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a b s t r a c t

The collection of longitudinal data on complete social networks often faces the problem of actor non-
response. The resulting incomplete data pose a challenge to statistical analysis, as there typically is no
natural way to treat the missing cases. This paper examines the problems caused by actors missing as
nominators, but still occurring as nominees, in complete, directed networks measured in a panel design. In

the framework of stochastic actor-driven models for network change (“SIENA models”), different methods
to cope with such incomplete data are investigated. Data on a friendship network among female high
school students are used to illustrate the procedures. Missing data problems related to early panel exit
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. Introduction

Data analysis in social sciences is often hampered by non-
esponse. In the analysis of social networks, non-response results in
issing network information. This means that ties from one actor

o another are not observed and/or information on actor attributes
s not available. According to Burt “missing data are doubly a curse
o survey network analysis” (Burt, 1987, p. 63), compared to other
ypes of analyses (see also Borgatti and Molina, 2003). First, the
omplexity of items in network surveys is more likely to generate
issing data (e.g., Marsden, 2005), and second, network analysis

s especially sensitive to missing data because of the dependence
tructure of the data. If a network tie, or worse, an actor is miss-
ng, there is limited capacity to describe the network context of the
ctors whose ties are missing and there is lack of information on
he context of neighboring actors (Robins et al., 2004).

The effects of non-response and missing data on the structural
roperties of networks are investigated in several studies (Burt,
987; Costenbader and Valente, 2003; Kossinets, 2006). The general
onclusion is that missing data have a negative effect on network
apping (Borgatti and Molina, 2003) and estimating structural net-

ork properties: the strength of relationships is underestimated

Burt, 1987), centrality measures become unstable as well as degree
easures (Costenbader and Valente, 2003; Kossinets, 2006), and

lustering coefficients are underestimated (Kossinets, 2006). Still,
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ostenbader and Valente (2003) find that measures based on inde-
rees are reasonably robust for small proportions of missing data
hen the observed incoming ties of non-respondents are used in

he analysis. This latter result shows an unique property of social
etworks: non-participation by respondents does not necessarily
ean that they are not included in the study (Borgatti and Molina,

003). Respondents report ties to non-respondents, that is, the
ncoming ties of non-respondents are available.

Missing data treatment methods can use the information on
on-respondents from the nominations of observed actors. Stork
nd Richards (1992) propose using these partially described ties
etween respondents and non-respondents to reconstruct the
issing outgoing ties: substitute the missing ties by the value of

he tie in the opposite direction. This imputation method is appro-
riate if ties tend to match across actors, for instance, in undirected
etworks. For directed networks, this (ad hoc) imputation method
eems less suitable. Another imputation method is suggested by
urt (1987), who finds that missing relations are strongly associ-
ted with weak relations and therefore can be replaced with values
ndicating such weak relations.

More recent missing data methods are proposed by Robins et
l. (2004), Gile and Handcock (2006), Handcock and Gile (2007),
nd Koskinen (2007). These methods are also based on all avail-
ble data, including the incoming ties of non-respondents. The
roposed methods are model-based treatment methods within the
ramework of exponential random graph models (ERGMs). Robins

t al. (2004) model the ties from respondents to non-respondents
eparately from the fully described ties, which allows exploring
he structural effects for the entire network. The model is espe-
ially helpful when the non-respondents systematically differ from
he respondents with respect to ties. Gile and Handcock (2006),

http://www.sciencedirect.com/science/journal/03788733
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andcock and Gile (2007), and Koskinen (2007) use Markov chain
onte Carlo methods to fit ERGMs to incomplete network data. This

s a more traditional missing data approach based on the marginal
istribution of the observed data (e.g., see Schafer and Graham,
002), allowing for proper inferences for network properties for
oth respondents and non-respondents. As the methods repeat-
dly sample from the conditional distribution of the missing data,
hey can also be used to impute the data sets.

All these methods are designed for modeling single, incomplete
bservations of a network. Moreover, possible treatments are either
imple ad hoc procedures (the imputation methods of Stork and
ichards, 1992, and Burt, 1987), or are embedded within ERGMs
Robins et al., 2004; Gile and Handcock, 2006). For the case of lon-
itudinal network data, studies on the effect of non-response or the
ffect of treatment procedures are lacking. In this paper we examine
he effects of non-response and missing data techniques on longi-
udinal network data. The effects of missing data treatments are
nvestigated within the framework of the actor-driven models for
etwork evolution proposed by Snijders (2001, 2005), using simula-
ions under a known evolution model. The missing data treatments
hat are used in the simulation study are the analysis of complete
ases, two ad hoc imputation methods based on reconstruction
Stork and Richards, 1992) and preferential attachment (Barabasi
nd Albert, 1999), respectively, and a hybrid imputation procedure
ased on simulating networks with the actor-driven network evo-

ution models (Snijders, 2005).
The paper is organized as follows. Section 2 addresses the prob-

em of non-response in longitudinal network data, defining the
issing data patterns that are considered in this study. In Sec-

ion 3 the family of actor-driven models for network evolution of
nijders (2001, 2005) is briefly described. Section 4 presents the
issing data treatments, of which the performance (i.e., the effects

f the treatments on modeling the data with actor-driven models)
s investigated in a simulation study. The design of this study is
resented in Section 5 and in Section 6 the results in terms of con-
ergence of the estimation procedure and the absolute and relative
ias in the parameter estimates. The paper ends with a discussion
f the results and some general recommendations.

. Non-response in longitudinal network studies

In missing data research usually two types of non-response are
istinguished: unit non-response, where complete cases are miss-

ng, and item non-response, where the unit participated but data
n particular items are missing. For social network data, unit non-
esponse means that an actor does not participates in the study and
herefore all his or her outgoing ties are unavailable for analysis.
tem non-response means that only particular (outgoing) ties are
navailable in the analyses.

In the case of longitudinal data where respondents are repeat-
dly contacted at successive time points, non-response patterns
an be further distinguished by including partial non-response (De
eeuw et al., 2003), or wave non-response (Lepkowski, 1989). Wave
on-response is characterized by time dependency and means that
nly at certain time points data are available. This is often due to
anel mortality or attrition, which results in completely missing
ases after a certain time point. For social network data, we define
ave non-response as complete non-response at one or more time
oints, which results in completely missing outgoing ties of some
ctors for these time points.
The present study restricts analyses to unit and wave non-
esponse, and considers the case of longitudinal network data with
wo observations moments and completely missing actors at one or
oth time points. This means we assume that at a certain observa-
ion moment non-response results in completely missing outgoing
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ig. 1. Partial non-response in a network observed at two time points (T1, T2),
dentifying four subsets of actors (A1– A4). Gray areas indicate missing outgoing
ies.

ies of some actors. The incoming ties of these non-responding
ctors from responding actors are observed. Moreover, occasionally
issing ties (item non-response) are not considered. This results in

our kinds of missingness patterns, which are presented in Fig. 1.
or more than two observations of the network the procedures are
enerally the same. The main difference is in the number of possible
issing data patterns.
Fig. 1 shows the sociomatrices of a network at two observations

oments. As the rows and columns of the matrices represent the
ctors, the subsets of actors distinguish mutually exclusive subsets
f rows and columns. The observed missingness patterns consist
f four set of actors: A1, actors observed at both time points, A2,
ctors observed at T1 and missing at T2 (wave non-response), A3,
ctors missing at T1 and observed at T2 (wave non-response), and
4, actors missing at both time points (unit non-response). At obser-
ation moment T1, the set of observed actors is A1 ∪ A2 and the data
et consists of the corresponding rows in the sociomatrix. These
re the white areas in first adjacency matrix in Fig. 1, consisting
f incoming and outgoing ties of observed actors in A1 ∪ A2, and
ncoming ties of non-respondents in A3 ∪ A4. At observation time
2 the set of observed actors is A1 ∪ A3.

Although the non-response patterns play an important role in
reating the missingness, the most important question is whether
he non-response causes systematic bias in the analysis due to sys-
ematic differences between respondents and non-respondents.
his leads to the difficult task of assessing whether the data are
issing at random and, as a result, the missingness mechanism can

e ignored (Rubin, 1976). Data are called missing at random (MAR)
f the missingness is unrelated to the (unknown) value of the miss-
ng item itself. For network analysis this means that missingness is
nrelated to the value of the tie. In this case the missingness may
e related to completely observed actor characteristics, but not to
etwork properties.

If the missingness is related to the value of the missing tie itself,
he data are missing not at random (MNAR). In this case, network
roperties are biased because they are computed from the net-
ork in which tie values are systematically missing. The extent in
hich the structural properties are affected depends on the prop-

rty itself. Measures based on indegrees, for instance, are found
o be less affected than other measures, because incoming ties are
nly partially missing for all respondents.

. Actor-driven models for network evolution
The prominent tool for modeling and analyzing longitudinal,
omplete network data is the family of stochastic, actor-driven
odels introduced by Snijders (1996, 2001, 2005). Estimation of

hese models is implemented in the SIENA software (shorthand for
imulation I nvestigation for E mpirical N etwork Analysis; Snijders
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Table 1
The included effects, statistics, and estimated parameter values of the ‘true’ evolu-
tion model used in the simulation study

Effect Statistic bki(X) Parameter value

Outdegree
∑

j
xij −2.01

Reciprocity
∑

j
xijxji 2.11

Transitivity
∑

jk
xijxikxkj 0.27
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c
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eodesic distance 2
j
(1 − xij)maxkxikxkj −0.79

lcohol-related similarity
∑

j
xij

(
1 − |zi−zj |

range(z)

)
0.92

onstant rate 6.87

t al., 2007). The present study refers to this model family and soft-
are package, and the way parameter estimates are affected by
issing data and missing data treatment.
In the actor-driven approach, the dynamics of a social network

re modeled as a stochastic process X(t) in the state space X con-
isting of all possible network configurations on a given set of
actors. In this paper, the networks are directed graphs, coded

s binary-valued, possibly asymmetric adjacency matrices x with
ij = 1 indicating presence of a tie and xij = 0 indicating absence;

he state space then is X = {0, 1}n(n−1). Furthermore, we treat the
ase of a two-wave panel, so two networks x(t1), x(t2) ∈X are given
s observed data. Because the exact trajectory of network changes
hat occur in-between the two observations is unobserved, it is
ppropriate to model these data as resulting from a continuous-
ime process. This is achieved by constructing a continuous-time

arkov chain, as outlined below.
The compound change that occurs between the two observa-

ions is modeled as the aggregate outcome of a series of unobserved,
tochastically spaced, small changes called micro steps. The first
bservation is taken as starting value of the stochastic process and
ence is not modeled itself. The micro steps consist of the change
f one tie variable xij between two actors i and j in the network, and
s modeled as maximization by actor i (the ‘sender’ of the tie) of an
bjective function

i(X(t)) =
∑

k

ˇkbki(X(t)) (1)

lus a random term �i with a conveniently chosen distribution.1

arameters ˇk are weighting actor-specific network statistics bki(X).
ommonly, these statistics correspond to local subgraph counts or
on-linear transformations thereof. Examples of network effects
nd the corresponding statistics for the objective function are given
n Table 1. These statistics and the estimated parameter values are
sed in the simulation study to generate incomplete data sets. The

ncluded effects are outdegree, for measuring actor i’s tendency
o randomly establish ties to any other actor, reciprocity, measur-
ng tendencies to reciprocate ties, transitive triplets and geodesic
istance 2, both for measuring tendencies toward transitive clo-
ure, and the attribute-related similarity, measuring patterns of
omophile selection on an actor attribute z, in this case alcohol
onsumption. The model is further discussed in Section 5.1.

Maximization of the objective function takes place over a choice
et consisting of micro steps and the option of no change. The dis-

ribution of waiting times between these small changes is modeled
y a parametric family of exponential distributions called the rate
unctions. For the present purposes, we assume rates to be constant
cross actors. When increasing the number n of network actors,

1 The choice of convenience here is the assumption of independent draws from
he extreme value type I (or Gumbel) distribution, which allows choice probabilities
o be expressed in a multinomial logit form (McFadden, 1974).
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he cardinality of state space X rises at a squared exponential rate,
hich renders explicit calculations of expectations and likelihoods
ractically impossible. Estimation of the actor-driven models there-
ore has to rely on simulation-based inference. The SIENA software
nstantiates simulation-based method of moments estimation of the

odels, which we use for the estimations in this paper (newer
ersions also allow for simulation-based maximum likelihood and
ayesian estimation; Snijders et al., 2007; Koskinen and Snijders,
007).

. Missing data treatments

There are several ways to deal with missing data. Two general,
opular approaches are likelihood-based estimation based on the
vailable data and imputation (Schafer and Graham, 2002). The
RGM-based procedures proposed by Robins et al. (2004), Gile and
andcock (2006), Handcock and Gile (2007), and Koskinen (2007)
re examples of the former group of treatments, although the latter
hree can also be used to produce imputed data sets. The recon-
truction method suggested by Stork and Richards (1992), and the
eplacement of missing data with values representing weak rela-
ions suggested by Burt (1987) are also examples of imputation
rocedures.

In this section four missing data treatments are discussed, two
f which are imputation methods. All four treatments are investi-
ated in the simulation study described in Section 5. The techniques
re (i) complete case analysis, i.e., reduction of the data set to the
ompletely observed cases, (ii) imputation by reconstruction, (iii)
mputation by preferential attachment, and (iv) missing data treat-

ent within the framework of actor-driven evolution models. The
wo imputation procedures are ad hoc procedures that impute each
bservation of the network independently from other observations
nd result in completed networks at both time points, that is, all
ctors in A1 ∪ · · · ∪ A4 are available for analyses. The fourth proce-
ure is based on the simulation of micro steps in the estimation
rocedure of the actor-driven models described in Section 3. As its
rimary concern is model estimation and uses only initial imputa-
ions at T1, this hybrid imputation procedure does not automatically
esult in a completed data set.

While these techniques can be used for all types of non-
esponse, this paper is only concerned with missingness due to
nit and wave non-response—a situation we believe is close to
hat empirical network researchers typically face. For this situa-

ion Robins et al. (2004) remark that “imputation is unlikely to be very
uccessful” (p. 206). This may be particularly true for the imputation
ethods (ii) and (iii), but it has never been investigated in a longi-

udinal context. In any case, these methods are acceptable bench-
arks to investigate the effectiveness of other methods. Our focus

f interest, naturally, lies on assessing the quality of the model-
ased hybrid imputation method available in the SIENA software.

.1. Complete case analysis

Complete case analysis (CC) is based on the smaller network of
ompletely observed actors, i.e., those who gave valid responses at
ll measurement points (‘listwise’ deletion of actors). The analyzed
ata set consists of the incoming and outgoing ties of these actors,
hat is, the upper-left white block in the sociomatrices depicted
n Fig. 2 for actor set A1. The observed incoming ties for missing
ctors are ignored in this procedure. The data reduction which this

ethod implies can be considerable. If at k observation points inde-

endently the response rate is �, the probability for any tie variable
ij to be retained in the complete case data set is �2k. This implies
hat in a two-wave design, already a response rate of 71% deliv-
rs network matrices containing but 25% of the original number of
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Fig. 2. Boxplots of the estimated parameters outdegree (left) and rate (right). From bottom to top, first a plot for the reference category (no missings) and next, four blocks
w onal t
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ith plots for the missingness mechanisms are rendered (MCAR, missing proporti
our sets of three plots are presented for the techniques CC, SM, PA, and RE, each for
f converged projects.

ells. It can be expected that this method will deliver results that
re highly sensitive to the fraction of missing cases, which should
easonably be taken serious only for very low levels of missingness.

A straightforward strategy to avoid this loss of data is to impute
rtificial observations for the missing values. The following three
ethods all employ variants of this theme.
.2. Imputation by reconstruction

Stork and Richards (1992) suggest reconstructing the missing
art of the network by using the observed incoming relations of
he missing actors. As the procedure does not allow reconstruction t
o indegree, outdegree and the covariate alcohol, respectively). Within each block,
ree missingness levels (0.2, 0.4, 0.6). The width of the boxes represent the number

f ties between non-respondents, additional imputations are nec-
ssary in order to reconstruct the whole network. The following
rocedure is used:

1. For all ties between non-respondents i and respondents j, impute
the observed value of the opposite tie: ximp

ij
= xji.

. For all ties between non-respondents, randomly impute a tie pro-

portional to the observed density (i.e., the probability of a tie is
equal to the observed density of the network).

The reconstruction procedure (RE) generates imputations for
he two observation moments separately, that is, the missing actors
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Table 2
Example of the indirect effect of a model-imputed tie on network structure
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ties at T1 are known. For actors in A2 ∪ A4, the inclusion requires a
prior imputation of tie variables at T1, hereby setting them to zero.
This missing data treatment is currently implemented in the SIENA
M. Huisman, C. Steglich / So

2 ∪ A4 at T1 are treated independently from the missing actors
3 ∪ A4 at T2. It is assumed that reported ties match across actors.
his is true for undirected networks (as those studied by Stork and
ichards), but may not be the case for directed networks. Even in
etworks with strong reciprocity effects, a large number of ties may
ot be reciprocated. Hence, we can expect that the degree of reci-
rocity in the data is exaggerated by this method, which will have
n impact on analytical results.

.3. Imputation by preferential attachment

This procedures uses the concept of preferential attachment,
hich states that the probability that an actor will link to another

ctor is dependent on the connectivity of other actors Barabasi and
lbert (1999). Preferential attachment is incorporated in terms of

ndegrees by assuming that the probability that a missing actor i
ill be connected to another (observed or missing) actor j is pro-
ortional to the indegree kj of actor j:

(kj) = kj∑

j /= i

kj

. (2)

The following two-step procedure is used to replace the missing
ies by randomly drawn zeros or ones:

1. For each missing actor i in either A3 ∪ A4 or A2 ∪ A4, randomly
draw an outdegree di from the observed outdegree distribution
at the observation moment under consideration.

. For the missing actor i, randomly draw a total of di actors j (j /= i),
without replacement, from the total set of actors A1 ∪ · · · ∪ A4
using the preferential attachment probabilities ˘(kj). For the ties

between i and j impute the value ximp
ij

= 1, otherwise ximp
ij

= 0.

The preferential attachment procedure (PA) generates impu-
ations for two observation moments separately, such that the
bserved degree distributions at both moments are retained.

.4. Missing data treatment within actor-driven models

This fourth procedure is highly contingent on the analytical tool
ith which the data are analyzed, i.e., a model-based method. It
iffers from the previous procedures in two ways. First, different
ubsets of missing actors (at different time points) are not treated
imilarly, as they were in all other methods. And second, model
stimation under this treatment is based on the set of completely
bserved actors at both time points, A1, only, instead of the com-
leted data of all actors.

The procedure is based on the simulation of the network evo-
ution process within the estimation procedure of the actor-driven

odels. This estimation procedure is based on the simulation of
ontinuous-time Markov chains of networks. Starting from the
rst observation at T1, a Markov chain of networks (i.e., a series
f micro steps) is simulated using the specified model (objective
unction and rate function) and the current values of the model
arameters. At the second observation moment T2 the difference
etween the simulated and observed network (expressed in a vec-
or of differences on network statistics) is used to update the
arameter estimates. Then, a new Markov chain of networks is sim-

lated with the updated parameter estimates, and the process is
epeated until parameter values converge (see Snijders, 2001, 2005,
or details).

The missing data treatment starts with initial imputations at T1:
ll missing ties are treated as being absent, that is, impute the value

s

m

ircles represent observed actors, boxes missing actors.

imp
ij

= 0. This seems a reasonable choice, considering that the net-
orks under study typically are sparse (the mode of the tie values

s zero), and that missingness is found to coincide with weak ties
Burt, 1987).2 The missing ties at T2 are not replaced, but imputed
y way of simulation. In the simulation phase of the estimation
rocedure, all actors – observed and missing – are allowed to make
hanges in their outgoing ties. As all actors have the opportunity
o interact between two observations, all ties are free to change,
ncluding the imputed ones. This results in a simulated network at
he second observation moment T2, in which all ties have meaning-
ul simulated values. These can be used to impute the missing ties
t T2. However, the parameter update step (and hence model esti-
ation) is based on the observed ties at both time points only, that

s, the network statistics used for the updating step are calculated
n this reduced data set, just as for the complete case treatment.
his way, the impact of missing actors at T1 and T2 on the esti-
ates is minimized. Still, the missing actors at T1 have an indirect

ffect on the results by acting as constraints and opportunities for
ie changes during the simulations, thus affecting what happens in
he non-missing part of the data.

In Table 2 an example of an indirect effect of a model-imputed
ie is presented. The table illustrates two micro steps in a network
egion involving four actors: three observed (1, 2, 3) and one missing
4). For the first micro step from �1 to �2, missing actor 4 is randomly
hosen to apply a change to his outgoing ties, with the result that
tie to actor 2 is created. In the second micro step from �2 to �3,
bserved actor 1 makes a change by initiating a tie to actor 2, closing
he triplet (1, 2, 4). This change may be induced by a preference for
ransitive triplets, but this particular triplet will not be counted in
he network statistics used for the parameter updates because it
nvolves a missing actor. However, the second micro step did result
n an increase of the distance 2 statistic (between 1 and 3 via 2),

hich will be used in parameter updating because all three actors
nvolved are observed.

The data used for estimating the model are the network statistics
alculated on the actor set A1 only, i.e., those observed at both time
oints. Different from the CC treatment method, though, the other
ata are not discarded. All other actors are used in the simulation
f the network, this way providing structural constraints for how
he reduced network among actors in A1 evolves. For actor set A3,
his inclusion is straightforward, as the values of their outgoing
oftware to handle missing ties (i.e., both completely missing actors

2 Note that Burt refers to missing ties in an ego-centered survey and his finding
ay not be true for missing actors in a complete network.
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mechanism in a MAR-based procedure. This might, at least partly,
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nd individual ties; see also Snijders, 2005), and will be referred to
s the SIENA method (SM) in the remainder of the paper.

. Simulation study

In order to investigate the sensitivity of parameter estimates of
he actor-driven models to the various types of missing data treat-

ents, a simulation study is performed. The general pattern of the
tudy is:

1. generate complete data under a known evolution model,
. generate missing data by erasing a fraction of actors (i.e., all

outgoing ties of the actors),
. treat the missing data using the procedures outlined in Section

4,
. re-estimate the evolution model on the data treated for missing-

ness,
. investigate the effect of the treatments on the estimation proce-

dure and the estimates.

.1. Generating longitudinal network data

For generating simulated network evolution processes, the first
wo waves of a sample data set of 50 actors are used. These sam-
le data are provided together with the SIENA software (available

n the StOCNET platform; Boer et al., 2006) and are a ‘cleansed’
ubset3 of the network in the Teenage Health and Lifestyle study
Michell and Amos, 1997; Pearson and West, 2003; Steglich et al.,
006, submitted for publication). On these data, an actor-driven
volution model was estimated that is used as the ‘known’ evolu-
ion model to generate the data in the study. This way, our ‘true’
volution model is close to what might be encountered in actual
esearch (our simulations are ‘empirically informed’)—and does not
ncur overly long computer runs.

The model contains parameters for outdegree, reciprocity, tran-
itive triplets, geodesic distance 2, and similarity on the covariate
imension of alcohol consumption. The parameter values are pre-
ented in Table 1. The outdegree parameter (−2.01) indicates that
ctors generally avoid ties, which is no surprise in a sparse network.
hey do have a preference for reciprocated ties (2.11), transitive
losure (the transitivity parameter equals 0.27, and the distance

parameter equals −0.79, together indicating that actors pre-
er direct to indirect relations), and ties to others with the same
core on alcohol consumption (0.92). The rate parameter equals
.87, indicating the average frequency in-between observations by
hich network actors can apply changes to their network neigh-

orhood. All parameters are significant at ˛ = 0.01 in the original
ata.

In the simulations of the network evolution process, the first
bservation of the network is taken as initial state of the pro-
ess, and the observed data on alcohol consumption at first
easurement as a constant actor covariate. Using the estimated

volution model (based on the ‘true’ second observation), 500
imes an actor-driven evolution process was simulated. This
esulted in 500 simulated networks at the end of the simula-
ion period. Note that these simulated evolution processes deliver

ifferent trajectories due to the stochastic nature of the model.
he simulated end networks were taken as second observa-
ions in the simulation study (after generating missing data). In
his way, each cell of the simulation design consisted of 500

3 The cleansing consisted of reducing the network to a subnetwork consisting of
he 50 most active girls who are observed at all time points.
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eplications of the evolutionary process, which was deemed suf-
cient.

.2. Generating missing data

As we restrict our study to unit and wave non-response, miss-
ng data were created by randomly selecting actors and deleting
ll outgoing ties of these actors. This amounts to specifying rules
y which actors are allocated to sets A1 through A4, introduced in
ection 2. Missing actors were selected independently at both time
oints, using the same selection mechanism. The fractions miss-

ng actors at each time point are (1 − �) = 0.2, 0.4, and 0.6, where
is the response rate at each wave. Independence between time

oints in this procedure implies that the fraction of missing actors
t both waves (set A4) is, in expectation, equal to the product of
he fractions missing at the single time points (A3 ∪ A4 at T1 and
2 ∪ A4 at T2). Four different missingness mechanisms were used,
hich define the probability that an actor is missing in the following
ay:

completely random selection of actors,
probability proportional to (1/(alcohol score)2),
probability proportional to (1/(indegree + 1)2),
probability proportional to (1/(outdegree + 1)2).

Each of these mechanisms can be viewed as operationalization
f assumptions about how missing data may occur in real-world
etwork studies. Random deletion is a simple but coarse model
f missingness and may be realistic when there is no reason to
ssume that actors differ in their propensity to fill in network ques-
ionnaires (or otherwise deliver their local part of the data). The
ata are MCAR, as the missingness is unrelated to network or actor
haracteristics.

However, often non-response will be related to network or actor
haracteristics, resulting in data that are MAR or even MNAR. In
he second mechanism, deletion of actors is proportional to the
ovariate alcohol consumption. The mechanism is such that actors
ith lower scores on the covariate have a larger probability to be
issing.4 As the covariates are completely observed, the data are
AR.
The third and fourth type of missingness are both related to net-

ork properties, that is, the indegrees and outdegrees of the actors:
ctors with low degrees have a larger probability to be missing. This
eflects the ideas that popular actors are more inclined to partici-
ate in a network study (indegree) and that network data of socially
ctive actors are collected more easily than network data of inactive
ctors (outdegree), as inactive actors are more difficult to recruit or
are less to respond. The square was added in the mechanism to
ake the distinction even more pronounced.
Both degree-mechanisms result in data that are MNAR, but the

issingness patterns and biases may be quite different. As ties
re missing completely for non-respondents, outdegrees cannot
e computed for missing actors. Indegrees, however, can always
e estimated using the partially observed incoming data of all
espondents. This means that the (maybe biased) estimates of the
ndegrees can be used to treat the missingness due to the fourth
orrect for the non-randomness of the mechanism.
In order to minimize the impact of random noise on the estima-

ion of the evolution model, the missing actors of lower missingness

4 This means that the less alcohol respondents consume, the less they are inclined
o participate in the network study. It may not be overly realistic in every context, but
ertainly does not diminish usefulness of the mechanism for illustrative purposes.
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evels are chosen to be subsets of the actors missing at higher lev-
ls. In practice, this was accomplished by establishing, for each
f the networks analyzed and under each type of missingness, a
equence of ‘dropping out’ for the actors. The first 10 actors in such
sequence then constitute the missing actors at the 20% level, the
rst 20 actors constitute the missing actors at the 40% level, etc.
s indicated in the beginning of this section, these dropping out

equences are established independently for all networks. To fur-
her reduce the impact of random noise on the estimation results,
he same sets of missing actors were used across the treatments
rocedures.

d
i
w
r

ig. 3. Boxplots of the estimated parameters reciprocity (left) and transitivity (right). Fro
locks with plots for the missingness mechanisms are rendered (MCAR, missing proport
lock, four sets of three plots are presented for the techniques CC, SM, PA, and RE, each fo
umber of converged projects.
tworks 30 (2008) 297–308 303

.3. Model convergence

The generation of the networks and the missing data resulted
n 500 complete and 3 (missingness levels) ×4 (missingness

echanisms) ×500 = 6000 incomplete data sets (consisting of
wo waves). The complete data, generated according to a known
‘true’) evolution model, are used as a reference category. On all

ata, the actor-driven evolution model is re-estimated accord-

ng to the four treatment methods proposed in Section 4,
hich amounts to a total of 500 + 4 × 6000 = 24, 500 estimation

uns.

m bottom to top, first a plot for the reference category (no missings) and next, four
ional to indegree, outdegree and the covariate alcohol, respectively). Within each
r the three missingness levels (0.2, 0.4, 0.6). The width of the boxes represent the
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Fig. 4. Boxplots of the estimated parameters distance 2 (left) and alcohol similarity (right). From bottom to top, first a plot for the reference category (no missings) and next,
f ing pr
e RE, ea
t

e
b
d
d
S
p
m
m
f

e

t
t
s
a
estimated accurately.5 Therefore, we decided to classify estimation
runs as divergent when at least one out of three conditions was
satisfied:
our blocks with plots for the missingness mechanisms are rendered (MCAR, miss
ach block, four sets of three plots are presented for the techniques CC, SM, PA, and
he number of converged projects.

The chosen model specification, however, cannot be fit to
ach data set. Even without missing data, the possible mismatch
etween model and data needs to be monitored. Convergence
iagnostics indicating the mismatch between model-consistent
ata and the to-be-analyzed data are implemented in the
IENA software. They are used to monitor possible convergence
roblems. When estimating actor-driven models from deliberately

utilated data sets, monitoring convergence problems is even
ore important because we expect a growing mismatch as the

raction of missing actors in the data increases.
Unfortunately, the SIENA convergence diagnostics do not nec-

ssarily detect all ‘inaccurate’ solutions. Most importantly, during
o
c

oportional to indegree, outdegree and the covariate alcohol, respectively). Within
ch for the three missingness levels (0.2, 0.4, 0.6). The width of the boxes represent

he estimation process, parameter values may reach a region of
he parameter space where model-derived expected data are not
ensitive to changes in specific parameters any more, and where
ccordingly neither the parameter nor its standard error can be
5 This is similar to logistic regression model, where differences in the very high
r the very low region of parameter values have barely any impact on the modeled
hoice probabilities, because the tails of the logistic link function are very flat.
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1. SIENA diagnosed divergence based on the convergence diagnos-
tics.

. At least one of the parameter estimates was unreasonably high,
that is, the absolute value is larger than 10 for the 5 parameters
in the objective function. For the rate parameter, a more liberal
threshold of 50 was chosen, as it already has the quite large value
of 6.87 in the true model.

. At least one of the estimated standard errors was unreasonably
high, that is, the absolute value is larger than 10.

The (ad hoc) threshold values of 10 and 50 seem liberal in the
ense that they are much higher than what is usually reported for
IENA results, which can also be seen from the results obtained for
he complete data, yet they seem to suffice for distinguishing com-
letely meaningless results from reasonably interpretable ones. The
istribution of the results as shown in the boxplots of Figs. 2–4 does
ot crucially depend on the chosen thresholds.

. Results

The effect of the missing data treatments on modeling the lon-
itudinal network data was evaluated using three measures of
erformance: practicability (operationalized as number of con-
erged estimation runs), absolute size of error (operationalized as
edian parameter bias), and relative size of error (operationalized

s the relative position of the true score in the distribution of esti-
ates). The use of robust measures (percentiles) instead of sensitive

nes (like averages or standard deviations) reduces the impact of
ossibly remaining outliers on the results. Figs. 2–4 display, for each
arameter under each combination of missingness level, missing-
ess type and treatment method, the distribution of estimates in
he shape of a boxplot. The width of the boxes indicates the fraction
f convergent projects (the less projects, the narrower the box), the
otted lines indicate the true values of the parameters, and the four
issing data treatments are labeled CC (complete case), SM (SIENA
ethod), PA (preferential attachment) and RE (reconstruction). In

he following, we aggregate the total information contained in these
iagrams in terms of the three criteria identified above.

.1. Convergence
Convergence crucially depends on the amount of information
hat the data set provides. It can be expected that the number of
ivergent projects increases with higher fractions of missing data.

n Table 3 the percentages of diverging projects are presented, for

able 3
ercentage of divergent projects per cell of the simulation design (500 projects per
ell). For the reference condition without missing data, the corresponding number
s 0.4%

issingness mechanism Fraction missing Method

CC SM PA RE

CAR 0.2 4.2 4.2 0.2 <0.1
0.4 40.8 33.4 4.4 0.4
0.6 99.4 98.0 15.4 6.4

roportional to alcohol 0.2 1.2 3.6 0.8 0.2
0.4 23.8 16.0 2.8 0.2
0.6 86.4 47.0 9.8 2.6

roportional to indegree 0.2 0.6 4.0 <0.1 0.2
0.4 29.4 18.4 2.0 0.2
0.6 86.4 58.4 12.4 1.8

roportional to outdegree 0.2 1.6 3.0 0.2 <0.1
0.4 21.4 21.2 1.6 0.4
0.6 86.4 74.4 13.0 1.0
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ach missing data mechanism and fraction of missing data. From
he table it follows that indeed, the number of divergent projects
ncreases with higher missingness fractions. This holds in the first
lace for the CC method, and to a slightly lesser degree for the SM
ethod, because in these methods, the missing actors are not (or

ot fully) used in the estimation procedure. For the two imputa-
ion methods PA and RE, convergence is less of an issue, as the
esulting data sets are essentially complete, though increasingly
istorted.

Compared to the MCAR-mechanism, the more systematic miss-
ngness mechanisms result in less divergent projects, due to the
act that these mechanisms leave more network structure intact.
or missingness proportional to indegree and outdegree, this is
o because predominantly the less network-involved actors are
liminated. For missingness proportional to the covariate alco-
ol, one needs to consider that similar alcohol consumption is a
eterminant of friendship selection (homophily). Elimination of
redominantly non-drinkers therefore is likely to affect only a rel-
tively self-contained non-drinkers’ subnetwork, while the also
elatively self-contained drinkers’ subnetwork remains in the data,
arrying considerable part of the original network structure.

.2. Parameter bias

Bias in the parameter estimates can be caused by two distinct
ources. On the one hand, parameters of the actor-driven mod-
ls have a built-in sensitivity to network size. Coupled with the
eduction of the effectively handled number of respondents in the
ethods CC and SM, bias can be expected. On the other hand, there

an be a mismatch of the real type of missingness and the assump-
ions about missingness made by applying the treatment method.

hen comparing treatment methods, both causes should be taken
nto account, although the extent of each separate cause here is not
etermined.

Table 4 shows the median biases of each parameter, separately
rouped according to the different factors of our design. This way,
e identify main effects of the fraction of missing actors, of the
issing data mechanisms, and of the treatment methods. Also

wo-way interaction effects of missingness mechanism by miss-
ng data treatment are presented. A positive bias indicates that
he estimated parameter value is larger than the true value. For
nstance, at the 20% missingness level, the median estimate of the
ate parameter (over all converging projects at this missingness
evel, regardless of treatment method and missing data type) equals
.87 + 0.59 = 7.46. The table shows that for the parameters dis-
ance 2, alcohol similarity and rate, bias grows with the fraction
f missing actors, as was expected. At this level of aggregation,
t is difficult to say why the other three parameters deviate from
his pattern. By averaging over treatment methods and missing-
ess types, several factors may be at work that cancel out on the
ggregate level.

A closer look at Fig. 3 reveals that the reconstruction method
RE) may be the culprit: for missingness levels of 20% and 40%,
he reciprocity parameter is strongly inflated by this method. This
s no surprise because at these missingness levels, the majority
f imputed outgoing ties (80% and 60%, respectively) are recon-
tructed based on known incoming ties, and thus automatically
eciprocal. For a missingness level of 60%, however, this is no longer
he case, as now only a minority of imputed ties (40%) can be
econstructed based on known incoming ties, the rest is recon-

tructed at random (see description of the method in Section 4).
his model-induced reciprocity bias of the RE method implies that
he other parameters in the model are calibrated against the artifi-
ially inflated reciprocity. The boxplots indicate such a calibration
ffect on the outdegree parameter. Presumably, also the transitivity
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Table 4
Main effects of fraction missing actors, missing data mechanism and missing data
treatment, and two-way interaction effects for mechanism by treatment: median
parameter bias

Outd. Recip. Trans. Dis.2 Al.sim. Rate

True value −2.010 2.110 0.270 −0.790 0.920 6.870
Reference 0.016 −0.001 −0.026 −0.001 0.040 −0.109

Main effects
p = 0.2 0.001 0.210 −0.037 0.049 0.015 0.588
p = 0.4 −0.037 0.432 −0.002 0.240 −0.052 2.416
p = 0.6 0.141 −0.021 0.002 0.457 −0.122 5.861

MCAR −0.024 0.161 −0.006 0.252 −0.043 2.251
Alcohol −0.030 0.120 0.008 0.237 −0.119 1.421
Indegree 0.040 0.151 −0.006 0.167 0.019 1.620
Outdegree 0.110 0.214 −0.059 0.230 0.002 2.198

CC −0.374 0.634 −0.044 −0.279 0.294 −3.138
SM 0.083 0.196 −0.016 −0.108 0.251 −1.078
PA 0.358 −1.023 0.064 0.400 −0.202 3.422
RE −0.141 0.479 −0.091 0.288 −0.064 4.278

Interactions
MCAR

CC −0.423 0.500 −0.059 −0.226 0.297 −3.233
SM 0.062 0.021 −0.013 −0.159 0.300 −1.352
PA 0.308 −1.111 0.105 0.410 −0.172 3.620
RE −0.209 −0.548 −0.085 0.317 −0.100 4.792

Alcohol
CC −0.330 0.480 −0.030 −0.158 0.029 −2.917
SM 0.000 0.064 0.044 −0.031 0.108 −1.264
PA 0.318 −1.063 0.095 0.406 −0.291 2.673
RE −0.192 0.500 −0.076 0.305 −0.126 3.722

Indegree
CC −0.337 0.669 −0.067 −0.343 0.395 −3.083
SM 0.133 0.358 −0.038 −0.121 0.345 −0.881
PA 0.358 −0.947 0.052 0.334 −0.209 3.838
RE −0.131 0.339 −0.038 0.250 0.007 3.408

Outdegree
CC −0.421 0.859 −0.037 −0.376 0.464 −3.286
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Table 5
Main effects of fraction missing actors, missing data mechanism and missing data
treatment: position of true value relative to the median in the distribution of the
estimates; (50 + cell entry)% = percentile of the true value

Outd. Recip. Trans. Dis. 2 Al.sim. Rate

Reference −4.2 0.0 +8.0 +0.4 −3.2 +7.0

p = 0.2 −0.2 −9.9 +7.7 −5.5 −1.3 −7.1
p = 0.4 +2.5 −11.2 +0.5 −9.8 +3.3 −10.7
p = 0.6 −14.0 +1.6 0.0 −39.5 +7.9 −33.6

MCAR +2.1 −6.2 +0.9 −20.4 +3.0 −16.4
Alcohol +2.6 −5.6 −1.6 −19.8 +9.3 −11.3
Indegree −4.0 −8.4 +1.5 −15.1 −1.2 −15.0
Outdegree −10.4 −10.6 +12.5 −19.1 −0.1 −15.7
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SM 0.130 0.374 −0.049 −0.148 0.234 −0.805
PA 0.428 −0.981 0.023 0.434 −0.154 3.753
RE −0.016 0.572 −0.146 0.281 −0.033 5.466

arameter was affected, explaining that in Table 4, also these two
arameters show a nonlinear dependency of bias on missingness

evel.
Inspection of the main effects of missingness mechanisms

hows that the largest bias occurs when the parameter is sen-
itive to the mechanism. This way, bias of the alcohol similarity
arameter is largest when missingness is related to alcohol con-
umption, and bias of the outdegree parameter is largest when
issingness is related to outdegree. In all other cases, bias is

argest either for random missings (MCAR, for parameters dis-
ance 2 and rate) or for missings based on outdegree (MNAR,
or parameters reciprocity and transitivity). The two-way inter-
ctions reveal that for distance 2 the bias for the MCAR-data are
ainly due to the PA and RE method, as is the case for miss-

ngness related to alcohol consumptions, whereas for the other
wo mechanisms the CC method has large bias instead of RE.
he large bias found for transitivity when missingness is related
o outdegree is caused by the RE method. These two mecha-
isms, MCAR and proportional to outdegree, are two extreme cases
hich have the largest negative effect on network structure and

herefore lead to more extreme problems than the MAR cases in-

etween.

Finally, the most interesting of all main effects is the compar-
son between treatment methods. Here, the clear winner is the
IENA method (SM), which has smallest median bias for all param-
ters except the alcohol similarity parameter—for this one, the
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C +32.3 −33.2 +4.4 +16.8 −11.3 +47.7
M −10.9 −11.9 +1.9 +9.2 −12.3 +28.9
A −47.2 +49.9 −21.1 −42.9 +19.0 −48.8
E +25.2 −44.6 +27.0 −35.8 +5.3 −49.5

econstruction method (RE) performs best. Two-way interactions
etween mechanism and method in Table 5 generally confirm these
ndings. One difference is found for the transitivity parameter:
lthough SM is overall best, it turns out that for missingness related
o alcohol or degree other methods are at least as good or better.
nother difference is found for alcohol similarity, where SM is bet-

er than the overall best method RE in case of missingness related
o alcohol consumption.

A more detailed picture is obtained by inspection of the boxplot
iagrams. By comparison across treatment methods, the boxplots
or the overall best method SM are neatly centered around the true
alue, for all missingness types and levels. Which brings us to our
hird and final criterion for treatment method quality.

.3. Centrality of true score

While in the previous section, the absolute size of the difference
etween true parameters and median estimates was investigated,
e now address the relative size of this bias in the distribution of

stimates. Looking again at Table 4, consider the median bias of
he outdegree parameter under CC and under PA treatment, which
re −0.368 and 0.358, respectively. The two methods thus have
bout the same absolute bias—however, when looking at Fig. 2,
t is obvious that the PA method scores much more consistently
bove the true value than the CC method scores below it. This dif-
erence is what we want to capture as third criterion of treatment
erformance. This can be done by studying the percentile in the
istribution of estimates at which the true score is located. This
ercentile gives a measure of the spread of the distribution of the
stimated parameters with respect to the location of the true score.
he difference between the median (the median parameter value)
nd the percentile of the true value in the distribution of the esti-
ates than gives the proportion of estimates that fall between the
edian estimate and the true score, giving an indication of the

robability that the estimate will surpass the true value, or vice
ersa.

In Table 5, we render it in terms of percentages relative to the
edian position. To come back to our example: under CC treatment,

he outdegree parameter’s true value is located at the 32 + 50 = 82
h percentile, that is, 32% above the median in the distribution of
utdegree estimates. That means that it lies inside two-sided con-
dence intervals of confidence level 2 × 32% = 64% or higher that

an be constructed based on this distribution. For PA treatment,
he true value is located 47.2% below the median (i.e., located at
he 50 − 47 = 3 rd percentile), meaning that only for much higher
onfidence levels (≥ 94.4%), the true value will be included in con-
dence intervals.
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Concerning the main effects of missingness level and missing-
ess mechanism, results in Table 5 differ little from what Table 4
eported. The main difference between the tables lies, as illustrated,
n the comparison of treatment methods. While the imputation

ethods PA and RE for some parameters deliver comparatively
mall absolute median bias, this is not reflected in centrality of the
rue score in the distribution of estimates under the method. In
eneral, these methods impose their own structure on the data –
nhanced levels of reciprocity in the RE case, and enhanced pop-
larity of few actors in the PA case – which makes it extremely
ifficult to recover the true parameters with any reliability. Inspec-
ion of Figs. 2–4 suggests that there is no need to further refine
hese results. Overall, also here, SM treatment is evaluated as the
est treatment method in the field, independent of missingness

evel or missingness type. Only for the alcohol similarity param-
ter, the SM method performs bad in comparison. Here, the best
ethod is the RE method, which artificially inflates the degree

f reciprocity, thereby adding (artificial) power to the detection
f dyad-based effects like the effect of similar alcohol use—note
hat for the complete data, the alcohol similarity parameter yielded
he highest standard error. Unexpectedly, also the CC method is
omewhat rehabilitated. This treatment is second-best for five
f the six parameters—so we may conclude that if it is possi-
le to obtain estimates by this method (which can be difficult),
hese at least do not depart from the true value as systemati-
ally as corresponding estimates obtained by methods PA and RE
ould.

. Discussion

Missing actors have a large effect on analyzing longitudinal net-
ork data. The simulations show that ignoring the missing data

nd restricting the analysis to completely observed cases leads
o problems when using actor-driven network evolution models.
hese problems are two-fold. First, the reduced sample size and
he loss of information leads to problems in fitting a model to
he data (convergence problems). With large fractions of missing
ata it is hardly possible to find a fitting evolution model. Sec-
nd, ignoring the missing data generally leads to biased parameter
stimates.

Imputation of the missing data may solve the first problem:
he data set is completed and no information seems to be miss-
ng. However, this nice feature of artificially completed data – or,
s Dempster and Rubin (1983) remark, “the pleasurable state of
elieving that the data are complete” – has a major shortcom-

ng: single imputation underestimates uncertainty levels, because
redictions are treated as observed values and the actual sam-
le size is overestimated (e.g., Schafer and Graham, 2002). Also,
he second problem of biased parameter estimates still exists,
t may even be enhanced by the imputation method when this

ethod artificially injects network features that do not corre-
pond to real network structure. Imputation thus has to be done
n a more sophisticated way, should it result in trustworthy
stimates.

A model-based approach based on the available data (e.g.,
RGM-based procedures, Robins et al., 2004; Gile and Handcock,
006; Handcock and Gile, 2007; Koskinen, 2007) does not under-
stimate uncertainty levels, but uses a smaller network than
riginally intended. Although the reduction may not be as large
s analyzing only complete actors (the method CC in the simu-

ations), it still suffers from convergence problems. Moreover, the

ethods assume MAR and non-random missing data lead to biased
esults.

In the simulations, these shortcomings of missing data treat-
ents were found. Imputation by preferential attachment (PA) and
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mputation by reconstruction (RE; Stork and Richards, 1992) lead
o completed data sets at both observation moments, and hardly
ave any convergence problems. The parameters of the actor-driven
odels, however, are generally severely biased. In the boxplots of

igs. 2–4, the range of estimates under imputation methods PA and
E decreases for increasing missingness fraction—creating the false

mpression that accuracy of estimates increases with severity of the
issing data problem. What happens, though, is that the estimates

re more and more determined by the artificially imputed struc-
ure, which can be seen in median bias (Table 4) being very high
nd the true score lying far out in the tails of the distribution of
stimates (Table 5).

Handling the missing actors within the actor-driven model (SM:
he SIENA method) is a model-based approach based on available
ata. The uncertainty levels are not underestimated, but conver-
ence problems do arise. These problems, however, are not as large
s for the complete case method, and relatively minor for small to
edium fractions missing actors. SM treatment generally resulted

n small biases in model parameters, especially for small to medium
issingness levels. The distribution of estimates under this method

oes reflect the increased uncertainty due to missing data, as can
e seen by an increased range of estimates for higher missing data
ractions. Median bias, however, is lowest among all methods com-
ared, both in absolute (Table 4) and relative terms (Table 5).

In this study we compared a model-based treatment of miss-
ng data within actor-driven network evolution models with
omplete case analysis and two naive imputation methods. In
ase of wave non-response there are at least two other popu-
ar approaches: weighting and imputation by last value carried
orward/backward (Lepkowski, 1989). Weighting seems less suit-
ble for network data, as weights are usually computed using
election probabilities and need auxiliary (non-network) informa-
ion. Imputation by last value carried forward leads to a reduction
f the amount of change between the observation moments
nd the imputed values do not add to the estimation of the
odel parameters. In this respect it is similar to the method SM,

ut has the shortcoming of underestimated uncertainty levels
artificially reduced range of estimates). Moreover, extra imputa-
ions are needed for actors who are missing at both observation

oments.
In the case of actors joining or leaving the network, that is,

issing data that emerge due to network composition changes,
model-based approach was proposed by Huisman and Snijders

2003; and implemented in the SIENA software). This specific form
f wave non-response (drop-out due to leaving the network, or new
ntry) remains outside the scope of this investigation, as it is a qual-
tatively different type of missing data—if one can speak of ‘missing’
t all. In SIENA, it currently can be handled by modeling the join-
ng and leaving times as exogenous events in the continuous-time

arkov chain of micro steps in the actor-driven model.
From the simulations in this paper, it can be concluded that

he model-based approach within the actor-driven models is the
est method to use: parameter biases are not too large for small
o medium fractions missing and standard errors are not underes-
imated. For small networks, though, convergence problems may
rise due to the reduction of effectively handled actors. For the
IENA users, therefore the best recommendation at this stage of
oftware development is to employ the software’s own missing data
reatment method, instead of mutilating the data sets by reduction
o complete cases, or falsifying it by imputation of alien structure.

ossible improvements that need to be studied relate to the fine-
uning of this method. In this vein, better initial imputations can
e used (currently, the mode is imputed) and partially observed
ctors or even imputed actors can be included in the estimation
rocedure.
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