoming links, and email addresses of the entity involMdéntioning an alias of a page
on another page constitutes a virtual link. The resulting$&161 candidate links were
labeled as corresponding to one of five relation types — Auaculty, student), Mem-
ber (research group/project, student/faculty/reseanemsst), Teach (faculty/research sci-
entist/staff, course), TA (student, course), Part-Ofdaesh group, research proj) — or
“none”, denoting that the link does not correspond to anyesé relations.

The observed attributes for each page are the words on treeifsadf and the “meta-
words” on the page — the words in the title, section headiagshors to the page from
other pages. For links, the observed attributes are theoaext, text just before the link
(hyperlink or virtual link), and the heading of the sectianwhich the link appears.

Our task is to predict the relation type, if any, for all thendalate links. We tried two
settings for our experiments: with page categories obsefivethe test data) and page
categories unobserved. For all our experiments, we tradneivo schools and tested on



the remaining school.

Observed Entity Labels. We first present results for the setting with observed page ca
egories. Given the page labels, we can rule out many impgesslations; the resulting
label breakdown among the candidate links is: none (38%ininee (34%), part-of (4%),
advisor (11%), teach (9%), TA (5%).

There is a huge range of possible models that one can apgiisttask. We selected a
set of models that we felt represented some range of pattexhmanifested in the data.

Link-Flat is our baseline model, predicting links one at a time usindtiramial lo-
gistic regression. This is a strong classifier, and its perémce is competitive with other
classifiers (e.g., support vector machines). The featused by this model are the labels of
the two linked pages and the words on the links going from @ge@nd its owned pages
to the other page. The number of features is aralxd.

The relational models try to improve upon the baseline mbgiehodeling the interac-
tions between relations and predicting relations joinfijne Section model introduces
cligues over relations whose links appear consecutivelg section on a page. This
model tries to capture the pattern that similarly relatetities (e.g., advisees, members
of projects) are often listed together on a webpage. Thitepats a type of similarity
template, as described in Section 4. Tihiad model is a type of transitivity template, as
discussed in Section 4. Specifically, we introduce cliques eets of three candidate links
that form a triangle in the link graph. Tt&ection + Triad model includes the cliques of
the two models above.

As shown in Fig. 1(a), both thgection andTriad models outperform the flat model, and
the combined model has an average accuracy gair26%, or 10.5% relative reduction in
error. As we only have three runs (one for each school), waatameaningfully analyze
the statistical significance of this improvement.

As an example of the interesting inferences made by the mpdel found a student-
professor pair that was misclassified by thlat model as none (there is only a single
hyperlink from the student’s page to the advisor’s) butecily identified by both th&ec-
tion andTriad models. TheSection model utilizes a paragraph on the student’s webpage
describing his research, with a section of links to his regegroups and the link to his
advisor. Examining the parameters of Bection model clique, we found that the model
learned that it is likely for people to mention their reséegooups and advisors in the same
section. By capturing this trend, ti$e&ction model is able to increase the confidence of the
student-advisor relation. Theiad model corrects the same misclassification in a different
way. Using the same example, thigad model makes use of the information that both the
student and the teacher belong to the same research gralifheastudent TAed a class
taught by his advisor. It is important to note that none ofdtieer relations are observed in
the test data, but rather the model bootstraps its infegence

Unobserved Entity Labels. When the labels of pages are not known during relations
prediction, we cannot rule out possible relations for cdat# links based on the labels of
participating entities. Thus, we have many more candidaks khat do not correspond to
any of our relation types (e.g., links between an orgaronaind a student). This makes the
existence of relations a very low probability event, witle flollowing breakdown among
the potential relations: none (71%), member (16%), pa(2f), advisor (5%), teach (4%),
TA (2%). In addition, when we construct a Markov network inigthpage labels are not
observed, the network is much larger and denser, makingppr¢ximate) inference task
much harder. Thus, in addition to models that try to predageentity and relation labels
simultaneously, we also tried a two-phase approach, wheff@st predict page categories,
and then use the predicted labels as features for the matgirdicts relations.

For predicting page categories, we compared two mod&isity-Flat model is multi-
nomial logistic regression that uses words and “meta-wdrdm the page and its owned
pages in separate “bags” of words. The number of featuresighly 10, 000. TheNeigh-
bors model is a relational model that exploits another type ofilgirity template: pages
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Figure 2: (a) Average precision/recall breakeven point for 10%, 25%% observed links. (b)
Average precision/recall breakeven point for each foldobio®l residences at 25% observed links.

with similar urls often belong to the same category or tiglitiked categories (research
group/project, professor/course). For each page, twoagtl urls closest in edit dis-
tance are selected as “neighbors”, and we introduced maraliques between “neighbor-
ing” pages. Fig. 1(b) shows that tiNeighbors model clearly outperforms thielat model
across all schools, by an averagetsf% accuracy gain.

Given the page categories, we can now apply the differentafsddr link classifica-
tion. Thus, thePhased (Flat/Flat) model uses th&ntity-Flat model to classify the page
labels, and then theink-Flat model to classify the candidate links using the resulting en
tity labels. ThePhased (Neighbors/Flat) model uses th&leighbors model to classify
the entity labels, and then tténk-Flat model to classify the links. Thehased (Neigh-
bors/Section) model uses thileighbors to classify the entity labels and then tBection
model to classify the links.

We also tried two models that predict page and relation fabihultaneously. The
Joint + Neighbors model is simply the union of thdeighbors model for page categories
and theFlat model for relation labels given the page categories. Jdiet + Neighbors
+ Section model additionally introduces the cliques that appearetiéSection model
between links that appear consecutively in a section on a.paf train the joint models
to predict both page and relation labels simultaneously.

As the proportion of the “none” relation is so large, we usephobability of “none” to
define a precision-recall curve. If this probability is l¢kan some threshold, we predict
the most likely label (other than none), otherwise we prtettiie most likely label (includ-
ing none). As usual, we report results at the precisionirboaakeven point on the test
data. Fig. 1(c) show the breakeven points achieved by tliereift models on the three
schools. Relational models, both phased and joint, dicebétan flat models on the av-
erage. However, performance varies from school to schabfanboth joint and phased
models, performance on one of the schools is worse than tifa¢ dlat model.

6 Experimentson Social Network Data

The second dataset we used has been collected by a portatenadtsslarge university that
hosts an online community for students [1]. Among otherisesy it allows students to
enter information about themselves, create lists of thieinfls and browse the social net-
work. Personal information includes residence, gendejoinaend year, as well as favorite
sports, music, books, social activities, etc. We focusetthertask of predicting the “friend-
ship” links between students from their personal inforwratind a subset of their links. We
selected students living in sixteen different residencedooms and restricted the data to
the friendship links only within each residence, elimingtinter-residence links from the
data to generate independent training/test splits. Eagtiamce has about 15-25 students
and an average student lists about 25% of his or her housesraafriends.

We used an eight-fold train-test split, where we trainedaumteen residences and tested
on two. Predicting links between two students from just peas information alone is a



very difficult task, so we tried a more realistic setting, whsome proportion of the links
is observed in the test data, and can be used as evidencedtctprg the remaining links.
We used the following proportions of observed links in thet tlata: 10%, 25%, and 50%.
The observed links were selected at random, and the reselteport are averaged over
five folds of these random selection trials.

Using just the observed portion of links, we constructedidfiewing flat features: for
each student, the proportion of students in the residematdishhim/her and the proportion
of students he/she lists; for each pair of students, theqstiom of other students they have
as common friends. The values of the proportions were digeckinto four bins. These
features capture some of the relational structure and digpees between links: Students
who list (or are listed by) many friends in the observed portf the links tend to have links
in the unobserved portion as well. More importantly, havignds in common increases
the likelihood of a link between a pair of students.

The Flat model uses logistic regression with the above features dsawgersonal
information about each user. In addition to individual @weristics of the two people, we
also introduced a feature for each match of a characterfsti@xample, both people are
computer science majors or both are freshmen.

The Compatibility model uses a type of similarity template, introducing ofigibe-
tween each pair of links emanating from each person. Silpitarthe Flat model, these
cligues include a feature for each match of the charadisisf the two potential friends.
This model captures the tendency of a person to have friehdssivare many character-
istics (even though the person might not possess them). Xaon@e, a student may be
friends with several CS majors, even though he is not a CSmhajaself. We also tried
models that used transitivity templates, but the approterirderence with 3-cliques often
failed to converge or produced erratic results.

Fig. 2(a) compares the average precision/recall breakpaineved by the different
models at the three different settings of observed linkg. Efb) shows the performance
on each of the eight folds containing two residences eacimguspaired t-test, th€om-
patibility model outperform§lat with p-valued).0036, 0.00064 and0.054 respectively.

7 Discussion and Conclusions

In this paper, we consider the problem of link predictionefational domains. We focus
on the task of collective link classification, where we arawdtaneously trying to predict
and classify an entire set of links in a link graph. We showt tha use of a probabilistic
model over link graphs allows us to represent and explodré@gting subgraph patterns in
the link graph. Specifically, we have found two types of pattehat seem to be beneficial
in several places. Similarity templates relate the clasgifin of links or objects that share
a certain graph-based property (e.g., links that share armmendpoint). Transitivity
templates relate triples of objects and links organizedtiiaagle. We show that the use of
these patterns significantly improve the classificatioruescy over flat models.

Relational Markov networks are not the only method one nighsider applying to the
link prediction and classification task. We could, for exdepuild a link predictor that
considers other links in the graph by converting graph festinto flat features [11], as
we did in the social network data. As our experiments shoenevith these features, the
collective prediction approach work better. Another aggtois to use relational classifiers
such as variants ohductive logic programming [10]. Generally, however, these methods
have been applied to the problem of predicting or clasgif@rsingle link at a time. It is
not clear how well they would extend to the task of simultarsdppredicting an entire link
graph. Finally, we could apply the directed PRM framework5}f However, as shown
in [15], the discriminatively trained RMNs perform signdiatly better than generatively
trained PRMs even on the simpler entity classification t&skthermore, as we discussed,
the PRM framework cannot represent (in any natural way) ype bf subgraph patterns
that seem prevalent in link graph data. Therefore, the RMih&work seems much more



appropriate for this task.

Although the RMN framework worked fairly well on this taskgtre is significant room
for improvement. One of the key problems limiting the apaidity of approach is the
reliance on belief propagation, which often does not cayeér more complex problems.
This problem is especially acute in the link prediction geob, where the presence of all
potential links leads to densely connected Markov netwariks many short loops. This
problem can be addressed with heuristics that focus thelsearlinks that are plausible
(as we did in a very simple way in the webpage experiments).ofermteresting solution
would be to develop a more integrated approximate inferéheagning algorithm.

Our results use a set of relational patterns that we havewised to be useful in the
domains that we have considered. However, many other ridhirdaresting patterns are
possible. Thus, in the relational setting, even more so thampler tasks, the issue of
feature construction is critical. It is therefore impottemexplore the problem of automatic
feature induction, as in [3].

Finally, we believe that the problem of modeling link gragtas numerous other ap-
plications, including: analyzing communities of peopla& dmerarchical structure of orga-
nizations, identifying people or objects that play certiedty roles, predicting current and
future interactions, and more.
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