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Abstract

Most inference using social network models assumes that the presence or absence of all re-
lations is known. This is rarely the case. Most social network analysis ignores the problem of
missing data by including only actors with complete observations.

In this paper we use a statistical model for the underlying social network to demonstrate that
the computationally parsimonious complete case approach can lead to different conclusions from
an approach utilizing all observations. We also show that the overall fit to the data is improved by
extending the model to represent differences between respondents and non-respondents.

The ideas are motivated and illustrated by an analysis of a friendship network from the National
Longitudinal Study of Adolescent Health.

Key Words: AddHealth, exponential random graph model, maximum likelihood estimation, non-
response, sample survey, statnet



1 Introduction

Social network analysis can be used to characterize the patterns of arcs between actors. For exam-
ple, in a sexual network related to disease spread, social network analysis can address questions
such as: Who tends to have sex with whom? Do people form sexual partnerships entirely at ran-
dom, or do they tend to choose partners from among their friends and friends’ friends, leading to
a clustering of sexual relations? Social networks in other contexts present questions such as: Do
consumers make purchases completely at random, or do they tend to purchase some specific items
together? Do the patterns of telephone conversations between suspected terrorists become more
clustered, with more calls within a specific small group, just before a terrorist attack?

Statistical modeling of social networks allows researchers to statistically compare the patterns
of arcs observed in the network to the patterns that we might have observed if the arcs had been
formed completely at random. In this way, we can statistically formalize our inference about
which processes are likely to have generated the network we’ve observed. Models based on sta-
tistical exponential families have a long history in social network analysis (Holland and Leinhardt
1981, Frank and Strauss 1986). These models allow complex heterogeneity in arc formation to
be represented in an interpretable manner. In particular they can capture social structures such as
clustering, transitivity and hierarchy in a parsimonious manner.

Statistical exponential family models can also quantify the strengths of the various social pro-
cesses most likely to have given rise to the network observed. An important property of the family
is that they can represent a dependence between the arcs within a dyad — by which we mean each
pair of actors — and those of other dyads.

An exponential random graph model (ERGM) with a transitive triad term is an example of
dyad dependent model. An ERGM fit with a significant positive estimate for a transitive triad
coefficient, for example, suggests that there are more hierarchal clusters of arcs than we would
expect at random. This implies that the network was unlikely to have been generated by a process
where each arc forms at random, with regard only to the characteristics of the two actors forming
the arc. Instead, this term implies that three arcs that form a transitive triad are more likely than
three arcs between random pairs.

In many cases where social network data are available, the full network information is not ob-
served. The network is comprised of the actor’s identities, attributes, and arcs with other actors. In
many measurement settings some of this information may be known to be missing. Any missing
information can influence inference about the processes responsible for generating the social net-
work. For example, consider a directed network where we survey each actor to determine her or his
out-arcs. Suppose we are unable to survey one quarter of the actors so that the presence or absence
of all their out-arcs is unknown. Suppose we do observe the presence or absence of all arcs sent by
actors who are surveyed. If we consider only the network among the subset of actors completing
the survey, we have excluded seven sixteenths of the possible arcs in the network, and about one
quarter of the out-arcs of each observed actor. When estimating the propensity for friends to have
friends in common, this exclusion may strongly influence our conclusions about the importance of
this factor in generating the network.

The problem of missing data in social networks has important differences from most missing
data problems. To begin with, the unit of analysis in social network data is usually different
from the unit of sampling. In general, we sample actors and obtain arc information from them.
But network analyses are based on arcs, for which the fundamental unit is a pair of actors. This
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sharing of units of analysis across units of sampling, together with most any interesting network
model induces a complex dependence structure between the arcs in the network and, in particular,
between the arcs that are observed and the arcs that are not observed. In this respect, missing
data in social networks is similar to missing data in time series analysis (Little and Rubin 1987,
Section 11.6). Also similar to the time series problem is the fact that in social network analysis
we generally have only one sample from the process about which we wish to make inference.
In time series analysis we wish to characterize the underlying time series process. Similarly, in
social network analysis we are often interested in the population-level characteristics of the full
network. When there is missing data, we are not merely missing replicates where each sample is
an independent observation of the process of interest. We are missing parts of a single realization
of a dependent process.

Despite the general acceptance that missing data is an important problem for social network
analysis, there has been little work on appropriate systematic model-based frameworks to treat
social networks with missing data.

Thompson and Frank (2000) review the closely related literature on network sampling designs
based on sequentially sampling individuals nominated by individuals already sampled. They con-
sider estimation from such data when the dyads in the social network are modeled as independent
given the characteristics of the individuals.

Kossinets (2006) conducted a descriptive simulation study of the effect of missing data on
network statistics. Starting with an existing network, he randomly removed data according to
several different patterns and observed a set of network characteristics of interest. With respect to
actor non-response, he treats a smaller amount of missing data than we do here, as he considers
an undirected network where an arc is counted if reported by either party. Kossinets found that
omission of arcs between non-respondents led to underestimation of degree associativity estimates
and underestimation of the clustering coefficient.

Some approaches to model-based treatment of missing data in social networks have been sug-
gested, but due to the difficulty of the problem, they are partial and ad-hoc. Stork and Richards
(1992) advocate leveraging the strong effect of reciprocity in many networks to impute missing
arcs in directed networks by setting them equal to their opposite arcs. For example, if actori has
reported an arc to actorj , but j ’s reported arcs are unavailable, we assume thatj would have re-
ciprocatedi ’s report of an arc. This approach is often more reasonable than treating the arc fromj
to i as a known non-arc, but is not ideal for several reasons. First, as Stork and Richards point out,
the approach is only valid for networks with very strong reciprocity. When reciprocity is not so
strong (i nominating j does not strongly predictj nominatingi ), then this approach may perform
worse than pretending the reciprocating arcs do not exist. This approach also treats the newly im-
puted arcs as true, rather than treating them probabilistically, potentially biasing the estimates. In
addition, this approach does not address the arcs that may originate from the missing actors which
are not reciprocated, or any arcs between missing actors. Finally, this approach is not applicable to
undirected networks.

Robins, Pattison, and Woolcock (2005) use an exponential family model with the maximum
pseudo-likelihood estimates (MPLE) of the parameters based on treating arcs between respondents
and other respondents separately from arcs from respondents to non-respondents. This approach is
most helpful if it is known that the arc-related characteristics of non-respondents are different from
those of respondents in ways that are not captured in the terms in the model. However, it does not
allow for the consideration of network structures which span the boundary between observed and
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unobserved parts of the network, or address the full-network implications of arcs that may have
been sent by non-respondents. In addition there is evidence that the MPLE is poor for realistic
network structures (van Duijn, Gile and Handcock 2006).

Handcock (2002) developed a likelihood-based framework for the treatment of missing net-
work arcs based on standard ideas of missing data. This extended the work of Thompson and
Frank (2000), and we apply his framework here.

The approach of Handcock (2002) addresses the problems with these approaches. He uses
an ERGM framework to find the maximum likelihood estimates based on the observed arcs (and
non-arcs), through sampling of the missing arcs conditional on the observed arcs. This approach
treats the missing arcs probabilistically based on the precise estimates of mutuality and other net-
work characteristics fit from the observed data. Furthermore, it allows for network statistics re-
flecting probabilistic representations of the full network. By including model terms representing
differences between respondents and non-respondents, this approach can be extended to allow for
different characteristics of arcs involving respondents and non-respondents.

In this paper we examine the implications of ignoring the actors who did not supply arc infor-
mation in the modeling of social network data. In Section 2 we describe the National Longitudinal
Study of Adolescent Health. This survey has been and will continue to be a primary resource
for researchers interested in the health-related behaviors of adolescents. In this paper we develop
methodology to adjust for the characteristics of this survey. In Section 3 we begin with exponential
family models for networks, we then introduce the particular model developed in the paper, then
describe the observed data likelihood approach to fitting an exponential random graph model. Sec-
tion 4 presents our results, beginning with an analysis of the model fit to all observations through
the observed data likelihood.

Then we consider inference for the same model applied to the network of respondents only.
We compare the implications of these two approaches in four ways. First, in terms of model
coefficient estimates and nominal statistical significance. Next, by comparing the mean value
parameterizations of each model fit. Then by simulating complete networks under each model fit
and comparing network parameters not in the model to those observed. And finally, by comparing
samples of the unobserved arcs conditional on the observed arcs. We end with a discussion of our
overall findings, and some extensions of this methodology in Section 5.

2 Introduction to the AddHealth Survey

The social network example we analyze here is from the first wave (1994-5) of the National Lon-
gitudinal Study of Adolescent Health (AddHealth). AddHealth includes a stratified sample of US
schools including grades 7-12 (Harris et al., 2003). In each school, students were asked many
individual questions including, for our purposes, grade and sex. Each student was also presented
with a roster of all students in the school and asked to identify up to five of her or his best female
friends and up to five of her or his best male friends. There is an extensive and growing literature
describing and utilizing the AddHealth survey - see Resnick et al. (1997) and Udry and Bearman
(1998) for a bibliography and more information.

These friendship arcs define the friendship network we are modeling. This network includes a
directed arc between actori and actorj if and only if i namedj a friend. We represent these arcs
as ann × n matrix,Y where a 1 in the(i, j ) cell indicates thati considersj a friend, andn is the
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Figure 1: Schematic depiction of observed and unobserved arc data.

number of students in the school. We also consider ann × q matrix of covariates on the nodes,X.
In this example,X includes the grade and sex of each student at the time of the survey.

We have selected one school, School 5, for our analysis. Seventy students from this school
completed the friendship nominations portion of the survey. From later waves of the survey, we
were able to recover the sex and grade of 19 additional students who did not supply their friendship
nominations in the original survey. The students were asked to name up to five of their best male
and up to five of their best female friends. The relationship we study here is that of being named
one of these friends.

In this paper we consider the friendship nominations among these 89 students to be the focus
of scientific interest. In particular we are interested in inferring the social process that generated
the observed set of friendship arcs among the 89 students. Of these, 70 reported arcs and 19 did
not report arcs. Thus our data contain known arcs and non-arcs between the 70 students who
completed surveys, known arcs sent by the 70 respondents to the 19 non-respondents, and do not
contain arcs among the 19 students who did not complete surveys and sent by the non-respondents
to the respondents. These missing arcs due to survey non-response constitute the missing data we
are concerned with.

The data pattern is shown in Figure 1. Consider a partition of respondents from non-respondents
and the corresponding 2× 2 blocking of the sociomatrix, with the four blocks representing arcs
from respondents and non-respondents to respondents and non-respondents. The complete data
consists of the full sociomatrix. The first two blocks contain the observed data, the arcs sent by re-
spondents, and the second two blocks contain the unobserved data, those sent by non-respondents.

Almost all network analysis of the AddHealth survey models or describes the network among
the respondents only, excluding those individuals who are did not complete the survey (Bearman,
Moody, and Stovel 2004; Harris et al., 2003)

3 The Exponential Random Graph Model

Exponential Random Graph Models (ERGM) are a powerful and flexible tool for modeling the
behavior of a matrix of social arcs conditional on a matrix of covariates.
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An ERGM is an exponential family model in which the data to be modeled is then×n matrix of
social arcs, and the sufficient statistics are a set of user-defined functionsg(Y, X) of the sociomatrix
Y and the matrix of covariatesX. Models take the form:

Pη(Y = y|X) = c−1 exp{ηT g(y, X)} (1)

where the normalizing constantc ≡ c(η) is defined by

c =

∑
w

exp{ηT g(w, X)} (2)

and the sum (2) is taken over the whole sample space of allowable graphs. The statisticsg(Y, X)

are chosen to capture the hypothesized social structure of the network.
For this study, we fit an ERGM of the form (1) where the set of allowable graphs is restricted

to those having no more than five male out-arcs and five female out-arcs for each student. This
reflects the nature of the relationship modeled and ensures the distribution is over the appropriate
sample space.

3.1 Specification of the Model

We specify a model for the social process in which,g(y, X), the set of network statistics has
twenty-one terms. These are summarized in Table 1.

This first term represents the overall tendency for students to nominate friends. This captures
the overall density of arcs - that is the number of arcs divided by the number of possible arcs in the
network. This characteristic is found in the simplest network model, the Bernoulli or Rényi-Erd̋os
graph. We use the number of arcs in the network as the sufficient statistic for this feature. Note
that although this term is based on an arc count, its estimation, like that of the other model terms,
implicitly reflects the number of potential arcs in the network, so is comparable across networks
of different sizes.

The second term represents the propensity for arcs to be reciprocated. The corresponding
sufficient statistic is the number of dyads with arcs in both directions. A positive parameter for this
term suggests that students are more likely to nominate friends who nominate them.

The third through seventh terms capture the differential tendencies for students in different
grades to be named as friends. The reference category is 7th grade, so the 8th grade popularity
term, for example, captures the degree to which the tendency for 8th graders to receive friendship
arcs exceeds that of 7th graders. The sufficient statistics for these terms are the counts of in-arcs
of students in each grade.

The eighth term captures the tendency for boys to receive arcs, beyond the tendency of girls.
A non-zero parameter estimate here suggests that boys and girls have different tendencies to be
named as friends.

The following two terms, “girl to same grade boy” and “boy to same grade girl,” capture the
relative propensity for same-grade arcs to be sent to a same-sex or opposite sex nominee. These
effects are allowed to be different for males and females.

The next six terms address the relative tendencies of students to choose friends who are older
or younger, closer or farther from their grade, and same or opposite sex. These tendencies are
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operationalized as dyadic covariates. As an example, consider the “girl to older girl” term. This
term applies only to dyads from a female in a lower grade to a female in a higher grade. The
coefficient is scaled by the number of years between the two grades. If the “girl to older girl”
parameter estimate isα, this means that the log odds of an arc from a girl to a girl one grade older
is α more than the log odds of an arc from a girl to a same grade girl. The log odds of an arc to
a girl two grades older is an additionalα more. Using the number of years older or younger as a
linear covariate serves as a way to address the decaying likelihood of friendship across increasing
grade differences. The covariates measured here are all measured in terms of “absolute number of
years difference.”

If these terms were the only ones in the ERGM then each dyad would have arcs independently
of every other dyad. Together, they capture the propensities for arcs to be formed between senders
and receivers of various characteristics, as well the overall rate at which each group tends to receive
arcs. The remaining terms address the correlation or clustering behavior among arcs. We know
that most arcs are among actors of the same grade and sex, so this is where we focus our attention
on the patterns of clustering.

The two triad-based dependence terms address the propensity for arcs to form transitive and
cyclical triads respectively among actors of the same grade and sex. These terms are valuable in
describing the clustering behavior in the network. A positive parameter for the transitive triad term
suggests that friendships within students of the same sex and grade are likely to form in hierarchal
patterns, whereby if Anne nominates Betty (giving greater attractiveness, and greater prestige to
Betty), and Betty nominates Carol (even greater prestige), then Anne is more likely to nominate
Carol as well. Cyclical triads, on the other hand, can be interpreted as an indication of friendships
forming on an egalitarian basis. If Anne nominates Betty (making Anne and Betty close and equal),
and Betty nominates Carol, then Carol is more likely to nominate Anne. Together, these two terms
capture the flavor of the clustering behavior in the observed network. In practice, the transitive
term is often positive and the cyclical term often negative (as in this case). This characterization of
the clustering process is often a point of great scientific interest in social network research.

The final term captures one additional facet of clustering. Not all nodes have in arcs. None of
the other terms have captured this tendency for some people to simply not be nominated as friends.
Therefore, we have included a term to explicitly account for the tendency of the network to contain
nodes with no in arcs.

Note that all of these terms measure tendencies with respect to the set of realizations that are
possible given the network covariates. The ”boy to older boy” term, for example, captures the
propensity for arcs from a younger to an older boy, with respect to the total older-younger boy
dyads in the network of interest. For this reason, it is reasonable to apply the model fit on the
smaller network of respondents only to the larger network of all 89 students.

3.2 Inference with Incomplete Observation of the Network

Typically in network analysis, it is assumed we have complete data on the arcs between all actors in
the network. Without a way to address missing observations of the arcs, a common approach is to
fit a model to the sub-network of actors for whom the out-arcs are observed. We refer to this as the
respondents only(RO) approach. In our situation this would mean fitting the network model to the
complete case social network, consisting of only the 70 students who completed the survey. In this
paper we use likelihood-based inference for the model and report maximum likelihood estimates
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(MLEs). We fit the model to the respondents only network using a Markov Chain Monte Carlo
(MCMC) algorithm to estimate the log-likelihood corresponding to the model (1). We compute
approximations to the maximum likelihood estimates and standard errors of the model parameters
based on the MCMC log-likelihood as a surrogate for the log-likelihood. Our approach is described
in detail in Handcock et al. (2003) and Hunter and Handcock (2006).

An alternative to the respondents only approach is to focus on all actors and base inference
on all the observed arcs and non-arcs. To fit the model with all the observations, accounting
for the missing data, we use the observed data likelihood. Denote the subset of the sociomatrix
corresponding to the out-arcs that are observed byYobs and the unobserved out-arcs byYmiss. The
distribution of the observed data is:

Pη(Yobs = yobs|X) =

∑
s

Pη((Yobs, Ymiss) = (yobs, s)|X). (3)

wheres ranges over all values ofYmiss consistent with allowable graphs. Handcock (2002) de-
scribes the mathematics involved in maximizing the observed data likelihood based on (3). In
principle, the approach is based on enumerating the probabilities of all networks that are consis-
tent with the data we’ve observed. The observed data likelihood is formed by summing these
probabilities. Computationally, there are far too many conditional networks to fully enumerate, so
we use an MCMC algorithm to sample from the conditional and full networks, and thereby esti-
mate the observed data likelihood corresponding to the model (3). We compute approximations
to the maximum likelihood estimates and standard errors of the model parameters based on the
MCMC log-likelihood as a surrogate for the log-likelihood. Details are given in Handcock (2002,
2003).

Under a missing at random (MAR) assumption the observed data likelihood is the statistically
appropriate likelihood to use based on the full data we have observed. This approach includes the
information in all the observations.

We note that standard errors based on the curvature of the estimated log-likelihood and ap-
proximations to the sampling distribution of the MLE based on asymptotic arguments require
non-standard justifications. In the results below the standard approximation to the sampling dis-
tribution is supported by a parametric bootstrap exercise. The analyses here were performed with
statnet (Handcock et al., 2003).

4 Results

We fit the model to the friendship network using the two approaches outlined in the previous
section: the respondents only (RO) approach, the all observations (AO) approach. In both cases
we use the same model terms. Mean value parameters for both fits are on the scale of the full set of
89 students. The fits for these models in their natural parameterizations are summarized in Table
2.

In the next sub-sections we describe the interpretation of the All Observations model fit, then
explore the implications of the differences between the fits.
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4.1 Interpretation of All Observations Fit

In the fit based on the AO approach, all terms are nominally significant at the .01 level except
the terms capturing the differential activity by grade and sex, and the terms comparing cross-sex
and within-sex attractiveness within the same grade. Tenth graders and males do show nominal
significant differences in popularity at the .05 level. This fit supports several scientific hypotheses
about the social mechanisms giving rise to this observed network.

First, friendship arcs are reciprocated at a higher rate than we would expect at random given
the other terms in the model. With regard to grade, 10th graders seem to receive significantly less
friendship nominations than the reference 7th graders, although this finding is weaker than the
others.

Males receive within-sex nominations at a nominally higher rate than females. Both males and
females seem less likely to nominate friends outside their grades, with the chance of nomination
decreasing with the number of years between the two. Looking at the effect sizes for the Sex and
Grade Mixing terms together, we note that, although not significant, boys show a stronger aversion
to sending cross-sex nominations within grade, while girls show a stronger aversion to sending
cross-sex nominations out of grade (to both older and younger boys). We also see that both sexes
appear more likely to nominate older (higher grade) rather than younger (lower grade) friends.
This effect is stronger in males, with a particularly strong prohibition against males nominating
younger males as friends.

The positive significant transitive triad, and negative significant cyclical triad terms suggest that
friendship arcs within sex and grade tend to form in a hierarchal manner, rather than in an egalitar-
ian regime. This finding is likely the most scientifically interesting of the processes supported by
this model.

Finally, arcs are clustered so as to produce more nodes receiving no friendship nominations
than we would expect from the rest of the terms in the model.

4.2 Comparison of the Respondent Only to the All Observation Model Fit

A likelihood ratio can be used to make a heuristic overall comparison between the AO and RO
model fits (Hunter and Handcock 2006). The appropriate likelihood for this purpose is the ob-
served data likelihood, including all the nodes and integrating over the unobserved arcs. Thus the
appropriate ratio is:

PηAO
(Yobs = yobs|X)

PηRO
(Yobs = yobs|X)

(4)

The logarithm of this ratio for the models in Table 2 is about 7. Because we are comparing two
fits to the same model, one the MLE, the other arrived at by another method (namely the MLE after
throwing away a substantial portion of the data), we cannot apply any standard testing criteria to
this ratio. Therefore, this ratio tells us only that the data we have observed is about exp(7) ≈ 1000
times more likely under the AO fit than under the RO fit. This seems a substantial difference. If we
imagine a Bayesian analysis applying any reasonable prior, we would conclude that the posterior
probability of the AO fit is approximately 1000 times greater than the posterior probability of the
RO fit. This result suggests that there are overall differences between the RO and AO fits.
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At first glance, comparison of the model fits in Table 2 reveals striking similarities among
the natural parameters. The fits find nearly identical patterns of statistical significance. With
the exception of 9th and 10th grade popularity, a researcher basing conclusions on hypotheses
concerning individual model terms would draw the same conclusions from either of these fits.
That said, there are also notable differences in the magnitudes of coefficients. In particular, the
RO fit reflects a greater popularity of 12th graders, and a lesser tendency for students to receive
no arcs. It also suggests a tendency for girls to send less arcs to same-grade boys and less arcs to
older boys. The RO fit suggests boys are more likely to send arcs to same-grade girls, less likely to
send arcs to older or younger boys, and more likely to send arcs to older girls. The interpretation
of these effects is complicated by the many terms in the model. If the RO fit reflects higher overall
popularity of 12th graders, do lesser estimates for terms for arcs sent to older students merely
reflect that this phenomenon has already been captured by the 12th grade popularity term?

We can better compare the marginal effects of the two fits by comparing the mean value pa-
rameterizations of the two fits, as presented in Table 3.

4.3 Comparison of Model Fits under the Mean-Value Parameterization

The mean value parameterization provides an alternative to the natural parametrization of the
ERGM model. The mean-value parametrization is (Handcock 2003):

µ(η) = E
η

[g(y, X)] (5)

This parameterization puts the coefficients on the scale of the network statistics rather on the
conditional log-odds scale on which the natural parameters are based. Looking at the mean value
parameters provides a sense of the implications of the model fit for the network statistics implied
by the model fit. Although the RO model is fit on a smaller network, we assume this analysis is in
the interest of making inference regarding the “whole school”, and report mean value parameters
implied by applying the natural parameter estimates to interpolate the network of size 89. This
puts both fits on the same scale to allow for meaningful comparisons.

Table 3 shows the MLE of the mean value parameters and their standard errors. To begin with,
the expected number of arcs demonstrate that the RO fit implies about 1% more arcs (607) than
the AO fit (600), and 6% more reciprocated arcs (144 vs 135). The mean value parameters of
other model terms support conclusions suggested by the natural parameters. Under the RO fit,
12th graders receive more arcs (17 %), and fewer students receive no friendship nominations (32%
less). Differences in rates of cross-sex nominations within grade are not large. The weighted sum
of arcs from girls to older boys is lower (19%). The weighted sums of arcs from boys to older and
younger boys are reduced (35% and 31% respectively), and those to older girls are increased (29%).
Unexpectedly, the number of transitive and cyclical triads within sex and grade are substantially
higher in the RO fit (16% and 21% respectively), although the natural parameter estimates for
these terms were nearly identical. Since these terms are focused on arcs within sex and grade, the
observed differences are likely due to greater concentration of arcs within sex and grade for the
RO fit. This phenomenon is consistent with the relatively higher rate of sex-grade homophilious
arcs from respondents to respondents, as opposed to from respondents to non-respondents. Figure
2 compares the proportion of observed in-arcs received from outside one’s own sex and grade
for respondents and non-respondents of the same sex and grade. Note that for six of the eight
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Figure 2: Mean proportion of nominations received from outside sex and grade, by sex and grade.

sex-grades with non-respondents, non-respondents received a higher proportion of nominations
from outside their own sex and grade. The greatest exception to this pattern is 12th grade girls, for
whom non-respondents receive a lower proportion of nominations from outside their sex and grade
than their respondent counterparts. This is consistent with the increased rate of “boy to older girl”
nominations, and decreased rate of most other arc types across sex and grade under the RO fit.

The AO approach relies on two types of information not used in the RO approach: the full size
of the network, and the additional data in the arcs sent to non-respondents. To help distinguish the
effects of these two differences, we fit the same model to a network of size 89× 89 with only the
respondents to respondents block observed. This fit resulted in mean value parameter estimates
almost identical to those of the RO approach. In particular, the mean value parameter estimates
for the triad terms are nearly identical to those of the RO fit. In addition, by strategically removing
several influential non-respondents, we are able to produce mean values for cross-grade arcs that
are nearly identical in the RO and AO approaches. This suggests that most of the differences
between the RO and AO fits can be attributed to the additional data available in the AO approach.

4.4 Goodness-of-Fit to Other Structural Properties

Hunter, Goodreau, and Handcock (2005) present a method for evaluating the fit of network mod-
els, based on network statistics not modeled directly. They propose comparing the distribution of
selected statistics of substantive interest (e.g, degree distribution and shortest path length distribu-
tion) to their observed values. They then draw a sample of networks from the model specified by
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the MLE, and compare the observed to the sampled distribution of statistics via box plots. The
closer the observed statistics are to the middle of the sample distributions, the better the fit of the
model. Plots of this sort representing in degree, out degree, and minimum geodesics, and adjusting
for missing data did not demonstrate obvious differences between the performance of these two
model fits (Figures not shown).

4.5 Goodness-of-Fit to Sub-Group Densities

Consider the partition of respondents from non-respondents and the corresponding four blocks rep-
resenting arcs from respondents and non-respondents to respondents and non-respondents given in
Figure 1. We have observed the first two blocks, the arcs sent by respondents, and these observa-
tions provide a basis for comparing the densities of the unknown arcs, sent by non-respondents.

We can use each model to estimate the probabilities of an arc for each entry in the last two
blocks conditional on the observed arcs. Conceptually this can be done by simulating graphs from
the model conditional on the observed data and averaging over the sociomatrices.

If the non-respondents were equally likely to be any of the 89 students, the expected densities of
all four blocks would be the same. To begin with, the block densities are different in the observed
portion of the network. Respondents nominate other respondents with density 0.082 and non-
respondents with density only 0.062, reflecting different in degrees between respondents and non-
respondents. We extend this discussion of differences between respondents and non-respondents
in the discussion.

Table 4 summarizes these interpolated densities under the RO and AO fits. The first thing we
notice is that both model fits imply a higher density of arcs between non-respondents than in any
other block. Some of this effect is due to the greater homogeneity of sex and grade within non-
respondents as compared to within the other blocks. To assess the magnitude of this effect, we
independently sample 19 students with sex and grade matching those of the non-respondents from
each of the 500 conditional samples from each model, and compute the densities of arcs among
those students. The non-respondents to non-respondents block is at the 69th percentile for the
RO fit, and the 56th percentile for the AO approach. While this does not make them significantly
different from others of their sex and grades, they are both slightly elevated. This is consistent with
the many terms in the model regulating in degrees, and the strong mutuality parameter in all the
models. If a 12th grade boy who is a non-respondent has many fewer arcs than a 12th grade boy
who is a respondent, a strong mutuality parameter suggests that the deficit might be accounted for
by unobserved mutual arcs between him and other non-respondents.

We also note that the AO fit implies slightly fewer arcs in the unobserved blocks than the RO
approach. This is consistent with the slightly higher overall density implied by the RO fit.

5 Discussion

Any treatment of missing data requires researchers to make assumptions. Unfortunately, those
assumptions are often made due to methodological limitations rather than scientific conviction.
Here, we have demonstrated the implications of the computationally parsimonious respondents
only approach to treating social networks with missing data. This example demonstrates that the
RO approach can lead to different conclusions from the all observations approach, to a large degree
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due to the additional information available in the arcs sent from respondents to non-respondents.
Using the method introduced by Handcock (2002), we can do a better job of estimating the model
fit for all observed data. By introducing additional terms for any differences between respondents
and non-respondents, we can extend this approach to produce even better model fits.

Faced with incomplete observation of a network of interest, a researcher may choose to redefine
the network of scientific interest to that formed among the respondents only (RO). Such a reduction
is usually the result of a lack of methodology rather than based on scientific principal. Given the
choice, few researchers would choose to define the boundary of the network of interest as an artifact
of the measurement process rather than based on the phenomena itself.

The RO approach is most defensible in the case of a model assuming independence among all
arcs, with non-respondents selected with respect to attributes in the model only (sex and grade). In
this case, the RO likelihood is a true likelihood for the portion of the data it considers. Even in this
best case, however, the RO approach ignores much of the observed data (28% in this example),
resulting in a loss of efficiency.

In this network, we have reason to suspect the non-respondents may differ systematically from
the respondents. We have observed the number of in arcs, or in degrees of both groups. The average
in degree of respondents is 5.6, while the average in degree for non-respondents is only 4.4. We
might imagine this difference is due to the sex and grade composition of the non-respondents. But
repeated random sampling of respondents with sex and grade matching those of non-respondents
yields average in degree above that of non-respondents in 95% of samples (mean 5.5). This result
supports the hypothesis of a systematic difference between respondents and non-respondents.

The AO approach relaxes the assumptions of the RO approach, by appropriately accounting for
any missing at random (MAR) patterns captured by any terms in the model. If, for example, the
non-respondents differ systematically from respondents in that they have lower prestige, and there-
fore fewer in arcs, the AO approach will appropriately account for this difference. This approach
simultaneously allows us to relax our assumptions about the pattern of missing data, and allows
us to make use of all the data we have actually observed. An important remaining assumption
of this approach is that the same statistical model applies to arcs involving both respondents and
non-respondents.

To examine this assumption, we can sample networks from the AO model fit and examine
whether they reproduce the observed data patterns, in particular the differential popularity be-
tween respondents and non-respondents. Table 5 summarizes the mean densities of the respondent
and non-respondent blocks implied by the AO fit. These densities do not reflect the differential
popularity of non-respondents in the observed network.

To capture differences in the models applying to respondents and non-respondents, we can
include any estimable term in the AO model. Since we have observed differential popularity of
respondents and non-respondents, we might consider including a term for the differential popular-
ity of non-respondents in our model. The natural and mean value parameter estimates under this
model are nearly identical to the AO fit, and the term for differential popularity is small, negative,
and significant (-0.28, s.e. 0.11), supporting the observation that non-respondents receive system-
atically less in-arcs. This approach reduces the implied conditionally simulated density of arcs
between non-respondents from 0.087 (AO) to 0.072, but does not reduce the implied condition-
ally simulated density of arcs from non-respondents to respondents (0.070 AO, 0.073 Differential
Popularity). Table 5 shows that this model does adequately capture the differential popularity of
non-respondents, as unconditional samples reproduce the densities of the observed blocks almost
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exactly.
This approach could be extended to the broader class of models including any other terms

capturing differences between respondents and non-respondents. This represents the least restric-
tive set of assumptions for treating these data. Note, however, that additional terms are limited to
terms we can estimate based on the observed data. We could not, for example, estimate a term for
differential activity level of non-respondents from these data.

In this paper, we have found deficiencies in the respondents only approach to treating missing
arc data. Surprisingly, we did not see these deficiencies in all areas of comparison. In particular,
the natural parameter estimates were qualitatively very close to the AO approach. For a researcher
interested only in these estimates, the RO fit would not negatively impact their analysis in this
case. We must stress that we have no reason to expect that this phenomenon would extend to a
broader set of cases. In our example, the RO fit performs less well on the mean value parameteri-
zation, with some parameters mis-estimated by as much as a third. Furthermore, the RO approach
does not allow for extensions to model any differences between respondents and non-respondents.
Historically, the RO approach was widely used because there was no methodology or software
available to implement the AO approach. With the current availability of software to implement
the AO methodology, there is no longer a need to resort to the RO approach.

An R package calledstatnet implementing the procedures in this paper will be publicly
available athttp://csde.washington.edu/statnet .
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Model Term Description
Density Overall rate of arc formation, similar to an intercept
Mutuality Increased propensity for arcs that are reciprocated
Sex and Grade Factors
Grade 8 Popularity Propensity for 8th graders to receive arcs, beyond that of 7th graders
Grade 9 Popularity Propensity for 9th graders to receive arcs, beyond that of 7th graders
Grade10 Popularity Propensity for 10th graders to receive arcs, beyond that of 7th graders
Grade 11 Popularity Propensity for 11th graders to receive arcs, beyond that of 7th graders
Grade 12 Popularity Propensity for 12th graders to receive arcs, beyond that of 7th graders
Male Popularity Propensity for males to receive arcs, beyond that of females
Sex and Grade Mixing
Girl to Same Grade Boy Propensity for girls to send arcs to boys over girls in the same grade
Boy to Same Grade Girl Propensity for boys to send arcs to girls over boys in the same grade
Girl to Older Girl From a younger girl to an older girl as the grade difference increases
Girl to Younger Girl From an older girl to a younger girl as the grade difference increases
Girl to Older Boy From a younger girl to an older boy as the grade difference increases
Girl to Younger Boy From an older girl to a younger girl as the grade difference increases
Boy to Older Boy From a younger boy to an older boy as the grade difference increases
Boy to Younger Boy From an older boy to a younger boy as the grade difference increases
Boy to Older Girl From a younger boy to an older girl as the grade difference increases
Boy to Younger Girl From an older boy to a younger girl as the grade difference increases
Transitivity
Transitive Same Sex and Grade Propensity for arcs within students of the same sex and grade to form

transitive triads
Cyclical Same Sex and Grade Propensity for arcs within students of the same sex and grade to form

cyclical triads
Isolation Propensity for students to receive no arcs

Table 1: Description of Model Terms. The “Sex and Grade Mixing” terms for students of different
ages are interpreted as the rate of change of log-odds of an arc from an individual in the first group
to an individual in the second group as the grade difference increases.
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Respondents Only All Observations RO s.e. AO s.e.
(RO) (AO)

Density −1.555 −1.508 0.19∗∗∗ 0.19∗∗∗

Mutuality 1.963 1.951 0.21∗∗∗ 0.22∗∗∗

Sex and Grade Factors
Grade 8 Popularity −0.217 −0.171 0.15 0.14
Grade 9 Popularity −0.330 −0.297 0.16∗ 0.16
Grade10 Popularity −0.278 −0.346 0.17 0.16∗

Grade 11 Popularity −0.031 −0.052 0.20 0.19
Grade 12 Popularity 0.061 −0.147 0.20 0.18
Male Popularity 0.461 0.400 0.16∗∗ 0.16∗

Sex and Grade Mixing
Girl to Same Grade Boy 0.001 0.172 0.24 0.23
Boy to Same Grade Girl −0.156 −0.255 0.24 0.23
Girl to Older Girl −0.959 −0.928 0.19∗∗∗ 0.17∗∗∗

Girl to Younger Girl −1.310 −1.300 0.23∗∗∗ 0.22∗∗∗

Girl to Older Boy −1.067 −0.882 0.17∗∗∗ 0.14∗∗∗

Girl to Younger Boy −1.374 −1.358 0.24∗∗∗ 0.23∗∗∗

Boy to Older Boy −1.140 −0.859 0.22∗∗∗ 0.16∗∗∗

Boy to Younger Boy −2.081 −1.825 0.41∗∗∗ 0.35∗∗∗

Boy to Older Girl −0.520 −0.641 0.14∗∗∗ 0.14∗∗∗

Boy to Younger Girl −1.050 −1.102 0.19∗∗∗ 0.19∗∗∗

Transitivity
Transitive Same Sex and Grade 0.501 0.505 0.06∗∗∗ 0.05∗∗∗

Cyclical Same Sex and Grade −0.994 −1.002 0.20∗∗∗ 0.20∗∗∗

Isolation 3.051 3.613 0.64∗∗∗ 0.68∗∗∗

Table 2: Estimated coefficients and standard errors for the parameters of the model fits under the
Respondents Only (RO) and All Observations (AO) approaches.∗ = p < .05, ∗∗ = p < .01,
∗ ∗ ∗ = p < .001
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Respondents Only All Observations RO s.e. AO s.e.
(RO) (AO)

Density 607.30 600.56 19.74 20.48
Mutuality 143.79 135.24 10.56 9.79
Sex and Grade Factors
Grade 8 Popularity 122.84 129.09 11.22 10.67
Grade 9 Popularity 81.14 84.01 9.05 11.10
Grade10 Popularity 95.10 87.34 9.52 10.65
Grade 11 Popularity 119.30 124.93 8.62 9.54
Grade 12 Popularity 102.40 87.54 8.86 9.96
Male Popularity 319.08 324.37 11.89 12.04
Non-Resp Popularity 141.39 137.96 10.86 11.41
Sex and Grade Mixing
Girl to Same Grade Boy 88.01 90.96 6.64 7.05
Boy to Same Grade Girl 66.80 63.60 6.73 6.75
Girl to Older Girl 31.68 29.87 7.77 6.86
Girl to Younger Girl 19.99 20.49 5.35 5.45
Girl to Older Boy 49.15 60.78 8.01 10.03
Girl to Younger Boy 29.62 28.48 5.89 5.97
Boy to Older Boy 27.18 41.62 6.52 8.82
Boy to Younger Boy 8.06 11.68 3.26 3.89
Boy to Older Girl 68.70 53.17 11.12 9.09
Boy to Younger Girl 34.88 35.57 6.80 7.27
Transitivity
Transitive Same Sex and Grade 401.29 344.87 68.79 62.09
Cyclical Same Sex and Grade 96.31 79.47 18.73 16.19
Isolation 2.58 3.78 1.52 1.78

Table 3: Estimated mean value parameters and standard errors for the model fits under the Respon-
dents Only (RO) and All Observations (AO) approaches.

Respondents Only All Observations
(RO) (AO)

Respondents to Respondents 0.082 0.082
Respondents to Non-Respondents 0.062 0.062
Non-Respondents to Respondents 0.071 0.070
Non-Respondents to Non-Respondents 0.092 0.087

Table 4: Interpolated densities of blocks of arcs under each fit, conditional on observed arcs.
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Respondents Only All Observations Diff Pop.
(RO) (AO) (DP)

Respondents to Respondents 0.076 0.076 0.081
Respondents to Non-Respondents 0.081 0.080 0.062
Non-Respondents to Respondents 0.075 0.072 0.074
Non-Respondents to Non-Respondents 0.099 0.093 0.071

Table 5: Estimated densities of blocks of arcs under each fit unconditional on the observed arcs.
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