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Abstract

Network models are widely used to represent relational information among interacting units
and the implications of these relations. In studies of social networks recent emphasis has
been placed on random graph models where the nodes usually represent individual social
actors and the edges represent a specified relationship between the actors.

Most inference for models for social networks assumes that the presence or absence of
all links in the network are completely observed, that the information is completely reliable
and there are no measurement (e.g. recording) errors. This is clearly not true in practice,
as much network data is collected though sample surveys. In addition even if a census of a
population is attempted, individuals and links between individuals are missed (i.e., do not
appear in the recorded data).

In this paper we develop the conceptual and computational theory for inference based
on sampled network information. We first review forms of network sampling designs used in
practice and consider the various forms of out-of-design missing data. We consider inference
from the likelihood framework, and develop a typology of network data that reflects their
treatment within this frame. We then develop inference for social network models based on
information from adaptive network mechanisms.

We motivated and illustrate the ideas by analyzing the effect of link-tracing sampling
designs on a collaboration network and by an analysis of social relations from the National
Longitudinal Study of Adolescent Health subject to missing data.



1 Introduction

Networks are a useful device to represent “relational data”, that is, data with properties

beyond the attributes of the individuals (nodes) involved. Relational data arise in many

fields and network models are a natural approach to representing the regular pattern of

the relations between nodes. Networks can be used to describe such diverse ideas such as

the behavior of epidemics, the interconnectedness of the corporate boards, and network of

genetic regulatory interactions. In social network applications, the nodes in a graph represent

individuals, and the ties (edges) represent a specified relationship between individuals. Nodes

can also be used to represent larger social units (groups, families, organizations), objects

(airports, servers, locations), or abstract entities (concepts, texts, tasks, random variables).

We consider here stochastic models for such graphs. These models attempt to represent

the stochastic mechanisms that produce relational ties, and the complex dependencies this

induces.

Social network data typically consist of a set of n actors and a relational tie Yi,j, measured

on each possible dyad {i, j}, an ordered pair of actors i, j = 1, . . . , n. In the most simple

cases, Yi,j is a dichotomous variable, indicating the presence or absence of some relation of

interest, such as friendship, collaboration, transmission of information or disease, etc. The

data is often represented by an n × n sociomatrix Y . In the case of binary relations, the

data can also be thought of as a graph in which the nodes are actors and the edge set

is {(i, j) : Yi,j = 1}. When (i, j) is in the edge set we write i → j. For many networks

the relations are undirected in the sense that {Yi,j = Yj,i, i, j = 1, . . . , n}. To simplify the

presentation, we focus on directed binary relations.

The structure of the relations is usually dependent on the attributes of the actors. For

example, for most social relations the likelihood of a relationship is a function of the age,

gender, geography and race of the individuals. Homophily of attributes is often associated

with increased propensity of a relationship (McPherson, Smith-Lovin, and Cook, 2001),

although the effect may be reversed (e.g., gender and sexual relationships). In addition to

exogenous attributes of the actors, relationships are influenced by endogenous attributes

such as their positions in the network (White, Boorman, and Breiger 1976). For large or

hard to find populations of actors it is difficult to obtain information on all actors and all

relational ties. As a result various survey sampling strategies and methods are applied. An

important aspect of these methods is that they adaptively exploit the components of the

networks as they are observed to guide the sampling. These adaptive designs allow for more

efficient sampling than conventional sampling designs. We consider such design in Section

3.
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In this paper we mainly consider the network over the set of actors to be the realization

of a stochastic process and model the process. An alternative is to view the network as a

fixed structure about which we wish to make inference based on partial observation.

The statistical modeling of networks has a long history. Holland and Leinhardt (1981)

appear to be the first to propose log-linear models for social networks. Their models resulted

in each dyad — by which we mean each pair of actors — having edges independently of every

other dyad. Frank and Strauss (1986) generalized to the case in which dyads exhibit a form

of Markovian dependence: Two dyads are dependent, conditional on the rest of the graph,

only when they share a node. Such exponentially parametrized random graph models have

connections to a broad array of literatures in many fields, such as spatial statistics, statistical

exponential families, and statistical physics (Geyer and Thompson, 1992).

In this paper we develop a theoretical framework of missing information and sampling of

networks. These extend those in the fundamental work of Thompson and Frank (2000).

In Section 2 we present ...

2 Network Sampling Design

In this section we consider the conceptual and computational theory of network sampling.

There is a substantial literature on network sampling designs. Our development here

follows Thompson and Seber (1995) and Thompson and Frank (2000). Suppose there are q

(exogenous) covariates on the ordered pair of actors which we denote by the n×n×q array

X = {Xi,j} i, j = 1, . . . , n where Xi,j is the q−vector covariates associated with the {i, j},
dyad. Let X denote the sample space of covariates and Y(x) the set of possible networks on

the n actors with a given set of covariates x ∈ X . Let (Y ,X ) denote the joint set of networks

and covariates. For a given network y ∈ Y(X ) with covariates x ∈ X , denote a sample from

the network and covariates as s ⊂ {y, x}. The sample is selected by a combination of the

design mechanism and out-of-design mechanism. The design mechanism is that part of the

observation process under the control of the surveyor (e.g., a survey using conventional, ego-

centric, snowball or other link-tracing sampling). The unknown dyads are assumed to be

intentionally unobserved, or missing by design. The definition of control may be extended

by allowing the design to depend on unknown factors, such as the unrecorded values of

variables used for stratification. However in the usual case the stochastic mechanism of the

design is known completely, or up to a parameter ψ. Let p(s|y, x;ψ) denote the probability

of the design mechanism selecting sample s given a network y and covariates x. The out-of-

design mechanism is the non-intentional non-observation of network information (e.g., due to

the failure to report links, incomplete measurement of links and attrition from longitudinal
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surveys). This is also referred to, in general, as the non-response mechanism.

A design mechanism is conventional if it does not use information collected during the

survey to direct subsequent sampling of individuals (e.g., network census and ego-centric

designs). Specifically, a design is conventional if p(s|y, x;ψ) = p(ψ) ∀x, y ∈ (Y ,X ). A simple

example of a conventional design mechanisms for networks is simple random sampling of a

subset of the actors, followed by complete observation of the pairs originating from those

actors. A complete census of the network and covariates is another. More complex examples

are designs using probability sampling of pairs and auxiliary variables.

We call a design mechanism adaptive if it uses information collected during the survey

to direct subsequent sampling of actors, but the mechanism depends only on the observed

information. Specifically, a design is adaptive if: p(s|y, x;ψ) = p(s;ψ) ∀x, y ∈ (Y ,X ). The

definitions of conventional and adaptive designs can be refined to allow this condition to

hold for a subset of (Y ,X ).

3 Model-based Sampling

In the “design-based” framework {y, x} represents the population and interest focuses on

characterizing x based on partial observation. Under the “model-based” framework X is

stochastic and is a realization from a stochastic process depending on a parameter η. Here

interest focuses on η which characterizes the mechanism that produced the complete graph

X. The model may also be used to guide design-based inference (Sarndal, Swensson, and

Wretman 1992).

For notational simplicity, we focus on the sampling of the network and suppress reference

to the covariates. We return to these in Section 4.2.

Let D be the n×n random binary matrix indicating if the corresponding element of Y

was sampled or not. The value of the i, jth element is 0 if the i, jth pair was intentionally

not sampled and 1 if the element was chosen to be sampled. We shall refer to D as the

network design mechanism. We shall refer to realizations of D as the design matrix and the

distribution of D as the design mechanism. The design mechanism is usually related to the

structure of the graph so we posit a model for it,

pr(D|Y ),

which depends on Y and typically the exogenous attributes X which we suppress.

Denote the observed part of the complete graph Y by Yobs = {Yij : Dij = 1} and the

unobserved part by Ymis = {Yij : Dij = 0} . What we observe is then the observed data:

{Yobs , D } , in contrast to the complete data: {Yobs, Ymis , D} . We will write the complete

graph Y = {Yobs , Ymis } .
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Formally, we can also represent Yobs as n×n matrix indicating the corresponding element

of Y if it is observed, and undefined if it are not:

Yobs,ij =

{
Yij if Dij = 1
? if Dij = 0

.

The reverse is true of Ymis :

Ymis,ij =

{
Yij if Dij = 0
? if Dij = 1

.

In addition, if we make the convention that a number plus or multiplied by an undefined

(i.e. “?”) is the number, we have Y = Yobs + Ymis.

3.1 Example: Ego-Centric designs

For example, consider a simple ego-centric design:

1. Select individuals at random, each with probability ψ.

2. Observe all dyads involving the selected individuals (i.e., dyads with at least one of

the selected individuals as one of the order pair of actors).

The sampling mechanism can be determined for this design. First note that

pr(Dij = 1|Y, ψ) = 1− (1− ψ)2 ∀i 6= j

This, however, does not give the joint distribution of D . Let 1 be the binary n−vector of

1s, and denote by [y] the vector-valued function that is 1 if the corresponding element of y

is logically true, and 0 otherwise.

Let s0 be the binary n−vector where 1 and 0 indicate that the corresponding individual

has been selected, or not, respectively. Within this design, s is determined by the observation

matrix (i.e. s0 = [D1 = n1]) . Then pr(so = s|Y, ψ) = ψ1T s(1 − ψ)n−1T s s ∈ {0, 1}n . If

the ith element of s0 is 1 then all elements in the ith row and column of D are 1 (and 0

otherwise). Hence the probability distribution of D is:

pr(D = d|Y, ψ) = ψ1T s(1− ψ)n−1T s

for

d = 1sT − s1T − ssT s ∈ {0, 1}n

Note that the distribution does not depend on Y .
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3.2 Example: One-wave link tracing design

Let s0 denote the indicator for the initial sample and s1 the indicator for the added individuals

not in the initial sample. Then the whole sample of individuals is s = s0 + s1 . As in the

ego-centric design the observation matrix is given by 1sT − s1T − ssT s ∈ {0, 1}n . Note

that s1 = [Y s0 > 0] is derivable from s and Y . Hence

pr(D = d|Y, ψ) =
∑

s0: s0+[Y s0>0]=s

ψ1T s0(1− ψ)n−1T s0

for

d = 1sT − s1T − ssT s ∈ {0, 1}n

3.3 Example: Multi-wave link tracing design

Consider a multi-wave link tracing design or complete wave snowball design in which the

complete set of partners of the kth wave are enrolled.

Let s0 denote the indicator for the initial sample, s1 the indicator for the added individuals

in the first wave not in the initial sample, . . . , sk the indicator for the added individuals in

wave k not in the prior samples. Then the whole sample of individuals is s = s0+s1+ ...+sk.

As in the ego-centric design the observation matrix is given by 1sT − s1T − ssT s ∈ {0, 1}n .

Note that sm = [Y sm−1 > 0] , m = 1, ..., k is derivable from s0 and Y .

pr(D = d|Y, ψ) =
∑

s0: s0+s1+...+sk=s

ψ1T s0(1− ψ)n−1T s0

for

d = 1sT − s1T − ssT s ∈ {0, 1}n

Note that sm = [Y sm−1 > 0] = [Yobssm−1 > 0] , m = 1, ..., k so that the individuals selected

in the successive waves of a complete wave snowball sample depend only on the observed

part of the graph.

3.4 Design-based inference for Ymis

In the design-based framework, we wish to make inference about ψ and also about the

unknown values Ymis. The likelihood for ψ based on the observed data is any function of ψ

proportional to pr(D, Yobs|ψ) :

L[ψ|D, Yobs] ∝ pr(D, Yobs|ψ) =

∫
pr(D|Y, ψ)dYmis.
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4 Model-based inference for η

Consider a parametric model for the random behavior of Y depending on a parameter

p−vector η:

Pη(Y = y) η ∈ Ξ (1)

In the model-based framework, if Y is completely observed inference for η can be based on

the likelihood:

L[η|Yobs] ∝ Pη(Y = Yobs)

This situation has been considered in detail in Hunter and Handcock (2006) and the refer-

ences therein. In the general case where Y may be only partially observed we can consider

using the (so-called) face-value likelihood based solely on Yobs :

L[η|Yobs] ∝ pr(Yobs|η) =

∫
Pη(Y = y)dYmis.

This ignores the additional information about η available in D. Inference for η and ψ should

be based on all the available observed data, including the sampling design information. This

likelihood is any function of η and ψ proportional to pr(D, Yobs|η, ψ):

L[η, ψ|Yobs, D] ∝ pr(D, Yobs|η, ψ) =

∫
pr(D|Y, ψ)Pη(Y = y)dYmis

Thus the correct model is related to the complete data model through the sampling mecha-

nism as well as the observed dyads.

4.1 Ignorability of the Sampling Mechanism

It is natural to ask when inference for η should be based on the observed data likelihood

and when it can be based on the simpler face-value likelihood which ignores the sampling

mechanism. For many surveys the sampling mechanism satisfies

pr(D = d|Yobs, Ymis, ψ) = pr(D = d|Yobs, ψ),

a condition called “missing at random” by Rubin (1976). Note that this is a bit of a misnomer

– it does not say that the propensity to be observed is unrelated to the unobserved portions

of the graph, but that this relationship can be explained by the data that is observed. The

observed part of the data are usually vital to this equality.

In many situations where models are used, the parameters η and ψ are distinct, in the

sense that the joint parameter space of (η, ψ) is the product of the parameter space of η
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and the parameter space of ψ. If the sampling mechanism is missing at random and the

parameters η and ψ are distinct:

L[η, ψ|Yobs = yobs, D = d] ∝ pr(D = d|Yobs = yobs, ψ)

∫
Pη(Y = y)dYmis

∝ L[ψ|D = d, Yobs = yobs]L[η|Yobs = yobs]

Thus likelihood-based inference for η from L[η, ψ|Yobs, D] will be the same as likelihood-based

inference for η based on L[η|Yobs].

Thus if the sampling mechanism is missing at random then the sampling mechanism is

ignorable in the sense that the resulting likelihoods are proportional.

The same holds true for the design-based inference: the model for the graph (but not the

graph itself!) is ignorable for inferences about the sampling mechanism parameter ψ.

When this condition is satisfied likelihood-based inference for η, as proposed here, is

unaffected by the (possibly unknown) sampling mechanism.

4.2 Inference for Adaptive Network Sampling Designs

In this section we consider likelihood inference for conventional and adaptive network sam-

pling designs. For completeness we do not suppress the reference to the covariates X. Denote

the observed part of the covariate array X by Xobs = {Xij : Dij = 1} and the unobserved

part by Xmis = {Xij : Dij = 0} . The full observed data is then {Yobs, Xobs, D} . Suppose the

sampling design is conventional. Then

pr(D = d|Yobs, Ymis, Xobs, Xmis, ψ) = pr(D = d|ψ)

and the design is ignorable. More generally, if the sampling design is adaptive:

pr(D = d|Yobs, Ymis, Xobs, Xmis, ψ) = pr(D = d|Yobs, Xobs, ψ)

so these designs are ignorable. Specifically:

Result: Suppose that the network data (Y,X) follows a stochastic process Pη(Y =

y,X = x) governed by a q−vector parameter η ∈ Ξ. Suppose the network sampling design

mechanism, D, is governed by a parameter ψ and produces the data (yobs, xobs). If the network

sampling design mechanism is adaptive and the parameters η and ψ are distinct then the

network sampling design mechanism is ignorable. Consequently the likelihood for η and ψ

is

L[η, ψ|Yobs = yobs, Xobs = xobs, D = d]

∝ L[ψ|D = d, Yobs = yobs, Xobs = xobs]L[η|Yobs = yobs, Xobs = xobs]
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Henceforth we assume the parameters η and ψ are distinct. The result shows that the ego-

centric, single wave and multi-wave sampling are ignorable, and likelihood-based inference

can be based on the face-value likelihood L[η|Yobs]. Explicitly, this is:

L[η|Yobs = yobs, Xobs = xobs]

∝ pr(Yobs = yobs, Xobs = xobs|η)

=
∑

(x,y) : (yobs + y, xobs + x)∈ (X ,Y)

Pη(Y = yobs + y,X = xobs + x)

where y and x have the same structure as Ymis and Xmis while yij and xij are undefined if

Dij = 1. Hence we can evaluate the likelihood by just enumerating the full data likelihood

over all possible values for the missing data.

5 Out-of-design mechanism

The out-of-design mechanism or non-response mechanism refers to non-intentional non-

observation of dyads. Some sources of sampling factors that lead to out-of-design missing

data are:

• Non-random sample of respondents – the initial sampling design was non-random or

in some way a convenience sample

• Inaccuracy of reported links – contact information does not allow identification or

contacts are miss-identified

• Dead-ends due to mobility of contacts: These occur when contacts are untraceable

even when accurately reported by the respondent.

• Failure to complete full link-tracing in the design

• Failure to report all links – some contacts are not disclosed

• Missing responses on covariates

• Inaccuracy of reported covariates

Such procedures can be considered as “sampling” of the data but with a mechanism that

is not completely under the control of the surveyor. However we can consider some forms

of missing data in the same manner as we consider adaptive network designs. Specifically,

we cause the traditional notion of ignorability (Rubin, 1976). Suppose the out-of-design

mechanism, O, is governed by a parameter ψ and produces the data s = (yobs, xobs). We call
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O ignorable if p(s|y, x;ψ) = p(s;ψ) ∀x, y ∈ (Y ,X ). as the mechanism does not depend on the

unobserved information given the observed information. We then can restate the following

classic result for this circumstance:

Result: Suppose that the network data (Y,X) follows a stochastic process Pη(Y =

y,X = x) governed by a q−vector parameter η ∈ Ξ. If the out-of-design design mechanism

is ignorable and the parameters η and ψ are distinct then the likelihood for η and ψ is

L[η, ψ|Yobs = yobs, Xobs = xobs, D = d]

∝ L[ψ|D = d, Yobs = yobs, Xobs = xobs]L[η|Yobs = yobs, Xobs = xobs]

In the next section we consider a rich class of parametric models for Y that can be used

under both adaptive sampled and ignorable network designs.

6 Exponential Family Models for Networks

The models we consider for the random behavior of Y rely on a p-vector Z(Y |X = x) of

statistics and a parameter vector η ∈ Rp. The canonical exponential family model is

Pη(Y = y|X = x) = exp{η·Z(y;x)− ψ(η;x)}, (2)

where

exp{ψ(η;x)} =
∑

u

exp{η·Z(u;x)} (3)

is the familiar normalizing constant associated with an exponential family of distributions

(Barndorff-Nielsen 1978; Lehmann, 1983). The sum in (3) is taken over the whole sam-

ple space, which presents a very important problem in most applications: A sample space

consisting of all possible directed graphs on n nodes contains exp{n(n− 1) log 2} elements,

an astronomically large number even for moderately sized n of, say, 20. Thus, for most

applications it is impossible even to evaluate the likelihood function for a particular η.

The range of network statistics that might be included in the Z(y;x) vector is vast —

see Wasserman and Faust (1994) for the most comprehensive treatment of these statistics

— though we will consider only a few in this article. We allow the vector Z(y;x) to include

covariate information about nodes or edges in the graph in addition to information derived

directly from the matrix y itself. Thus, Z(y;x) should be viewed as a function not only of

y, but also potentially of the exogenous covariates x. For example, if each node is a person,

Z(y;x) might include the total number of edges between individuals of the same gender,

which is a function of both the graph y and the exogenous nodal covariate gender. For
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notational simplicity, we prefer to allow the dependence of Z on exogenous covariates to be

implicit rather than explicitly indicated by the notation.

There has been a lot of work on models of the form (2), to which we refer as exponential

family random graph models or ERGMs for short. (We avoid the lengthier EFRGM, for

“exponential family random graph models,” both for the sake of brevity and because we

consider some models in this article that should technically be called curved exponential

families.) Holland and Leinhardt (1981) appear to be the first to propose a specific case

of model (2) in the literature. Their model, which they called the p1 model, resulted in

each dyad — by which we mean each pair of nodes — having edges independently of every

other dyad. Based on developments in spatial statistics (Besag 1974), Frank and Strauss

(1986) generalized to the case in which dyads exhibit a kind of Markovian dependence: Two

dyads are dependent, conditional on the rest of the graph, only when they share a node.

Frank (1991) mentioned the application of model (2) to social networks in its full generality.

This was pursued in depth by Wasserman and Pattison (1996). In honor of Holland and

Leinhardt’s p1 model, they referred to model (2) as p∗ (p−star), a name that has been widely

applied to ERGMs in the social networks literature.

We note that the model (2) can be thought of as simply a parametrization of the set

of possible model for the network, as they can represent any finite random graph model by

appropriate choice of Z.

Inference for this class of models was considered in the seminal paper by Geyer and

Thompson (1992), building on the methods of Frank and Strauss (1986) and the above

cited papers. Until recently, inference for social networks models has relied on maximum

pseudolikelihood estimation (Besag, 1974; Frank and Strauss, 1986; Strauss and Ikeda, 1990;

Geyer and Thompson, 1992). Geyer and Thompson (1992) proposed a stochastic algorithm to

approximate maximum likelihood estimates for model (2) among other models; this Markov

chain Monte Carlo (MCMC) approach forms the basis of the method described in this article.

The development of these methods for social network data has been considered by Corander

et al. (1998); Crouch et al. (1998); Snijders (2002); Handcock (2002); Corander et al. (2002);

Hunter and Handcock (2006).

6.1 Model-based inference for ERGM

In this section we consider likelihood inference for η in the case where Y = Yobs + Ymis is

possibly only partially observed.

As this may entail a large number of terms, we can approximate the likelihood by using

the MCMC trick of randomly sampling from the space of possible values of the missing data
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and taking the mean. Alternatively consider the conditional distribution of Y given Yobs :

Pη(Ymis = y|Yobs = yobs) =
exp [η·Z(y + yobs;x)]

c(η|yobs)
y ∈ Y

where c(η|yobs) =
∑

y′:y′+yobs∈Y

exp [η·Z(y′ + yobs; y)] . This formula gives a simple way to sam-

ple from the conditional distribution and hence produce multiple imputations of the full

data.

Also note that

L[η|Yobs = yobs] ∝
c(η|yobs)

c(η)

which can then be estimated by MCMC samples: the numerator by a chain on the complete

data and the denominator on a chain conditional on yobs . So the sampled data situation is

only a little big harder than the complete data case.

Thompson and Frank (2000) show that most link-tracing designs are missing at random,

in this sense. In general, some aspects of the sampling mechanism may need to be modeled

– for a review, see Schafer (1997).

In practice, however, any local network design will likely be subject to out-of-design

missing and non-reliable data. For example, a common problem in network studies is that

respondents over or under-report their partnerships. As a simple model for this, suppose

that individual links (non-links) are independently erroneously reported as non-links (links)

with probability α1(α0) . Hence we have non-reliable values of the sampled dyads where the

reliability depends on the value of the dyad. The out-of-design mechanism is:

pr(R = r|Y, α0, α1) = α
[Y d6=r]
1 (1− α1)

[Y d=r]α
[(11T−Y )d6=r]
0 (1− α0)

[(11T−Y )d=r]

for d = 1sT − s1T − ssT s ∈ {0, 1}n . The sampling mechanism is then

pr(D = d|Y, ψ, α0, α1) =
∑

d : d ≥ o
d = 1sT − s1T − ssT

pr(D = d|Y, ψ)pr(R = o|Y,D = d, α0, α1)

for s ∈ {0, 1}n . If the two error probabilities are the same (i.e. α0 = α1) the sampling

mechanism, like the local network design, is ignorable. In general, however, this sampling

mechanism is non-ignorable.

This is a simple but practical example of a model for a sampling mechanism which is non-

ignorable due to out-of-design missing data, even though the underlying design is ignorable.
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Figure 1: Schematic depiction of sampled and unobserved arc data when the sampling is
over an undirected network.

7 Two-wave link-tracing samples from a Legal Net-

work

In this section we investigate the effect of network sampling on estimation by comparing

network samples to the situation where we observe the complete network. The Lazega

(2001) undirected collaboration network of 36 law firm partners is used as the basis for

the study. In assessing the effect of sampling on model fit we start with a well fitting

model for the data. We consider Model 2 in Hunter and Handcock (2006). The structural

parameters, related to network statistics, are the number of edges (essentially the density)

and the geometrically weighted edgewise shared partner statistic (denoted by GWESP), a

measure of the transitivity structure in the network. Two nodal attributes are used: seniority

(ranknumber/36) and practice (corporate or litigation). Three dyadic homophily attributes

are used: practice, gender (3 of the 36 lawyers are female) and office (3 different locations of

different size). The scale parameter for the GWESP term fixed at its optimal value (0.7781).

(See Hunter and Handcock, 2006, for details). A summary of the MLE parameters used is

given in column two of Table 1. Note that we are taking these parameters as “truth” and

considering data produced by sampling from this network.

We conduct all possible datasets produced by a two-wave link tracing starting from

two randomly chosen partners (the “seeds”). As there are 36 partners and the sample is

deterministic given the seeds, there are
(
36
2

)
= 630 possible data sets. The number of actors

in each dataset varies from just 2 to all 36 depending on the degree of connectedness of

the seeds. The data pattern is shown in Figure 7. Consider a partition of the sampled

from the non-sampled and the corresponding 2×2 blocking of the sociomatrix, with the four

blocks representing dyads from sampled and non-sampled to sampled and non-sampled. The
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complete data consists of the full sociomatrix. The first three blocks contain the observed

data, the dyads involving at least one respondent, and the last block contain the unobserved

data, those between the non-sampled.

For each of these samples we use the methods of Section 4 to estimates the parameters.

We can then compare them to the MLE for the complete dataset. For these networks, the

MLEs are obtained using statnet (Handcock et al., 2003), both for the natural parameteri-

zation and for the mean value parameterization (see Handcock, 2003). waves (corresponding

to observing 165 (26%) dyads).

The mean value parameters are a function of the natural parameters, specifically the

expected values of each statistic given the values of the natural parameters.

There are two isolates and if these are sampled only 69 of the 630 dyads are observed.

There are also two pairs of seeds where only 5 partners appear in at least one of the The

estimates from these 3 samples are quite variable compared to the other 627 due to the

smaller sample size. Note that the issue here is the number of dyads sampled and their

relationship rather than the percentage sampled. The sampler will not know that these

samples are extreme and so an evaluation of the sampling process should include them.

However the sampler may be concerned about the (known) small sample size. In any case

we include population-level comparisons both including these extremely small samples and

excluding them.

One way to assess the effect of the link-tracing design is to compare the estimates from

the sampled data to that of the complete data. As a measure of how far the estimates are

apart in the metric of the model we use the Kullback-Leibler divergence from the model

implied by the complete data estimate to that of the sampled data estimate. Recall that

the Kullback-Leibler divergence of a distribution with probability mass function p from the

distribution with probability mass function q is

Eq[log(q)− log(p)]

Let η and ξ be alternative parameters for the model (2). The Kullback-Leibler divergence,

KL(ξ,η), of the ERGM with parameter η from the ERGM with parameter ξ is:

Eξ

[
log

(
Pξ(Y = y|X = x)

Pη(Y = y|X = x)

)]
=

∑
y∈Y

log

(
Pξ(Y = y|X = x)

Pη(Y = y|X = x)

)
Pξ(Y = y|X = x)

=
∑
y∈Y

(ξ − η)·yPξ(Y = y|X = x) + log

(
c(η)

c(ξ)

)
= (ξ − η)·Eξ[Z(Y ;x)|X = x] + log

(
c(η)

c(ξ)

)
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If ξ is the complete data MLE then Eξ[Z(Y ;x)] = Z(Yobs;x) are the observed statistics

(given in column 2 of Table 2). The divergence can be easily computed using the MCMC

algorithms of Section 6.1.

Figure 7 plots the Kullback-Leibler divergence of the MLEs based on the 627 samples

from the complete data MLE. The Kullback-Leibler divergence of the three extreme samples

are 14 to 18 have not been plotted to reduce the vertical scale. The horizontal axis is the

number of observed dyads in the sample. The plot indicates how the information in the

data about the complete data MLE approaches that of the complete data as the number of

sampled dyads approaches the full number. The key feature of this figure is the variation in

information content among samples of the same size especially for the smaller sample sizes.

Different seeds lead to samples that tell us different things about the model even when the

numbers of partners surveyed is the same.

For more specific information on the individual estimates, we can compute the bias of the

estimates based on the samples as the mean difference between the parameter estimates from

the samples and that of the complete network. The root mean squared error (RMSE) is the

square-root of the mean of the squared difference between the parameter estimates from each

sample and the complete data estimates. The efficiency loss of the sampled estimate is the

ratio of the mean squared error and the variance of the sampling distribution of the estimate

based on the full data. This standardizes the error in the sampled estimates by the variation

in the complete data estimates remaining in the complete data. We also complete a similar

comparison of the estimates under the alternative mean value parametrizationHandcock

(2003).

The properties of the original model’s natural parameter estimates are summarized in

Table 1. The bias and root mean squared error are presented in percentages of the complete

data parameter estimates.

When the three extreme samples are excluded, the bias is very small and the RMSE is

modest. The efficiency loss is 1-2% on average. Note that these population-average figures

obscure the variation in loss over individual samples apparent in Figure 7. A consideration

of all samples, leaves the bias small but leads to an increase in the RMSE. The efficiency loss

are also substantially increased, especially those of the edges and GWESP terms. For these

the errors are, on average, 10% to 21% of the variation in the complete data. However, as

we have seem, much of this is from the few extremely bad samples.

Table 2 is the mean value parameterization analog of Table 1. As these are on the

same measurement scale as the statistics they are easier to interpret. Again we see they

are approximately unbiased when the extreme values are included or excluded. However for

these parameters the efficiency loss is small for overall samples.
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Figure 2: Kullback-Leibler divergence of the MLEs based on the samples compared to the
complete data MLE. As the number of dyads sampled increases the information content of
the samples approaches that of the complete data. The information loss for the majority of
samples is modest.
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Table 1: Bias and Root Mean Squared Error (RMSE) of natural parameter MLE based on
two-wave samples as percentages of true parameter values and efficiency losses

complete Excluding worst 3 of 630 All 630 possible samples
natural data bias RMSE efficiency bias RMSE efficiency
parameter value (%) (%) (%) (%) (%) loss (%)
structural
edges −6.51 0.2 1.0 1.3 0.3 4.1 21.9
GWESP 0.90 0.9 2.5 2.4 0.9 5.4 11.1
nodal
seniority 0.85 0.3 3.1 1.2 0.5 5.1 3.4
practice 0.41 0.2 3.7 1.7 0.2 6.6 5.4
homophily
practice 0.76 0.7 3.9 2.3 0.9 5.9 5.3
gender 0.70 1.0 4.4 1.5 0.8 6.2 2.9
office 1.15 0.8 2.7 2.5 0.6 4.9 8.3

Table 2: Bias and Root Mean Squared Error (RMSE) of mean value parameter MLE based
on two-wave samples as percentages of true parameter values and efficiencies

complete Excluding worst 3 of 630 All 630 possible samples
natural data bias RMSE efficiency bias RMSE efficiency
parameter value (%) (%) (%) (%) (%) loss (%)

structural
edges 115.00 0.4 2.0 1.8 0.4 2.0 1.8
GWESP 190.31 0.3 2.6 1.6 0.4 2.8 1.9
nodal
seniority 130.19 0.0 0.1 1.4 0.0 0.1 1.4
practice 129.00 0.1 2.0 1.7 0.2 2.6 3.4
homophily
practice 72.00 0.1 1.8 1.7 0.1 2.0 1.7
gender 99.00 0.5 2.1 1.8 0.5 2.1 1.8
office 85.00 0.7 2.6 3.0 0.7 2.7 3.0

8 Application to Adolescent Social Relations

In this section we consider the effect of missing data on friendship nominations in a social

network from the National Longitudinal Study of Adolescent Health (Add Health). Add

Health is a school-based, longitudinal study of the health-related behaviors of adolescents and

their outcomes in young adulthood. The study design sampled 80 high schools and 52 middle

schools from the US representative with respect to region of country, urbanicity, school size,

school type, and ethnicity (Harris et. al 2003). In 1994-95 an in-school questionnaire was

administered to a nationally representative sample of students in grades 7 through 12. In

addition to demographic and contextual information, each respondent was asked to nominate

up to five boys and five girls within the school they regarded as their best friends. Thus each
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Figure 3: Schematic depiction of observed and unobserved arc data when the missing data
is at the respondent level only.

student could nominate up to ten students within the school (Udry 2003).

Here we consider a single school of 89 adolescents from grades seven through twelve.

We consider the friendship nominations between all adolescents. The survey also collected

the grade and sex of each of the students. The design mechanism of Add Health was a

census of the students. However, 19 of the adolescents were not present and did not take

the in-school questionnaire. Thus their nominations were missing, although they could be

nominated by those who took the survey. Hence of the 7832 nominations 19× 88 = 1672, or

21% were missing. This out-of-design mechanism led to missing observations on the network.

In this case there was complete observation of the sex and grade covariates and of the other

nominations.

The data pattern is shown in Figure 8. Consider a partition of respondents from non-

respondents and the corresponding 2×2 blocking of the sociomatrix, with the four blocks rep-

resenting arcs from respondents and non-respondents to respondents and non-respondents.

The complete data consists of the full sociomatrix. The first two blocks contain the observed

data, the arcs sent by respondents, and the second two blocks contain the unobserved data,

those sent by non-respondents.

Almost all network analysis of the AddHealth survey models or describes the network

among the respondents only, excluding those individuals who are did not complete the survey

(Bearman et al., 2004; Harris et al., 2003).

A visualization of the network is given in Figure 4. The non-responding adolescents are

colored black and the respondents are colored blue. The student grades are indicated by

their text values.

For this study, we fit an ERGM of the form 2 where the set of allowable graphs is

restricted to those having no more than five male out-arcs and five female out-arcs for each

17



−2 −1 0 1 2

−
2

−
1

0
1

2

●
●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●
●

●●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

7
7

9

10

9

10

7

9 9

9

10

88

9

10

7

10

8
9

108

88

12
9

10

7

8

12

12
10

7

8

12

11

8

11

11

10

7

8

10

12

7

8

10

128

9

11

8

12

9

10

12

9

11

98
11

11

8

11

11

10

9

7

7

98
12

7
7

7

7

11
11

11

11

11

10

10

12

8

11

8

12

12

12

Figure 4: Visualization of the Add Health Network. The non-responding students are colored
black and the respondents are colored blue. The arcs represent the presence and direction
of the observed nominations. The student grades are indicated by their text values. The
layout is using the two-dimensional latent space model of Hoff et al. (2002).
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student. This reflects the nature of the relationship modeled and ensures the distribution is

over the appropriate sample space.

8.1 Specification of the Model

We specify a model for the social process in which, Z(Y ;x), the set of network statistics has

twenty-one terms. This is the same model as in Handcock and Gile (2006), but we repeat

the description here for completeness.

The “Density” term represents the overall tendency for students to nominate friends.

This captures the overall density of arcs - that is the number of arcs divided by the number

of possible arcs in the network.

The “Mutuality” term represents the propensity for arcs to be reciprocated. The corre-

sponding sufficient statistic is the number of dyads with arcs in both directions.

The third through seventh terms capture the differential tendencies for students in dif-

ferent grades to be named as friends. The reference category is 7th grade, so the 8th grade

popularity term, for example, captures the degree to which the tendency for 8th graders to

receive friendship arcs exceeds that of 7th graders.

The “Male Popularity” term captures the tendency for boys to receive arcs, beyond the

tendency of girls.

The following two terms, “girl to same grade boy” and “boy to same grade girl,” capture

the relative propensity for same-grade arcs to be sent to a same-sex or opposite sex nominee.

These effects are allowed to be different for males and females.

The next six terms address the relative tendencies of students to choose friends who

are older or younger, closer or farther from their grade, and same or opposite sex. These

tendencies are operationalised as dyadic covariates. As an example, consider the “girl to

older girl” term. This term applies only to dyads from a female in a lower grade to a female

in a higher grade. The coefficient is scaled by the number of years between the two grades. If

the “girl to older girl” parameter estimate is α, this means that the log odds of an arc from a

girl to a girl one grade older is α more than the log odds of an arc from a girl to a same grade

girl. The log odds of an arc to a girl two grades older is an additional α more. Using the

number of years older or younger as a linear covariate serves as a way to address the decaying

likelihood of friendship across increasing grade differences. The covariates measured here are

all measured in terms of “absolute number of years difference.”

If these terms were the only ones in the ERGM then each dyad would have arcs indepen-

dently of every other dyad. Together, they capture the propensities for arcs to be formed

between senders and receivers of various characteristics, as well the overall rate at which

each group tends to receive arcs. The remaining terms address the dependence or clustering
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behaviour among arcs. We know that most arcs are among actors of the same grade and

sex, so this is where we focus our attention on the patterns of clustering.

The two triad-based dependence terms address the propensity for arcs to form transitive

and cyclical triads respectively among actors of the same grade and sex. These terms are

valuable in describing the clustering behaviour in the network. A positive parameter for the

transitive triad term suggests that friendships within students of the same sex and grade

are likely to form in hierarchal patterns, whereby if Anne nominates Betty (giving greater

attractiveness, and greater prestige to Betty), and Betty nominates Carol (even greater

prestige), then Anne is more likely to nominate Carol as well. Cyclical triads, on the other

hand, can be interpreted as an indication of friendships forming on an egalitarian basis.

If Anne nominates Betty (making Anne and Betty close and equal), and Betty nominates

Carol, then Carol is more likely to nominate Anne. Together, these two terms capture the

flavor of the clustering behaviour in the observed network. In practise, the transitive term

is often positive and the cyclical term often negative (as in this case).

The final term “Cyclic Same Grade and Sex” captures one additional facet of clustering.

Not all nodes have in arcs. None of the other terms have captured this tendency for some

people to simply not be nominated as friends. Therefore, we have included a term to explicitly

account for the tendency of the network to contain nodes with no in arcs.

Note that all of these terms measure tendencies with respect to the set of realisations

that are possible given the network covariates. The “boy to older boy” term, for example,

captures the propensity for arcs from a younger to an older boy, with respect to the total

older-younger boy dyads in the network of interest. For this reason, it is reasonable to apply

the model fit on the smaller network of respondents only to the larger network of all 89

students.

The model fit reveals many interesting patterns. First, friendship arcs are reciprocated

at a higher rate than we would expect at random given the other terms in the model. With

regard to grade, 10th graders seem to receive significantly less friendship nominations than

the reference 7th graders, although this finding is weaker than the others. There is a complex

pattern of sex and grade mixing. In terms of the dyad-dependence terms we see a positive

significant transitive triad and a negative significant cyclical triad term. This suggest that

friendship arcs within sex and grade tend to form in a hierarchal manner, rather than in an

egalitarian regime. This finding is likely the most scientifically interesting of the processes

supported by this model. Finally, arcs are clustered so as to produce more nodes receiving

no friendship nominations than we would expect from the rest of the terms in the model.

A fuller analysis and description of these results is continued in Handcock and Gile (2006).
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Estimate s.e.
Density −1.508 0.19
Mutuality 1.951 0.22
Sex and Grade Factors
Grade 8 Popularity −0.171 0.14
Grade 9 Popularity −0.297 0.16
Grade10 Popularity −0.346 0.16∗

Grade 11 Popularity −0.052 0.19
Grade 12 Popularity −0.147 0.18
Male Popularity 0.461 0.16∗

Sex and Grade Mixing
Girl to Same Grade Boy 0.172 0.23
Boy to Same Grade Girl −0.255 0.23
Girl to Older Girl −0.928 0.17
Girl to Younger Girl −1.300 0.22
Girl to Older Boy −0.882 0.14
Girl to Younger Boy −1.358 0.23
Boy to Older Boy −0.859 0.16
Boy to Younger Boy −1.825 0.35
Boy to Older Girl −0.641 0.14
Boy to Younger Girl −1.102 0.19
Transitivity
Transitive Same Sex and Grade 0.505 0.05
Cyclical Same Sex and Grade −1.002 0.20
Isolation 3.613 0.68

Table 3: Estimated coefficients and standard errors for the parameters of the model fit
adjusting for the missing data pattern.

9 Discussion

In this paper we give a concise and systematic statistical framework for dealing with partially

observed network data. The framework includes, but is not restricted to, adaptive network

sampling designs and some missing data patterns. We present a definition of an adaptive

network design and a result on likelihood-based inference under such designs.

An important simple results of this framework is that sampled networks are not “biased”

but can be representative if analyzed correctly. Many authors have confused the ideas of

simple random sampling of the dyads with representative designs. The results of this paper

indicates that this is not necessary for such samples to be representative. In fact, for the

most commonly used designs in practice the designs can be easily taken into account. Hence,

despite their form, inference for adaptive” network sampled information is tractable.
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We have also shown that, in principle and in practice, it is possible and natural to work

with complete graph models even when the data is from a network sample and/or where

there is missing data. We have also shown the likelihood framework can naturally adapt

to sampling and missing data al la Little and Rubin (2001). This also indicates that the

likelihood framework is important to obtain correct inference.

The result that link-tracing designs are adaptive and can be analyzed with likelihood

based methods is very valuable in practice and these designs have previously not been able

to be analyzed with ERG (or similar) models.

We have also applied the methodology successfully to two different types of unobserved

networks.

In our first application we show that an adaptive network sampling of a collaboration

network can lead to effective estimates of the model parameters in the vast majority of cases.

We find that the MLE from the samples have only modest bias (compared to the complete

data estimate) and an error that only increases slowly with the number of unobserved dyads.

We also show that the information content of the sample (with respect to the model, varies

greatly even for sample of the same size.

In our second application we show that we can estimate the parameters of a realistic

model for a friendship network from the National Longitudinal Study of Adolescent Health.

The model also takes into account the fact that the relationship is restricted to those having

no more than five male out-arcs and five female out-arcs for each student. This appears to

be the first time that either of these two features of friendship data in AddHealth have been

adjusted for.

We have made available the code used in this study on the statnet website (Handcock

et al., 2003).
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