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Abstract. We define a general class of network formation models, Statistical Expo-
nential Random Graph Models (SERGMs), that nest standard exponential random
graph models (ERGMs) as a special case. We analyze conditions for practical and
consistent estimation of the associated network formation parameters, addressing
two open issues in the estimation of exponential random graph models. First, there
are no previous general results on whether estimates of such a model’s parameters
based a single network are consistent (i.e., become accurate as the number of nodes
grows). Second, a recent literature has shown that standard techniques of estimating
ERGMs have exponentially slow mixing times for many specifications in which case
the software used for estimating these models will be unreliable. SERGMs reformulate
network formation as a distribution over the space of sufficient statistics instead of
the space of networks, greatly reducing the size of the space of estimation and making
estimation practical and easy. We identify general classes of models for which maxi-
mum likelihood estimates are consistent and asymptotically normally distributed. We
also develop a related, but distinct, class of models that we call subgraph generation
models (SUGMs) that are useful for modeling sparse networks and whose parameter
estimates are also consistent and asymptotically normally distributed. We show how
choice-based (strategic) network formation models can be written as SERGMs and
SUGMs, and illustrate the application of our models and techniques with network
data from villages in Karnataka, India.

JEL Classification Codes: D85, C51, C01, Z13.
Keywords: Random Networks, Random Graphs, Exponential Random Graph

Models, Exponential Family, Social Networks, Network Formation, Consistency, Sparse
Networks, Multiplex, Multigraphs

Date: December 2011, Revision: September 2013.
We thank Isaiah Andrews, Larry Blume, Gabriel Carroll, Victor Chernozhukov, Esther Duflo, Ben
Golub, Bryan Graham, Marcel Fafchamps, Randall Lewis, Angelo Mele, Stephen Nei, Elie Tamer, Juan
Pablo Xandri and Yiqing Xing for helpful discussions and/or comments on earlier drafts, and especially
Andres Drenik for valuable research assistance. Chandrasekhar thanks the NSF Graduate Research
Fellowship Program. Jackson gratefully acknowledges financial support from the NSF under grants
SES-0961481 and SES-1155302 and from grant FA9550-12-1-0411 from the AFOSR and DARPA, and
ARO MURI award No. W911NF-12-1-0509.
‡Department of Economics, Stanford University; Microsoft Research, New England.
?Department of Economics, Stanford University; Santa Fe Institute; and CIFAR.

0



TRACTABLE AND CONSISTENT RANDOM GRAPH MODELS 1

1. Introduction

...[A] pertinent form of statistical treatment would be one which deals
with social configurations as wholes, and not with single series of facts,
more or less artificially separated from the total picture.

Jacob Levy Moreno and Helen Hall Jennings, 1938.

To what extent is someone’s proclivity to form relationships influenced by whether
those relationships are in public or private? For example, are people of different types,
e.g., different castes or races, more reluctant to form relationships across types when
they have a friend in common than when they do not? The answer to such a question
has implications for communication, learning, inequality, diffusion of innovations, and
many other behaviors that are network-influenced. Being able to statistically test
whether people’s tendencies to interact across groups depends on social context requires
allowing for correlation in relationships within a network.

Beyond this illustrative question, correlations in relationships are important in many
other social and economic settings: from informal favor exchange where the presence of
friends in common can facilitate robust favor exchange (e.g., Jackson et al. (2012)), to
international trade agreements where the presence of one trade agreement can influence
the formation of another (e.g., Furusawa and Konishi (2007)). Similarly, in forming
a network of contacts in the context of a labor market, an individual benefits from
relationships with others who are better-connected and hence relationships are not
independently distributed (e.g., Calvo-Armengol (2004); Calvo-Armengol and Zenou
(2005)); nor are they in a setting of risk-sharing (e.g., Bramoullé and Kranton (2007)).

Once such interdependencies exist, estimation of a network formation model cannot
take place at the level of pairs of nodes, but must encompass the network as a whole,
as reflected in the quote from Moreno and Jennings (1938) above. Exponential random
graph models (henceforth “ERGMs”) incorporate such interdependencies and thus have
become the workhorse models for estimating network formation.1 Indeed, as originally
shown via a powerful theorem by Hammersley and Clifford (1971), the exponential form
can nest any random graph model and can incorporate arbitrary interdependencies in
connections.2 Moreover, ERGMs admit a variety of strategic (choice-based) network
formation models, as we show below and others have shown in other contexts.

Although ERGMs are widely used and are seemingly natural tools for estimating
the formation of networks with interdependent links, there are two critical gaps in the
understanding of these models and we address both gaps in this paper.

1These grew from work on what were known as Markov models (e.g., Frank and Strauss (1986))
or p∗ models (e.g., Wasserman and Pattison (1996)). An alternative approach is to simply work
with regression models at the link (dyadic) level, but to allow for dependent error terms, as in the
“MRQAP” approach (e.g., see Krackhardt (1988)). Although that approach can work theoretically,
it is less well suited for identifying the incidence of particular network subgraph structures that may
be implied by various social or economic theories of the type that we wish to allow for here.
2Their theorem applies to undirected and unweighted networks. See the discussion in Jackson (2008).
Of course, the representation can become fairly complicated; but the point is that the ERGM model
class is broadly encompassing. Furthermore, as we illustrate below, it can also be adapted to allow
for multigraphs such that nodes can have multiple types of relationships.
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First, the number of possible networks on a given number of nodes is an exponential
function of the number of nodes. Estimating the likelihood of a given network requires
having some estimate of its likelihood relative to the other networks that could have
appeared instead. Of course, given the exponential explosion of the number of possible
networks,3 it is impossible to directly calculate likelihoods of a given network appearing
and so some approximation is necessary. However, this computational hurdle is so
formidable that even state-of-the-art algorithms for estimation can be inadequate and
inaccurate. This is the subject of a burgeoning literature that shows that standard
estimation techniques cannot mix in less than exponential time for large classes of
exponential random graph models (e.g., see Bhamidi et al. (2008) and Chatterjee et al.
(2010)).4

Second, there is little that is known about the consistency of parameter estimates of
such exponential random graph models: do estimated parameters converge to the true
parameters as the size of the network grows?5 It is important to emphasize that the
relevant asymptotic frame is one in which the number of nodes grows to infinity, rather
than the number of networks; since in many applications, the data consist of a single
network.6 If links are all independent of each other, then a single network provides many
observations and link probabilities are estimable. However, once there are nontrivial
interdependencies between links, standard asymptotic results do not apply, which is
why little is known about the consistency of associated estimation techniques. This
does not mean that consistency is precluded, (just as it is not precluded in time series or
spatial settings) as even though the probability must be specified at the network level
there is still a lot of information that can be discerned from the observation of a single
large network.7 Nonetheless, it does mean that we must approach the asymptotics in a

3For example with only n = 30 nodes, the number of possible networks is 2435 (which exceeds most
estimates of the number of atoms in the universe).
4Apart from estimation issues, there is another issue that concerns which formulations of exponential
random graph models are distinguished from independent link models. For example, Chatterjee and
Diaconis (2011) show that some classes of ERGMs are indistinguishable in a well-defined sense from
independent-link models. Our formulations avoid such issues, and in particular our results on sparse
networks apply to classes of models that are well-distinguished from independent-link models and to
which the Chatterjee and Diaconis (2011) results do not apply.
5Of course, consistency has been examined in the context of some random graph models (e.g., see
Bickel et al. (2011); but not for the class of models that we consider here. Consistency of a different
sort has been examined by Shalizi and Rinaldo (2012) in the context of ERGMs: whether or not
if one observes only a subsample of the network, whether the estimated parameters will accurately
reflect the true parameters of the full network. That is also related to work on measurement error by
Chandrasekhar and Lewis (2013), but we do not address that separate issue here.
6If the asymptotic frame was one in which we observed a growing number of networks with a fixed
number of nodes, each generated by the same network formation process, consistency would be follow
from standard results. Although there exist such data sets, they are the exception rather than the
rule. And, even for such data sets, the above estimation issues of practical calculations that we tackle
here are still relevant.
7In cases where a time series of link formation is observed or postulated and estimated, then one can
take advantage of the sequentiality to see how each link forms conditional on the network in place
at the time (e.g., see Christakis et al. (2010)). However, without such information, or in cases where
links may further evolve over time, the network perspective again prevails. For example, Mele (2011)
considers a sequential model and then shows that it becomes effectively equivalent to a certain ERGM.



TRACTABLE AND CONSISTENT RANDOM GRAPH MODELS 3

way that accounts for the potentially complex correlations and interdependencies that
arise in link formation.8

To fix ideas and discuss our approach in more detail, let us be more explicit about
the issues that ERGMs face. In an ERGM, the probability of a network of observing a
particular network described by a graph g with an associated vector of statistics S(g)
(for example, the density of links, number of cliques of given sizes, the average distance
between nodes with various characteristics, counts of nodes with various degrees, and
so forth) is proportional to

exp (θ · S (g))
where θ is a vector of model parameters.9

Turning the above expression into a probability of observing a network g requires
normalizing this expression by summing across all possible networks, and so the prob-
ability of observing g is

(1.1) Pθ (g) = exp (θ · S (g))∑
g′ exp (θ · S (g′)) .

The challenge is that estimating the parameters this sort model requires estimating
how the relative likelihood of a network relates to parameters. This involves either
explicitly or implicitly estimating the denominator of (1.1) - and this is true of any
of a variety of estimation techniques whether it be maximum likelihood, generalized
method of moments, or even Bayesian. However, as we mentioned above, examining
all possible networks g′ is infeasible even for small n, and thus, one has to take other
routes.

The adaptation of Markov Chain Monte Carlo (MCMC) sampling techniques to
draw networks and estimate ERGMs, by Snijders (2002) and Handcock (2003), pro-
vided a breakthrough. The subsequent development of computer programs based on
those techniques led to their widespread use.10 However, it was clear to the developers
and practitioners that the programs had convergence problems for many specifications
of ERGMs. Until recently, it remained unknown if or when these techniques would mix
accurately in a feasible time. Given the huge set of networks g′ to sample, any MCMC
procedure can visit only an infinitesimal portion of the set, and it was unclear whether
such a technique would lead to an accurate estimate in any practical amount of time.
Unfortunately, important recent papers have shown that for broad classes of ERGMs
standard MCMC procedures will take exponential time to mix unless the links in the
network are approximately independent (e.g., see the discussions in Bhamidi et al.
(2008) and Chatterjee et al. (2010)). Of course, if links are approximately indepen-
dent then was no real need for an ERGM specification to begin with, and so in cases
where ERGMs are really needed they cannot be accurately estimated by such MCMC
sampling techniques. Such difficulties were well-known in practice to users of software
8Clearly, there are other settings with interdependencies, such as time series and spatial settings.
The network setting presents a complex set of interdependencies that do not permit off-the-shelf
approaches.
9The reasons for using the exponential family are clear. It nests many standard distributions such
as multivariate normal, Poisson, power, lognormal, gamma, beta, Weibull, Laplace, multinomial, etc.
Also, it has many nice properties regarding its cumulants and moment generators, and has been
well-studied in the statistics literature.
10See Snijders et al. (2006) for more discussion.
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programs that perform such estimations, as rerunning even simple models can lead to
very different parameter and standard error estimates, but now these difficulties have
been proven to be more than an anomaly.

Beyond the computational challenges, it is also not known whether various estimators
of ERGMs are consistent. Will maximum likelihood estimates converge to the true
parameters as the number of nodes becomes large? Given that data in many settings
consist of a single network or a handful of networks, we are interested in asymptotics
where the number of nodes in a graph grows. However, it may be the case that
increasing the number of nodes does not increase the information in the system. In
fact, for some sequences of network statistics and parameters it is obvious that the
parameters of the associated ERGM are not consistent. For example, suppose that
S(g) includes a count of the number of components in the network and the parameters
are such that the network consists of a single or a few components. The limited number
of components would not permit consistent estimation of the generative model. Thus,
there are models where consistent estimation is precluded. On the other extreme where
links are all independent, we know that consistent estimation would hold, and so the
interesting question is for which models is it that consistent estimation can be obtained.

This paper makes five contributions.
First, we propose a generalization of the class of ERGMs that we call SERGMs:

Statistical ERGMs. To understand the generalization, note that in any ERGM the
probability of forming a network is determined by its statistics: for instance, having
a given link density, a given clustering coefficient, specific path lengths, etc. Most
importantly, every network exhibiting the same statistics is equally likely.11 SERGMs
nest the usual ERGM models by noting that: (i) we can define the model directly
over the statistics and thus greatly reduce the dimensionality of the space, and (ii)
we can weight the distribution over the space of statistics in many ways other than
simply by how many networks exhibit the same statistics. Some of these reference
distributions generate natural models that both allow for realistic features as well as
desirable statistical properties such as consistency and asymptotic normality of the
estimators of model parameters. This change to the space of statistics rather than
networks allows us to develop computationally practical techniques for estimation of
SERGMs.

Second, we examine sufficient conditions as well as some necessary conditions for
consistent estimation of SERGM parameters (nesting ERGMs as a special case) and
identify a class of SERGMs for which it is both easy to check consistency and estimate
parameters. Models in this class are based on “count” statistics: for instance, how many
links between nodes with certain characteristics exist, how many triangles12 including
certain types of nodes exist, how many nodes have a given degree, and so forth.

Third, we identify a related class of network formation models that are based on
the formation of subgraphs that we call SUGMs (Subgraph Generated Models).13 We
11This is related to the well-known property of sufficient statistics of the exponential family. As an
analogy, a binomial distribution defines the probability of seeing x heads but does not care about the
exact sequence under which the x heads arrive.
12Triangles refer to triads: cliques of size three; that is, triplets of nodes i, j, k that include all three
possible links.
13 Although some particular examples of random networks have previously been built up from ran-
domly generated subgraphs (Bollobás et al. (2011)), our general specification of SUGMs is new.
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can think of such a network as being constructed from building blocks of varying sizes:
links, triangles, larger cliques, stars, etc., layered upon each other. We show that if such
models are sufficiently sparse in a well-defined way, then they are consistently estimable
and parameters are asymptotically normally distributed. Such sparse networks appear
in many applications as they have realistic features (e.g., average degree that grows
at a rate less than n, but still allowing for high clustering, homophily, rich degree
distributions, and so forth). These models are also easily to simulate and admit random
utility foundations that may be used in economic applications (e.g., counterfactual
policy analysis, testing theory).

Our fourth contribution is to provide a set of strategic network formation models
that mix utility-based choices of link and subgraph formation by agents with random-
ness in meeting opportunities. We describe two basic approaches (one based on consent
in link and subgraph formation and the other based on noncooperative search inten-
sity choices), showing how these can provide foundations for classes of SERGMs and
SUGMs, and illustrate one of them in our applications section.

Our fifth and final contribution is to provide illustrations of the techniques developed
here by applying them to data on social networks from Indian villages. We show that
many patterns of empirical networks are replicable by a parsimonious SUGM with very
few parameters. We also answer the question that we began with above, of whether
individuals tend to form cross-caste relationships more frequently when there are no
friends in common than when there are. We find that cross caste relationships occur
with significantly higher frequency when in isolation than when embedded in triads.
Beyond this, we also develop an extension of the models that apply to multigraphs
(so individuals may have different sorts of edges between them). This allows us to
then test several theories of how multigraphs are formed (why links are correlated or
multiplexed): fixed costs of link formation, patterns that foster favor exchange, and
correlated (un)-observables. We find evidence consistent with predictions of a theory
of favor exchange: being a member of a triangle may substitute for having multiple
types of relationships with others.

The connection between ERGMs, SERGMs, and SUGMs is as follows. SERGMs
not only provide an alternative way of representing ERGMs by working directly with
the network statistics, but also substantially generalize the class by allowing for alter-
native reference distributions. SUGMs then allow for an additional change relative to
SERGMs in terms the way the graph is generated. A SERGM – in order to maintain
the nesting of ERGMs – has the likelihood of a network depend on the observed counts
of various statistics, including subgraphs. A SUGM can be thought of as generating
subgraphs, but allowing them to overlap: it is not clear whether a given triangle was
generated directly as a triangle or as three separate links. Thus, one needs to infer the
true statistics in estimating the parameters of the model. This subtle change allows
for a more direct estimation in the case of sparse networks. We provide an exact re-
lationship between SUGMs and SERGMs, showing that these models are related but
distinct.

The remainder of the paper is organized as follows. In Section 2 we provide an
overview of the paper by way of a simple example. We provide formal definitions of
the framework in Section 3. In Section 4 we define and discuss SERGMs, providing
estimation and consistency results. In Section 5, we develop a variation of the model
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of network formation based on subgraphs, SUGMs, which we show to be easily and
consistently estimable in the case of sparse networks, In Section 6 we provide further
extensions and applications of these models, including how they may be used in an-
alyzing strategic network formation and extensions to multigraphs. In Section 7 we
present simulation exercises to demonstrate asymptotic properties, as well as empirical
applications to Indian village networks that illustrate the techniques and some of the
results. Section 8 concludes.

2. Preliminaries and an Example

Let Gn be a set of possible graphs on a finite number n of nodes. The class can
consist of undirected or directed graphs and unweighted or weighted graphs. In the
unweighted case, we take Gn to be finite, but it will generally be large as a function of
n. For instance, if Gn is the set of all undirected, unweighted graphs on n nodes, then
the cardinality of Gn is |Gn| = 2(n2).

We often omit notation Gn and denote a generic network by g. Thus, if we write∑
g it is understood to mean ∑g∈Gn for whatever class of networks is relevant. Unless

otherwise stated we take Gn to be the set of undirected, unweighted graphs; but as will
be clear, the results extend directly to more general classes such as directed graphs and
multigraphs as we illustrate below.

We observe a single (large) graph from which to estimate a network formation
model.14 A family of models is indexed by a vector of parameters of interest β, and
can be represented by corresponding probability distributions over graphs Pβ (g), which
depends on parameters β.

Some of our results concern asymptotic properties of such models, and so at times we
consider a sequence of random graphs gn, n ∈ N, drawn from a sequence of probability
distributions Pn

βn(·). Since everything then carries an n index we suppress it except
when we want to highlight dependence.

The models that we develop can be expressed as functions of characteristics of net-
works. A vector of statistics of a network g ∈ Gn is a finite (k-dimensional) vector
S(g) = (S1(g), . . . , Sk(g)) , where S` : Gn → R for each ` ∈ {1, . . . k}. For examine,
a statistic might be the number of links in a network, the average path length, the
number of cliques of a given size, the number of isolated nodes, the number of links
that go between two specific types of groups, and so forth.

2.1. A Leading Example and a Preview of the Paper.
We begin with an example that minimally complicates an independent-link model,

but enough to require modeling link interdependencies. The idea is that instead of
links being formed solely on a bilateral basis there are also multilateral opportunities
to form relationships. Subgroups of individuals sometimes randomly meet and decide
whether or not to form subgraphs (we develop full random utility foundations of such
models in Section 6.1). Specifically, individuals meet in pairs, triples, and larger groups
in order to determine whether to form relationships. Both the meeting probabilities

14In some contexts a researcher may have access to several or many networks drawn from the same
distribution. That can obviously help with estimation, but we do not presume that the researcher has
such information.
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and the preferences for forming relationships may depend on the characteristics of the
pair or larger clique of individuals in question (see Sections 7.1 and 7.2).

For illustrative purposes, we work with a simple version of such a model: individuals
meet in pairs and triples and for this section we ignore characteristics of the individ-
uals. We also allow for the presence of isolates: asocial individuals who do not form
relationships with others. We work with this model since despite its simplicity it works
remarkably well in fitting networks in some applications as we show in Section 7.1.

The probability of the formation of a network g can be expressed as a function of
the network’s: number of isolated nodes, SI(g); number of links, SL(g); and number
of triangles, ST (g). Such a model can be expressed in a standard exponential random
graph model (ERGM) of the following form. The probability of a network g being
formed is

(2.1) Pθ (g) = exp (θISI (g) + θLSL (g) + θTST (g))∑
g′ exp (θISI (g′) + θLSL (g′) + θTST (g′)) .

If θI = θT = 0 then this reduces to a standard Erdős-Rényi random graph. The more
interesting case is where at least one of θI 6= 0 or θT 6= 0, so that networks become
more (θT > 0) or less (θT < 0) likely based on the number of triangles they contain -
or, similarly, of isolates they contain.

2.1.1. ERGM Estimation. The difficulty with estimating such a model is that the num-
ber of such networks in the calculation of ∑g′ is 2(n2).15 Thus, the fraction of networks
that can be sampled is necessarily negligible, and unless careful knowledge of the model
is used in guiding the sampling, the estimation of the denominator can be inaccurate.

Given that estimating the parameters of an ERGM are thus forced to circumvent di-
rect calculation of the denominator, approximation methods such as MCMC techniques
have been used.16 The rough intuition is that such methods sample some networks
(picking a few g′s ) to estimate the relative sizes of exp (θISI (g′) + θLSL (g′) + θTST (g′))
from which to extrapolate the ∑g′ in the denominator of (2.1) and thus develop a rough
estimate of the relative likelihood of the observed data under various specifications of
θ. Even with this approach, the space of all possible networks is difficult to sample
in a representative fashion. For instance, if one samples say 10000 networks, then
one samples on the order of 216 networks out of the possible 21225 on 50 nodes, which
is about one out of every 21209 networks. Thus, unless one is very knowledgeable in
choosing which networks to sample and how many to sample of different types, or one
is very lucky, the sample is unlikely to be even remotely representative of the possible
configurations that might occur. Formally, draws generated by the sampling need to
be well-mixed in a practical amount of time.

Indeed, the time before which an MCMC technique has a chance to sample enough
networks to gain a representative sample is generally exponential in the number of links

15Even with a tiny society of just 30 nodes this is 2435, while estimates of the number of atoms in the
universe are less than 2258 (Schutz, 2003).
16See Snijders (2002), Handcock (2003), as well as discussions in Snijders et al. (2006) and Jackson
(2011).
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and so is prohibitively large even with a small number of nodes.17 In particular, an
important recent result of Bhamidi et al. (2008) shows that MCMC techniques using
Glauber dynamics for estimating many classes of ERGMs mix in less than exponential
time only if any finite group of edges are asymptotically independent. So, the only time
those models are practically estimable is when the links are approximately independent,
which precludes the whole reason for using ERGMs: allowing for nontrivial correlations
in links.

To illustrate the computational challenges, we a simple model with n = 50 nodes.
The model consists of some isolated nodes, some randomly generated triangles, and
some randomly generated links. In particular, we first select 17 nodes (one third) to
be isolated. Next, we generate triangles with a probability of .0014 on each possible
triangle on the nodes that are not isolated. Finally, we generate links with probability
.0415 on the nodes that are not isolated. Overall, this leads to networks that have on
average 20 isolated nodes, 45 links, and 10 triangles (so, E[SI (g)] = 20,E[SL (g)] =
45,E[ST (g)] = 10)). We randomly draw 1000 different networks in this manner.

Using standard ERGM estimation software (statnet via R, Handcock et al. (2003))
we estimate the parameters of an ERGM with isolates, links and triangles for each of
these randomly drawn networks. We present the estimates in Figure 1.

(a) Isolate Param-
eter Estimates

(b) Link Parame-
ter Estimates

(c) Triangle Pa-
rameter Estimates

Figure 1. Standard ERGM estimation software (statnet) output for
1000 draws of networks on 50 nodes, with an average of 20 isolated nodes,
45 links, and 10 triangles. The red lines (on top of each other) are the
median left and right 95 percent confidence interval lines (which do not
have appropriate coverage).

There are two self-evident issues with the estimation. First, and most importantly,
the estimated parameters for links and triangles cover a wide range of values, in fact
with the link parameter estimates being both positive and negative and ranging from
below -3 to above 3 (Figure 1b) and triangles parameter estimates ranging from just
above 0 to more than 5 (Figure 1c). Only the isolates parameter estimates are stable
(Figure 1a). Second, despite the enormous variation in estimated parameter values
from very similar networks, the reported standard errors are quite narrow and almost

17This does not even include difficulties of sampling. For example, as discussed by Snijders et al.
(2006), a technique of randomly changing links based on conditional probabilities of links existing for
given parameters can get stuck at complete, empty, or other extreme networks.
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always report that the parameter estimates are highly significant. Moreover, the me-
dian left and right standard error bars essentially coincide and do not come close to
capturing the actual variation.

In Appendix D we do some additional diagnostics to confirm that this is really
due to the impossibility of practical estimation of ERGMs and not simply due to the
variation in simulated networks. There we report the distribution of the statistics from
the simulated networks (Figure 9) – they are fairly tightly clustered about the mean
values.

As an acid test of the estimation procedure, we also do the following exercise. We
randomly generate networks that have exactly 20 isolates, 45 links and 10 triangles on
50 nodes. Thus, the statistics of the networks are identical, and only the location of the
links and triangles changes. Any two networks with exactly the same statistics should
lead to exactly the same parameter estimates as they have exactly the same likelihood
under all parameter values. Thus, the only variation comes from imperfections in the
software and estimation procedure. As illustrated in Appendix D (Figure 8), although
there is slightly less noise in the parameter estimates, they still cover similar ranges and
exhibit similar features, and have similar difficulties in the standard error calculations.

Finally, we perform another exercise. Each of the 1000 simulated networks generates
parameter estimates. Using those parameter estimates we simulate a network using
Statnet’s simulation command. We then check whether the simulated networks come
anywhere close to matching the original networks. Although the networks turn nearly
20 isolates, they generally have hundreds of links and thousands of triangles (Figure
10), not at all matching the original networks (Figure 9).

2.1.2. A Prélude to Our Approach. We develop two new classes of models, both of
which are partly built on the following insight, which one can see by rewriting the
model above in ways that make it practical to calculate.

Given the model specified in (2.1), any two networks that have the same num-
bers of isolates, links, and triangles have the same probability of forming. That is, if
(SI(g), SL(g), ST (g)) = (SI(g′), SL(g′), ST (g′)), then Pθ(g) = Pθ(g′) for any θ. This is
simply an observation that (SI(g), SL(g), ST (g)) is a sufficient statistic for the probabil-
ity of the network g. More generally, whichever statistics on which an ERGM is based
are sufficient statistics for the probability of a given network forming. This simplifies
the calculation above.

Given a vector of statistics S (e.g., S = (SI , SL, ST ) in our example), let

NS(s) := |{g ∈ Gn : S(g) = s}|

denote the number of graphs that have statistics s.
We rewrite the denominator of the ERGM in (2.1) as∑

s′
NSI ,SL,ST (s′) exp (θIs′I + θLs

′
L + θT s

′
T ) .

Note that the denominator now sums across the set of possible numbers of links and
triangles. While the denominator of the ERGM in (2.1) was a summation over a
number of networks which is of order 2n2 , the summation now is over possible numbers
of isolates, links, and triangles which is of order n6 and thus is polynomial in the
number of nodes rather than exponential.
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Moreover, instead of considering the probability of observing a particular network,
we can instead ask what the probability is of observing a particular realization of
network statistics. For instance, what is the probability of observing a network with a
given number of links and triangles? Generally, this is what a researcher is interested in
rather than which specific network that had a given list of characteristics was realized.
We can then express the model in the following form:

(2.2) Pθ ((SI , SL, ST ) = s) = NSI ,SL,ST (s) exp (θIsI + θLsL + θT sT )∑
s′ NSI ,SL,ST (s′) exp (θIs′I + θLs′L + θT s′T ) .

This is an example of what we call a Statistical Exponential Random Graph Model,
or SERGM, which are defined in their more general form below.

We have thus reduced the complexity of the estimation problem from something that
is exponential in the number of nodes, to something that depends on the size of the
space of statistics, which is generally polynomial in the number of nodes.

In addition, there are ways to approximate the denominator of (2.2) which can
further ease computation burdens. For example, we can estimate the denominator by
summing across some subset of s′ that has high probability rather than summing over
the full set, as although n6 is polynomial it still can be a large sum to do exhaustively
as n grows. In particular, suppose that for some parameter θ, the probability that the
observed statistic ends up taking a value in some set A is at least 1− ε: Pθ(s ∈ A) ≥
1− ε. Then by setting

Pθ ((SI , SL, ST ) = s) = NSI ,SL,ST (s) exp (θIsI + θLsL + θT sT )∑
s′∈ANSI ,SL,ST (s′) exp (θIs′I + θLs′L + θT s′T ) .

it follows that for any s ∈ A

1
1− ε ≥

Pθ ((SI , SL, ST ) = s)
Pθ ((SI , SL, ST ) = s) ≥ 1.

Thus, we can work with Pθ ((SI , SL, ST ) = s) which only requires computations over
s′ ∈ A in its denominator. 18

2.2. Statistical ERGMs (SERGMs) and Subgraph Generation Models (SUGMs).

(2.2) defines a model over network statistics and, in principle, there is nothing spe-
cial about the weighting function NS(·), and at times it can be hard to compute or
even approximate. This leads us to our more general representation of SERGMs. By
replacing the weighting function NS with some other function KS : A → R we obtain
a statistical exponential random graph model (SERGM). The associated probability of

18 We have to worry about determining A since it depends on θ which is presumed to be unknown
to the researcher. However, in many models, the probability of various statistics concentrates in a
small neighborhood around the observed statistics with high probability, so the above approximation
becomes quite useful. By observing s, and then choosing A to be a large enough neighborhood around
the observed s, one can be sure that under the true (unobserved) θ, Pθ(A) ≥ 1− ε. In particular, it
is easy to choose a small set A based on the observed s over which to sum the denominator without
knowing θ, and which with arbitrarily high probability will give an arbitrarily accurate estimate for
large enough n. A general version of such a lemma appears as Lemma B.1 in the appendix.
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seeing realized number of links and triangles (SI , SL, ST ) = s is:

P̂θ ((SI , SL, ST ) = s) = KSI ,SL,ST (s) exp (θIsI + θLsL + θT sT )∑
s′∈AKSI ,SL,ST (s′) exp (θIs′I + θLs′L + θT s′T ) .

This is a model that states that the probability that a network exhibits a specific
realization of statistics S = s is given by an exponential function of the statistics s.
This is an example of the class of models called SERGMs that we develop here, and
which nests ERGMs as a special case.

(2.3) S̃I
n

and S̃T(
n−S̃I

3

) and S̃L(
n−S̃I

2

) .
The other main approach that we develop is as follows. As described above, we

can also think of a model in which isolates, links and triangles are formed directly at
random (for instance, subgroups of individuals meet and decide whether they want to
form a subgraph). The model is then governed by the probabilities pI that isolates
are directly generated, pL that any given link is directly generated (on non-isolated
nodes), and pT that any given triangle is directly generated (on non-isolated nodes).
This model is what we call a Subgraph Generation Model or SUGM.

The challenge in estimating a SUGM is that we observe the resulting network and
not the directly generated isolates, links and triangles. For example, if the three links
12, 23, 13 are all directly generated, then we would observe the triangle 123 in the graph
g and not be sure whether it was generated as three links or as a triangle. Nonetheless,
by examining the graph we can back out the probabilities for many such models.

Just to a bit more explicit, suppose that under the model there are some numbers of
truly (directly) generated isolates S̃I , links S̃L, and triangles S̃T . If we could see these
statistics of truly generated links and triangles, then we would estimate

(2.4) pI = S̃I
n

and pT = S̃T(
n−S̃I

3

) and pL = S̃L(
n−S̃I

2

) .
However, generally we do not observe these statistics S̃I , S̃L and S̃T . Instead count

two things: the number of observed isolates, SI , triangles, ST , and links not in triangles
– which we refer to as unsupported links SU . We then can take two approaches. One
is to use these to estimate the number of truly generated isolates, links and triangles,
S̃I , S̃L and S̃T , by calculating the rates at which incidental isolates triangles would be
generated. This can be done in many settings, and we develop an algorithm to do this
as described in Section 5.3.

Another approach is to use SI , ST , SU to estimate the probability that a triangle
forms and the probability that a link forms by simply computing

p̂I := SI
n

and p̂T := ST(
n−SI

3

) and p̂L := SU(
n−SI

2

)
− 3ST

.
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These will be accurate estimates of the true parameters pI , pT , pL provided that the
network is sparse enough, as we show in Theorem 2.19,20 Sparseness ensures that the
fraction of observed subgraphs that are incidentally generated is vanishing. The main
idea in direct estimation is that if the subgraphs we care about are relatively sparse
in a precise way, then although three links (or some set of links and links in other
triangles) can combine to incidentally generate a triangle, it is much more likely that
the triangle forms directly. This is not restrictive for many applications as networks in
economic and sociological data sets are often sparse.

Let us now return to the example presented in Section 2.1.1 that provided headaches
for standard techniques for estimating ERGMs.

We can estimate that either as a SERGM or a SUGM. The SUGM delivers direct
estimates for the parameters based on (2.4). For all of the networks

(2.5) p̂I = S̃I
n

= 20
50 = .4, p̂T = S̃T(

n−S̃I
3

) = 10(
30
3

) = .002 and p̂L = 15(
30
2

)
− 30

= .037.

If we work with a SERGM (on unsupported links) that has weights

(2.6) KI(sI) =
(

50
sI

)
and KT (sT ) =

((30
3

)
sT

)
and KU(sU) =

((30
2

)
− 30
sU

)
,

then as we show in Theorem 1 and 3, the SERGM parameters can be directly obtained
as from the SUGM binomial calculations, with an adjustment for the exponential:

θ̂I = log p̂I
1− p̂I

= −.17, θ̂T = log p̂T
1− p̂T

= −2.7 and θ̂U = log p̂U
1− p̂U

= −1.4.

Thus we directly and easily obtain parameter estimates for the same networks that
gave the ERGM estimation troubles.

These estimates are obtained from the fixed values of 20 isolates, 45 links and 10
triangles on 50 nodes. Each of the 1000 simulated networks with these expected values
will have slightly different realized values, and so we report the full distribution of
those estimated parameters in Appendix D in Figures 11 and 12. The distributions of
estimated parameters are tightly grouped around their means.

We remark that due to the finite sample, the parameter estimates above exhibit
some slight biases. For example, the networks that were generated were generated
to have 17 isolated nodes, so the true pI was .34, while the estimate is .40. This
occurs since in some of the networks, so of the other nodes that were not designated
to be isolated end up not being a part of any links or triangles. On average in our
simulations, this happens to about 3 nodes. Similarly, there may be extra triangles
generated incidentally by links.

Several things are worth noting. First, as we show in our results below, for appropri-
ate models this bias disappears for large n and the estimates are consistent. Second,
we provide an algorithm in Section 5.3 for improving the estimation. There are several
19Additionally, we prove that the estimators, appropriately normalized, are asymptotically normally
distributed.
20Theorem 2 does not explicitly include isolates, as we define subgraphs as connected objects for ease
of notation. However, the theorem extends easily to this case. In particular, in the case of isolates,
‘sparse’ actually puts a lower bound on the probability of links - so that links are not so sparse as to
generate extra isolated nodes.
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ways to do finite sample corrections and we discuss them in Section 5.3, but to build
intuition here we follow a simple heuristic argument.

The probability a node (that is truly not chosen as an isolate) is isolated in the
resulting graph is roughly21

(1− pL − pT (n− nI − 2))n−nI−1 .

Simply plugging in the estimates of the nI , pL and pT gives us a rough calculation of
the probability that any given node would be isolated incidentally, and multiplying
by the number of nonisolated nodes give us an estimate of the expected number of
incidentally generated isolates:

(1− pL − pT (n− nI − 2))n−nI−1 ≈ (1− 0.037− 0.002 (30− 2))30−1 = .06

Thus, the probability that any given node is isolated is approximately pI + .06. To get
20 isolated nodes, 50(p̂′I + .06) = 20, where p̂′I is the corrected estimate. This solves to
p̂′I = .34: a correct estimate.

To sum up, we develop two classes of tractable models. One are subgraph generation
models (SUGMs) in which we think of subgraphs as being directly generated by sub-
groups of nodes. The second is a more general statistical exponential random graph
model (SERGM), in which a network is drawn based on its properties (e.g., a vector
of sufficient statistics such as subgraph counts). We provide theorems on asymptotic
estimation of each of these classes of models, and also describe techniques that provide
for tractable estimation even with large numbers of nodes in many cases. We then also
clarify the relationship between SUGMs and SERGMs, via Theorem 3. Indeed, for
sparse networks there is a close correspondence between SUGMs and SERGMs (and
ERGMs). As ERGMs are special cases, as a corollary we provide first consistency the-
orems for those models and show how tractable estimation can be achieved via statistic
counts rather than network counts.

We next provide our models and results in their full generality, along with theorems
on asymptotic properties of these models and estimators.

3. Definitions

We first present some needed definitions before describing our results.

3.1. SERGMs.
The general set of SERGMs that we define is as follows. Consider a vector of network

statistics S = (S1, . . . , Sk) that takes on values in some set A ⊂ Rk.22 A weighting
function KS : A → R, together with a set of parameters β ∈ B ⊂ Rk, define a

21There are n−nI−1 other nodes that it could be linked to, and must end up with none of those links.
Roughly the probability that it ends up with a link to any given one of those is pL− pT (n− nI − 2) -
the sum of the probability that it ends up with a link, or in a triangle with that node and any of the
other n− nI − 2 nodes.
22Given the finite number of possible networks, A is taken to be finite. The dimension of A can easily
be generalized to be larger than k, as the dimension plays no role in our results. If one wishes to work
with weighted networks, then obvious extensions to continuous ranges and integrals apply.
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statistical exponential random graph model (SERGM). The associated probability of
seeing realized statistics S = s is:

(3.1) Pβ,KS (s) = KS(s) exp (β · s)∑
s′∈AKS(s′) exp (β · s′) .

This is a model that states that the probability that a network exhibits a specific
realization of statistics S = s is given by an exponential function of the statistics s.
Thus, the model is based directly on the properties of the network rather than the actual
realized network. A distribution on properties S ∈ A drives the network formation
process, and those network properties are what the researcher ultimately cares about
with respect to the social or economic theories being studied. Which network forms
given the realized statistics is secondary and could be uniform at random, or according
to some other conditional distribution, so long as given the realized s a network g such
that S(g) = s is drawn. (Unless otherwise stated we take it to be uniform at random.)

It is important to note that node characteristics can also be included in statistics.
For example, nodes might be classified into some finite number of groups based on
some characteristics, and then one can track the number of links between various types
of nodes, various clustering and cohesion measures by types of nodes, and so forth.
This permits the fitting of choice-based models, where the utility that an individual
derives from a link to another depends on node characteristics and network position.

In the language of exponential families of random variables, KS(·) is simply a refer-
ence distribution. Varying the reference distribution, of course, changes the resulting
odds of various values of s being drawn and can affect whether the model is consistently
estimable.

Recalling that NS(s) = |{ g ∈ Gn : S(g) = s }| is the number of graphs that have
the same statistic value s; the special case in which KS(·) = NS(·) corresponds to a
standard ERGM.

Two remarks are in order. First, note that there is no reason to maintain that KS(·)’s
must approximate NS(·)’s. Nature may choose properties of networks (S’s) according
to some alternative weighting. The instance of studying NS(·)-weighted SERGMs may
be a historical one: on another planet, people may have first modeled SERGMs with
general K’s and would see those as natural with the ERGMs being a special case where
the weights are specialized to the NS’s.

Second, even if one is interested in a sub-class of these models wherein the KS(·)’s
approximate (or are) the NS(·)’s, the statistical representation greatly reduces the
dimensionality of the space over which relative likelihoods must be estimated to the
point at which practical estimation of SERGMs becomes feasible.

3.2. Estimation.
The maximum likelihood estimator β̂ := argmaxβ log

(
Pn
β (s)

)
solves

β̂ = argmax
β

β · s− log
∑
s′∈A

KS(s′) exp (β · s′)
 .

It follows that, except for extreme cases, the maximum likelihood estimator satisfies

0 = s−
∇∑s′∈AKS(s′) exp

(
β̂ · s′

)
∑
s′∈AKS(s′) exp

(
β̂ · s′

) .
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Thus, under regularity conditions such that the SERGM is sufficiently identified (so
that β 6= β′ implies that Eβ[S] 6= Eβ′ [S]), the maximum likelihood estimator β̂ of a
SERGM of the form (3.1) solves

(3.2) s =
∑
s′∈AKS(s′) exp

(
β̂ · s′

)
s′∑

s′∈AKS(s′) exp
(
β̂ · s′

) = E
β̂
[S].

For extreme values of s this will not be well-defined.23 Here, we implicitly assume that
the model is specified so that the probability of observing extreme statistics for which
this is not satisfied is negligible, which will be true of the asymptotic specifications
that we work with provided that the β’s do not tend to extremes too quickly.24

Beyond maximum likelihood estimation, we may also be interested in the more gen-
eral family of generalized method of moments (GMM) estimators. These are standard
classes of estimators associated with the first order condition equations normalized by
the rate of growth of the associated network statistics S or some other normalization.
For example, given some diagonal matrix C with positive diagonal entries relative to
which we are interested in the estimator:
(3.3) β̂n = arg min

(
S (g)− E

β̂
[s]
)′
Cn

(
S (g)− E

β̂
[s]
)
.

We do not explicitly discuss Bayesian estimation, but the conditions that we de-
fine here to ensure practical and consistent estimation for MLE and GMM estimators
also provide for straightforward extensions to Bayesian estimation with appropriate
regularity conditions on priors.

3.3. Subgraph Generation Models: SUGMs.
Our approach to defining SERGMs is that the generation process is one based on

network properties rather than networks.
One general class of network properties are counts of subgraphs: how many links

does a network have, how many triangles, how many cliques of size x, how many star
configurations of given sizes, how many isolated nodes, and so forth.

The idea behind a “Subgraph Generation Model,” SUGM, is that subgraphs are
directly generated by some process. Classic examples of this are Erdos-Renyi random
networks in which each link is randomly generated, and the generalization of that
model, stochastic-block models, in which links are formed with probabilities based on
the nodes’ attributes.

The more interesting generalization of those linked-based models to SUGMs is to
allow richer subgraphs to form directly, and hence to allow for dependencies in link
formation. It is not only links that are generated directly, but also other subgraphs:
23For example, for a simple Erdős-Renyi random network where the count statistic is simply the
number of links in the network, then if turns out that all links are present so that s = n(n−1)/2, then
the β that maximizes the likelihood of the ERGM formulation is essentially infinite (the β = log

(
p

1−p

)
corresponding to the maximum likelihood estimator of the link probability (p = 1) is not well-defined).
For more on the non-existence of well-defined maximum likelihood estimates for extreme networks see
Rinaldo et al. (2011).
24Parameters can still approach extremes. The requirement here can be fairly weak. For example,
if one were counting links it must be that the probability of having absolutely no links (or all links)
realized vanishes, which is true even if the probability of a link is larger than 1/nx for some x < 2.
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triangles, cliques of 4, stars of 5 nodes, etc. That is, groups of agents meet according
to some random process possibly related to their attributes, and then decide whether
to form a subgraph (with those choices also being potentially dependent on node at-
tributes). So, for instance in an example with links and triangles, two villagers meet
at random and decide whether to form a link, with the meeting and link formation
probability potentially dependent on their castes (or other characteristics). It might
be that people of the same caste meet more frequently or are more likely to form a
relationship when they do meet. Similarly, groups of three (or more) randomly meet
and can decide whether to form a triangle, with the meeting probability and decision
potentially driven by their castes and/or other characteristics. The model can then
be described by a list of probabilities, one for each type of subgraph. This results in
networks with various distributions of subgraph counts depending on parameters of
the model.

As we show in Theorem 3, SUGMs have a representation in a SERGM form, but in
some relevant cases SUGMs are easier and more intuitive to work with directly, and so
we distinguish them from their SERGM representation.

SUGMs are formally defined as follows. There is a a finite number of different types
of nonempty subgraphs, indexed by ` ∈ {1, . . . , k}, on which the model is based.25 In
particular, a subgraph generation model (SUGM) on n nodes is based on some list of
k subgraph types: (Gn

` )`∈{1,...,k} where each Gn
` is a set of possible subgraphs, which

are identical to each other (including node covariates) up to the relabeling of nodes.26

As an example, the set Gn
` for some ` could be all triangles such that two nodes have

characteristics X and one node has characteristics X ′. These could also be directed
subgraphs in the case of a directed network.

A SUGM is then defined by the n nodes, their covariates, a list of subgraph types
(Gn

` )`∈{1,...,k}, and a list of corresponding parameters pn = (pn1 , . . . , pnk) ∈ [0, 1]k that
governing the likelihood that a particular subgraph appears.

A network is randomly formed as follows. First, each of the possible subnetworks
in Gn

1 is independently formed with a probability pn1 . Iteratively in ` ∈ {1, . . . , k} ,
each of the possible subnetworks in Gn

` that is not a subset of some subgraph that has
already formed is independently formed with a probability pn` .

We consider two variations of the model. The first, as just defined, is one in which
we only keep track of subnetworks in Gn

2 that are not already part of a subnetwork in
Gn

1 that already formed. The other variation is one in which we allow for redundant
formation, and simply form subgraphs of each type disregarding the formation of any
other subgraphs.

To see the issue, consider the formation of triangles and links. Let Gn
1 be a list of all

possible triangles and Gn
2 be a list of all possible links. First form the triangles with

the corresponding probability pn1 . This then leads to the creation of some of the links
in Gn

2 . Do we allow those links to also form on their own? Whether we then allow links
that are already formed as part of a triangle to form again as links is inconsequential

25The definition does not admit isolated nodes as we define subgraphs to be nonempty, but those can
also easily be admitted but with notational complications.
26Formally, there is a set H = {H1, ...,Hk} of representative subgraphs, possibly depending on node
covariates, each having m` nodes for ` = 1, .., k. Then Gn` contains all subgraphs that are homomorphic
to H`.
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in terms of the network that emerges, and really is an accounting choice. It turns out
sometimes to be easier to count subgraphs as if they can form in multiple ways, and
at other times it is easier to keep track of smaller subnetworks that form only on their
own and not already as part of some larger subnetwork.

When a subgraph g′ is generated in the `th-phase, we say that it is truly generated.
This results in a network g, which is the union of all the truly generated subgraphs.
The resulting g can also contain some incidentally generated subgraphs that result from
combinations of links of unions of truly generated subgraphs, and we provide further
definitions concerning this below.

This model differs from a SERGM because the truly generated subnetworks are not
directly observed. The actual counts of statistics under the resulting g can differ from
the number that were formed directly under the process. Backing out how many of each
type of subnetwork was truly generated is important in estimating the true parameters
of the model, the pn` ’s, and is something that we discuss at length below.

4. SERGMs and Estimation Techniques

Let us first discuss the estimation of SERGMs. Under what conditions does an
estimator of a SERGM converge to the correct estimate in probability as n grows? To
our knowledge there are no general results on consistency of ERGM estimators. The
primary challenge is that the data consists of a single network and the asymptotics are
in terms of the number of nodes, but the relationships are correlated and so the data
can be far from independent.

To prove results regarding estimating SERGMs, we consider sequences of SERGMs
(Sn, Kn

S , A
n, βn), with n→∞. We now include notation for the index n since some of

our results relate the number of nodes n to the accuracy of the estimation.

4.1. Count SERGMs.
We begin by focusing on a natural subclass of SERGMs that we call “count SERGMs”,

and which have parameters that are consistently as well as easily estimable.
Let Sn = (Sn1 , . . . , Snk ) be a k-dimensional vector of network statistics whose `-th

entry takes on non-negative integer values with a maximum value S
n

` → ∞. We
call such a SERGM specified with Kn(s) = ∏

`

(
S
n
`
s`

)
a count SERGM. Let let Dn =

Diag
{
S
n

`

}k
`=1

be the associated normalizing matrix.
In a count SERGM, each statistic can be thought of as counting some aspect of the

network: the number of links between nodes of various types, various types of cliques,
other subgraphs, the number of pairs of nodes at less than some distance from each
other, etc. It includes counts of subgraphs, but also allows for other counts as well (e.g.,
the number of pairs of nodes at certain distances from each other, as just mentioned; or
the number of nodes that have more than a certain degree - so a degree distribution).

Associated with any vector of count statistics Sn on n nodes is a possible range of
values. It could be that there are cross restrictions on these values. For example, if we
count links SnL and isolates SnI , then SnL cannot exceed

(
n−SnI

2

)
. In that case the set of

possible statistics is a set An where

An =
{

(sL, sI) : sI ∈ {0, 1, . . . , n}, sL ∈
{

0, 1, . . . ,
(
n− sI

2

)}}
.
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Given that the set of possible statistics An might not be a product space, in esti-
mating count SERGMs, it will be helpful to know whether the realized statistics are
likely to be close to having binding restrictions on the cross counts. If a model truly
generates a third of its nodes as isolates, and then generates less than half of all possible
links, then in a wide band around the expected values, there would be no conflict in
the counts.

A sequence of count SERGMs (Sn, Kn, An, βn) have statistics that are not conflicted
if there exists some ε > 0 such that∏

`

{
bEβn

`
[Sn` ](1− ε)c, . . . , bEβn [Sn` ](1 + ε)c

}
⊂ An

for all large enough n.27

The “not conflicted” condition simply asks that at least in some small neighborhood
of the unconstrained expected values of the statistics - as if they were each counted
completely on their own, they are not conflicted so that they are jointly feasible. Es-
sentially, a local neighborhood of the expected statistics contains a product space. So
for example, if one expects one third of the nodes to be isolated, and one out of five
links to be present, then with large numbers of nodes, the statistics are unlikely to be
in conflict. This condition is quite easy to satisfy.28

For models where counts are not conflicted, with a high probability the realized
statistics lie in a product subspace, which helps us in proving the following consistency
result.

Theorem 1 (Consistency and Asymptotic Normality of Count SERGMs). A sequence
of count SERGMs that are not conflicted is consistent; |β̂n − βn| P−→ 0.

Moreover, if exp βn` /(1 + exp βn` ) · S̄n` →∞ for every `, the parameter estimates are
asymptotically normally distributed:

D
1/2
n,`

(
β̂n` − βn`

)
 N

0, 1
expβn

`

1+expβn
`
·
(

1− expβn
`

1+expβn
`

)
 .

Finally, letting p̂` = s`/S
n
` , an approximation of the MLE estimator can be found

directly as
β̂` := log (p̂`/(1− p̂`)) = log

(
s`/(S

n
` − s`)

)
.

The proof of Theorem 1 works via showing that the model can be locally approxi-
mated by a product of appropriately defined binomial random variables. In fact those
27Eβn

`
[Sn` ] refers to the expectation taken with respect to the one dimensional distribution of Sn`

ignoring the other statistics: i.e., with respect to a SERGM Kn
S`

(s`) exp(β·s`)∑
s′
`
≤Sn`

Kn
S`

(s′
`
) exp(β·s′`)

. This takes

expectations with respect to the unconstrained range of Sn` rather than cross restrictions imposed
under An.
28There are other things also embodied in the condition, as there are certain counts of statistics that
might not be feasible: for instance it is not possible to have a network with only one triangle missing:
once one triangle is removed it also removes many others from the network. Thus, the range of some
statistics is not a connected (containing all adjacent entries) subset of the integers. Nonetheless, for
lower values of triangles, this is not an issue. Generally, in the relatively sparse ranges of networks
that are often of empirical interest, this condition can be easily satisfied.
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binomial random variables provide a direct estimator for count SERGMs. Our proof
shows that following what would seem to be a naive technique of estimation is valid.
One can simply estimate parameters p` as if the subgraphs were generated according
to a binomial distribution with a maximum number of possible realizations Sn` and s`
as its realization.

It is important to emphasize that count SERGMs still allow for strong interdepen-
dencies and correlations in link appearances, both within and across statistics. What
our proof takes advantage of is a local approximation of such count SERGM distribu-
tions in unconflicted regions.

Theorem 1 tells us that unconflicted count SERGMs form a consistently estimable
class whose statistical properties we understand very well.

4.2. Consistency in General.
The above results apply to a fairly general class of SERGMs, count SERGMs, for

which we can derive explicit asymptotic distributions and simple estimators. We also
provide results about consistency for the more full class of SERGMs in Appendix E.

Briefly, there are two sorts of conditions that we outline as being sufficient for con-
sistency (and, effectively, necessary). One is an identification condition that requires
that different parameters distinguish themselves with different expected statistics. It
is a minimal condition (essentially necessary) since if two different parameter values
generate very similar expected statistics, then observing the realized statistic will not
allow us to distinguish the parameters. The second condition requires that the (ap-
propriately normalized) statistics concentrate around their means. If the statistics are
not concentrated, then even though different parameters lead to different expected sta-
tistics, observing a statistic would not allow one to back out the parameters. Various
combinations of such conditions (see Appendix E) ensure consistent estimation.

5. Subgraph Generation Models (SUGMs)

Next, we discuss the estimation of SUGMs. The main challenge here is that sub-
networks can be incidentally generated: forming links can lead some triangles to form
indirectly. Thus, to estimate the actual true generation rates, we need to estimate
incidental formation. We take two approaches. One is that we show in large and
sparse enough networks, incidental generation does not significantly bias estimation.
The second is to provide explicit finite correction methods for estimation in smaller
networks where incidentals may be nontrivial, which we return to in Section 5.3.

5.1. Incidentally Generated Subgraphs.
To see the issue of incidental subgraph generation in SUGMs, consider the following

example. Suppose that the subgraphs in question are triangles and single links, so
that Gn

1 (g) is the set of all triangles possible among the n nodes, and Gn
2 (g) is the set

of links on n nodes. The triangle {12, 23, 31} could be incidentally generated by the
subgraphs g1, g2, g3 where g1 = {12, 24, 41}, g2 = {23, 25, 53} and g3 = {31}. Figure 2
provides an illustration.

This presents a challenge for estimating a parameter related to triangle formation
since some of the triangles that we observe were truly generated in the formation
process, and others were “incidentally generated;” and similarly, it presents a challenge
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Figure 2. An incidentally generated triangle.

to estimating a parameter for link formation since some truly generated links end up
as parts of triangles.

The key to our estimation in this section is that in cases where networks are sparse
enough, then the fraction of incidentally generated subgraphs compared to truly gener-
ated subgraphs is negligible. As many applications will satisfy the sparsity conditions,
the estimation techniques are applicable in many cases of interest.

To state results on the estimation of sparse SUGMs, we first need a few definitions.
Consider a sequence of SUGMs indexed by n, each with some k sets of subgraphs

that are counted, Gn = (Gn
1 , . . . G

n
k), where k is fixed for the sequence.

We say that the vector of sets of subgraphs Gn = (Gn
1 , . . . G

n
k) is nicely-ordered if the

subnetworks in Gn
` cannot be a subnetwork of the subnetworks in Gn

`′ for k ≥ `′ > ` ≥ 1:
g` ∈ Gn

` and g`′ ∈ Gn
`′ implies that g` 6⊂ g`′ .

Note that any vector of sets of subgraphs can be nicely ordered: simply order them
so that the number of links in the subgraphs are non-increasing in `: so that `′ > `
implies that the number of links in a subnetwork of type `′ is no more than the number
of links in a subnetwork of type `. For example, triangles precede links.

We then follow our accounting convention so that statistics count subgraphs in order
and those which are not part of any previous subgraph:
Sn`′(g) = |{g`′ ∈ Gn

`′ : g`′ ⊂ g and g`′ 6⊂ g` for any g` ∈ Gn
` such that g` ⊂ g for some ` < `′}|.

We now define incidental generation and sparsity.
Consider a realization of a SUGM process in which the truly generated subgraphs are

given by Γ ⊂ ∪`Gn
` , and let g denote the realized network g = ∪g′∈Γg

′. The researcher
observes g and must make some inferences about Γ.
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Fix a specific subgraph g′ ⊂ g. We say that g′ is incidentally generated by a subset
of the (truly generated) subgraphs {gj}j∈J ⊂ Γ, indexed by J , if:

(i) g′ was not truly generated (g′ /∈ Γ),
(ii) g′ ⊂ ∪j∈Jgj, and
(iii) there is no j′ ∈ J such that g′ ⊂ ∪j∈J,j 6=j′gj.
Part (ii) states that the subgraph is incidentally generated, and part (iii) of the

condition ensures that the set of generating subgraphs is minimal.
Despite minimality, a subgraph could still be generated in multiple ways. For ex-

ample, in Figure 2e, if the researcher only observes the resulting network, there are
various possibilities to be considered: the triangle {12, 23, 31} could have been truly
generated, it could also have been incidentally generated by the subgraphs g1, g2, g3

where g1 = {12, 24, 41}, g2 = {23, 25, 53} and g3 = {31}, it could have been inciden-
tally generated by the subgraphs g1, g2, g3 where g1 = {12}, g2 = {23} and g3 = {31},
and still other possibilities.

5.1.1. Generating Classes.
In order to define sparsity, we have to keep track of the various ways in which a

subnetwork could have been incidentally generated.
Out of the many ways in which some g` ∈ Gn

` could be incidentally generated,
some of them are equivalent up to relabelings. For instance, in a large graph any
different combinations of triangles and edges could incidentally generate a triangle
g` = {12, 23, 31}, however there are only eight ways in which it can be done if we
ignore the labelings of the nodes outside of g`: link 12 could be generated either by a
triangle or link, and same for links 23 and 31, leading to 23 = 8 ways in which this
could happen.

Consider some g` ∈ Gn
` that is incidentally generated by a set of subnetworks {gj}j∈J

with associated indices `j and also by another set {gj′}j′∈J ′ . We say that {gj}j∈J and
{gj′}j′∈J ′ are equivalent generators of g` if for each gj there is gj′ such that `j = `j′ and
gj ∩ g` = gj′ ∩ g`. So the generating sets play the same roles in g` but might involve
different nodes outside of N(g`). Note that equivalent sets of generators must have
the same cardinality as they must both be minimal and involve the same intersections
with g`.

Given this equivalence relation, there are equivalence classes of generating sets of
networks for any g`. There are at most

(∑k
`′=1m`′

)m` equivalence classes of (minimal)
generating sets for any subnetwork g`.29 For each equivalence class J of generating sets
of some `, we have some list (`j, hj)j∈J of the types of subnetworks and the number of
nodes that the each subnetwork has intersecting with g`. We call these the (minimal)
generating classes of a subgraph g` and note that these are the same for all members
of Gn

` , and so we refer to them as the generating classes of `.
So, for a links and triangles example, where Gn = (GT , GL) are triangles and links

respectively, there are four generating classes of a triangle: a triangle could be inci-
dentally generated by three other triangles, two triangles and one link, two links and

29For each link in g` there are at most
∑k
`′=1m`′ links that could generate that link out of various

subgraphs, and then the power is just the product of this across links in g`, producing an upper bound.
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one triangle, or three links.30 Here, then we would represent a generating class of two
triangles and a link as (T, 2;T, 2;L, 2).

5.1.2. Relative Sparsity.
Consider a set of nicely ordered subgraphs Gn = (Gn

1 , . . . , G
n
k) and any ` ∈ {1, . . . , k}

and any generating class of some `, denoted J = (`1, h1; . . . ; `|J |,h|J| . Let31

MJ = (
∑
j∈J

hj)−m`.

For example, in forming a triangle from any combination of triangles and links, each
hj = 2 and so MJ = 6− 3 = 3.

We say that a sequence of models as defined in Section 3.3 with associated nicely-
ordered subgraphs Gn = (Gn

1 , . . . , G
n
k) and parameters pn = (pn1 , . . . , pnk) is relatively

sparse if for each ` and associated generating class J with associated (`j, hj)j∈J :∏
j∈J Epn(Sn`j(g))
nMJEpn(Sn` (g)) → 0.

This is a condition that limits the relative frequency with which subgraphs will be
incidentally generated (the numerator) to directly generated (the denominator).

To make this concrete, consider our example with triangles and links. A triangle can
be generated by other combinations of links and triangles. The expected number of
triangles that nature generates directly is EpT [SnT (g)] = pT

(
n
3

)
and the number of links

not in triangles is (approximately) EpL [SnL(g)] = pL
((

n
2

)
−O

(
pT
(
n
3

)))
. Thus it must

be that for each generating class,∏
j Epn(Sn`j(g))
pTn6 → 0.

For the generating class of all triangles, this implies that p2
Tn

3 → 0, so pT = o(n−3/2).
For the generating class of all links, this implies that32 p3

L/pT → 0, which is the obvious
condition that triangles formed by independent links are rare compared to triangles
formed directly. This implies that (but is not necessarily implied by) pL = o(n−1/2).
The conditions on the remaining generating classes (some links and some triangles) are
implied by these ones.

For example, letting pT = a(n)/n2 and pL = b/n, where a(n) = o(n1/2) satisfies the
sparsity conditions.33

30Here, our upper bound
(∑k

`′=1m`′

)m`
is 43, which is quite loose.

31Note that MJ ≥ 1 since |J | ≥ 2 and each set of hj nodes intersects with at least one other set of hj′
nodes for some j′ 6= j. Recall that under the nice ordering, smaller subgraphs cannot be generated as
a subset of some single larger one .
32Given that pT = o(n−3/2), it follows that EpL [SnL] = pL

((
n
2
)
−O

(
pT
(
n
3
)))

is proportional to pLn2.
33This leads to an expected degree of b + a(n)/3 and an average clustering of roughly

a(n)
6(b+a(n)/3)(b+a(n)/3+1) . This can be consistent with various clustering rates, and admits rates of
links and triangles found various observed networks. To match very high clustering rates the model
can be altered to include cliques of larger sizes.
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5.2. Estimation of Sparse Models.
Let S̃n denote the vector of the numbers of subnetworks of various types that are

truly generated; this is not observed by the researcher since the resulting g may include
incidentally generation. Let Sn(g) the observed counts including the incidentally gen-
erated subnetworks. In Figure 3, S̃nT = 9 but SnT (g) = 10 and from observing g there
is no way to know exactly what the true S̃nT is, we just have an upper bound on it.
Meanwhile, S̃nU = 23, but as one truly generated link becomes part of an incidentally
generated triangle, it follows that SnU = 22.

(a) n nodes (b) Triangles form

(c) Links form (d) Resulting network

Figure 3. The network that is formed on n nodes and eventually
observed is shown in panel D. The process can be thought of as first
forming triangles form independently with probability pnT as in (B), and
then forming links independently with probability pnL on the remaining
part of the graph as in (C). In (C) we see that there is one incidence of an
extra triangle generated by this process. In this network we would count
SnT (g) = 10 and SnU(g) = 22 from (D), while the true process generated
S̃nT (g) = 9 and S̃nU(g) = 23.

Nonetheless, as we prove, under the sparsity condition we can accurately estimate
the true statistics and thus the true parameters.

To state our next result, we need the following notation. Let Sn` (g) be the maximum
count of Sn` that is possible on network g. If we are counting triangles and links not
in triangles, then SnT (g) =

(
n
3

)
and SnU(g) =

(
n
2

)
−LT (g) where LT (g) is the number of
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links that are part of triangles in g.34 Let

(5.1) p̂n` (g) = Sn` (g)
S
n
` (g)

.

So, p̂n` (g) is the fraction of possible subgraphs counted by Sn` that are observed in g
out of all of those that could possible exist in g. This is a direct estimate of the param-
eter pn` , as if these subgraphs were each independently generated and not incidentally
generated.

Let Dn = Diag {p̂n` (g)nm`}k`=1. Dn is a normalizing matrix.
In order to have p̂n` (g) be an accurate estimator of pn` (g) in the limit two things

must be true. First, the network must be relatively sparse, which limits the number
of incidentally generated subgraphs. And, second, it must be that the potential num-
ber of observations of a particular kind of subgraph grows as n grows. This would
happen automatically in a sparse network setting if we were simply counting triangles
and links not in triangles. However, if nodes have different characteristics (say some
demographics), and we are counting triangles and links by node types, then it will also
have to be that the number of nodes that have each demographic grows as n grows. If
there are never more than 20 nodes with some demographic, then we will never have
an accurate estimate of link formation among those nodes.

We say a SUGM is growing if the probability that S̃n` (g)→∞ for each ` goes to 1.
Theorem 2 (Consistency and Asymptotic Normality). Consider a sequence of grow-
ing and relatively sparse SUGMs with associated nicely-ordered subgraph statistics Sn =
(Sn1 , . . . , Snk ) and parameters pn = (pn1 , . . . , pnk). The estimator (5.1) is ratio consis-
tent:35 p̂n` (g)

pn
`

P−→ 1 for each `. Moreover,36

D1/2
n

(
(p̂n1 , ..., p̂nk)′ − (pn1 , ..., pnk)′

)
 N (0, I) .

Theorem 2 states that growing and relatively sparse SUGMs are consistently es-
timable via easy estimation techniques: ones that are direct and trivially computable.

The proof of the theorem involves showing that under the growing and sparsity
conditions the fraction of incidentally generated subnetworks vanishes for each `, and
so the observed counts of subnetworks converge to the true ones. Given that these are
essentially binomial counts, then, as the second part of the theorem states, a variation
on a central limit theorem applies and then normalized errors in parameter estimation
are normally distributed, and we know the rates at which the parameters converge
to their limits. For inference and tests of significance for single parameter values we
note that analytic estimates of the variances are directly computable from the analytic
expression of the diagonal of the variance matrix. Of course, more complex inferential
procedures and tests can be executed through a standard parametric bootstrap as the
model is easily simulated.
34In sparse networks, LT (g) would be vanishing relative to

(
n
2
)

and so could be ignored. And typically,
in sparse networks, SnL(g) will be well approximated by y`

(
n
m`

)
, where y` is the number of possible

different subgraphs of type ` that can be placed on m` nodes (e.g., y` is 1 for a triangle, m for a star
on m nodes, etc.).
35This, of course, implies consistency. But given that the parameters might be converging to 0, the
ratio version is important.
36I is the k-dimensional identity matrix.
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To make the convergence rates concrete, consider the example with links and trian-
gles and let pT = a/n2 and pL = b/n. These are well within the bounds that would
be needed to satisfy sparsity, but provide an example of a realistic level of sparsity
that satisfies our conditions for asymptotic normality. Then one can check the inciden-
tal generations for triangles is op(n1/2), which means that the fraction of incidentally
generated triangles is op(n−1/2). Here, the normalization D means that the errors on
link estimation will be of order n−1/2 and on triangle estimation of order n−3/2, and so
parameter estimates converge very quickly.

Again, we emphasize that although the estimator here is based on binomial approx-
imations, a SUGM still incorporates interdependencies directly through the subgraphs
that are generated. The results make use of the fact that in sparse settings, the picture
of interdependencies is clear and are measured by the statistics one-by-one.

5.3. An Algorithm for Estimating SUGMs without Asymptotic Sparsity.
As the sparsity results are asymptotic, a natural question to ask is whether there

exist finite-sample corrections to help estimation. Moreover, it may be that sparsity is
not satisfied at all, and we might still be interested in estimation. Specifically, given
that in practice incidental statistics could be generated, albeit with probability tending
to zero in a sparse case, it is useful to have techniques for estimating SUGMs to correct
for bias of using the observed counts. For instance, Figure 3 showed that while there
were S̃nU = 23 truly generated unsupported links and S̃nT = 9 truly generated triangles,
the researcher counts SnU = 22 unsupported links and SnT = 10 triangles.

We now describe an algorithm. The idea behind the algorithm is that we create
a network by randomly building up subgraphs in a way that ends up matching the
observed network, and we keep track of how many truly generated subgraphs of each
type were needed to get to a network that matched the observed statistics.

In order to estimate the truly generated subnetworks of each type, S̃`(g), we carefully
construct a simulated network gsim and keep track of both its truly generated subgraphs
S̃`(gsim) and its observed subgraphs S`(gsim). We construct gsim to have S`(gsim) match
S`(g) as closely as possible, and then use its true subgraphs S̃`(gsim) to infer the true
subgraphs of g, S̃`(g).

Consider a SUGM with nicely-ordered subgraphs indexed by ` ∈ {1, . . . , k}. The
algorithm is described for the case where it is presumed that subgraphs of type k (the
smallest subgraph - links in most models) cannot be incidentally generated by other
subgraphs.37

Algorithm
0. Start with an empty graph g0

sim and set counts S`(gsim2) = 0 and S̃`(g0
sim) = 0

for all `.
1. Place Sk(g) subgraphs uniformly at random (these will be links in most models).

Call the new network g1
sim. This may generate some incidental subgraphs.

Update counts of each S`(g1
sim) and S̃`(g1

sim) (with the latter only having truly
generated links so far).

37 If the smallest subgraphs can be generated incidentally (for instance if a model only included
triangles and cliques of size 4), then begin the algorithm at step t and treat subgraphs of type k
symmetrically with all other subgraphs (so drop the first part of step t).
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t. – If Sk(gt−1
sim) < Sk(g), then place Sk(g)−Sk(gt−1

sim) subgraphs down uniformly
at random. Call the new network gtsim and proceed to step t+ 1.

– Otherwise, pick subgraph of type ` with the minimal ratio S̃`(gsim)/S`(g).
Add one subgraph of type ` uniformly uniformly at random.38 Call the
new network gtsim and proceed to step t+ 1.

– If S̃`(gsim) ≥ S`(g) for all `, stop.
• The estimates are p̂` = S̃`(gsim)/S`(g).

To get the basic intuition behind the algorithm, consider a case with just links and
triangles. The algorithm takes advantage of the fact that links can generate triangles,
but not the other way around. First the algorithm generates unsupported links up to
the number observed in g. This might lead to some triangles, and lowering the number
of observed links. The algorithm then tops up the links and keeps doing so until the
correct observed number of links are present. If there are fewer triangles than in g, it
begins adding triangles one at a time (as they might incidentally generate more). At
each step, if the number of links drops below what are in g, then new links are added.
It continues until the correct number of links and triangles are obtained. It can never
overshoot on links, and may slightly overshoot on triangles, only by the incidentals
generated in the last steps.

There are many variations one could consider on the algorithm. For example, if one
is conditioning on various covariates, then there might be more than one type of link,
and since all types of links cannot be incidentally generated one can “top up” several
types of subgraphs and not just k. Thus, in step 1 instead of using just k above, one
might also use k − 1, etc., for however many types of links there are, and similarly for
the first part of step t.39

There are many other algorithms possible, and more generally a Method of Simulated
Moments (MSM) approach could also be taken. For that, one simply searches on a grid
of parameters, in each case simulating the SUGM and then picking p̂ as the parameter
which minimizes

p̂ := argmin
p

(
S(g)− Ep

[
S(gSim)

])′
C
(
S(g)− Ep

[
S(gSim)

])
.

5.4. The Relation between SUGMs and SERGMs.
We now show a relationship between SUGMs and SERGMs
Consider a model that is a variation on a SUGM where nature forms various sub-

graphs with a probability p` of a given subgraph g` ∈ Gn
` forming. The difference

between this model and the SUGMs defined above is mainly in terms of the accounting
convention: nature generates various subgraphs without worrying about whether they
38Add it uniformly at random out of candidate subgraphs that are not already a subgraph of some
existing subgraph of gt−1

sim. For instance, if adding a triangle, only consider triangles that are not
already a subset of some clique of size 3 or more of the generated network through this step.
39 To fix ideas, consider a SUGM in which there are two types of triangles and two types of links that
are generated, accounting for covariates (as we will use in Section 7.1). For instance, links between
pairs of nodes that are ‘close’ in terms of the characteristics and pairs of nodes that are ‘far’, and
triangles involving nodes that are all ‘close’ and triangles that involve some nodes that are ‘far’ from
each other. The statistics that we count for a network g are: ST,C(g), ST,F (g),SU,C(g),SU,F (g), where
U is for unsupported links and T for triangle, and C is for ‘close’ and F is for ‘far’.
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overlap, so it could form a triangle and also form a link that already belongs to that
triangle. For instance, in a nicely ordered SUGM, if nature first formed triangles and
then links outside of triangles, if the triangle between nodes 1,2, and 3 was formed,
then the links 12, 23, 13, would not be added later. In this variation of a SUGM,
nature forms links and triangles without caring about overlap, so it might form the
triangle 1,2,3 and then also the link 12.

Estimating such models is again not difficult in the sparse case, as there will be
sufficient independent observations of different types of subgraphs that each parameter
can still be accurately estimated, and the above results extend. This formulation makes
it easier to relate to SERGMs.

It is useful to write the probability of a given subgraph g` ∈ Gn
` being generated as

taking a logistic form:

(5.2) p` = exp(θ`)
exp(θ`) + 1 ,

where θ` is some function of `.40 The formation of a given subgraph is independent of
other subgraphs. Again, let S̃` denote the count of truly generated subgraphs g` ∈ Gn

` .

Theorem 3 (SERGM Representations of SUGMs). Suppose that the probability that
subgraph of type ` forms is given by (5.2). This form of SUGM can be represented in
a SERGM form:

(5.3) Pn
β(S̃) =

Kn(S̃) exp
(
S̃ · θ

)
∑
s′ Kn(s′) exp (s′ · θ) ,

where Kn
` (s`) =

(
S
n
`
s`

)
and Kn(s) = (∏`K

n
` (s`)).

Theorem 3 provides a relationship between SUGMs and SERGMs. The two models
are closely related, although the statistics counted here are all of the actual subgraphs
(including overlaps) that nature generated, which can be estimated but not precisely
known.

Note that this also provides a reason why in specifying SERGMs it is useful to have
K’s that differ from the N ’s that correspond to some ERGM model. Here specific K’s
are natural and yet differ from an ERGM formulation.

A direct implication of Theorem 3 is the following, which provides a general result on
dynamic processes of network formation, where subgraphs are repeatedly considered
and added and deleted over time.

Corollary 1. Consider any dynamic process such that with probability one, each sub-
graph is considered infinitely often, and when a subgraph is considered it is added with
probability (5.2) if not already present and deleted with the complementary probability
if it is already present. The resulting dynamic process has a steady state distribution
given by (5.3).

40 We re-emphasize that through the indexing of ` we can encode the covariates of the subgraph X(g`)
.
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6. Extensions

6.1. Strategic/Preference-Based Random Network Models.
As we have discussed above, SERGMs and SUGMs admit models where both choice

and chance are important, and we describe a couple of examples to illustrate how
preferences of individuals over networks can be incorporated.

6.1.1. Mutual Consent Formation Models.
Here we describe a strategic network model that harnesses some of the power of

Theorem 2. The key aspect of the model is that decisions to link are not only bilateral
but instead multilateral: sub-groups of individuals decide whether or not to form
subgraphs. A pair of individuals may meet and decide (mutually) as to whether to add
a single link, but also a group of three (or more) may meet and decide whether to form a
some subgraph such as a clique or some other form (e.g., a ring, star, etc.).41 Moreover,
the probability that they form the subgraph could depend upon the characteristics of
the individuals involved.

Consider subgraphs g` ∈ Gn
` with associated individuals N(g`).

The members of N(g`) meet according to a random process and have the opportunity
to form g`. Both the probability with which the members meet and their preferences
for forming g` can depend on their characteristics X(g`) = (Xi)i∈N(g`).

There are certain aspects of the members’ characteristics, Hi(X(g`)), that affect i’s
benefits from the subgraph.42

There is a probability π` that a subgraph g` of individuals with characteristics X(g`)
meets and decides whether to form g`. So it might be more likely that individuals of
similar ages meet than ones with different ages.

Individual i obtains a utility43

Ui,`(X(g`)) = γ`,XiHi(X(g`))− εi,`
from the formation of a given subnetwork g`, where γ`,Xi depends on the subnetwork
in question and possibly on the characteristics of i and εi,` is a random idiosyncratic
term.

The subnetwork then forms conditional upon it having met if and only if Ui,`(X(g`)) ≥
0 for all i (say with at least one strictly positive).44 If the error term has an atomless
distribution, then the strictness is inconsequential. Let F`(·) be the distribution of

41For additional theoretical underpinnings of coalition-based network formation models see Jackson
and van den Nouweland (2005); Caulier et al. (2013).
42 For instance if X(g`) were a list of the individuals’ ages, then it might be that i’s bene-
fit from the subgraph is a function of i’s distance from the average characteristics: hi(X(g`)) =∥∥∥Xi −

∑
j 6=iXj/(m` − 1)

∥∥∥. It could also be that i benefits from the maximum value of X−i, or suffers
from variation in the characteristics. h can be tailored to the specific application and list character-
istics.
43Here we simplify notation by omitting the dependence of the utility on a given individual’s position
in the subnetwork. Everything stated here extends directly allowing utility to depend on position: for
instance, getting higher utility from being the center of a star rather than on its periphery, but the
notation becomes cumbersome.
44 This then corresponds nests pairwise stability as defined by Jackson and Wolinsky (1996), subject
to the meeting process. One can adjust this to take into account other rules for group formation, and
this also easily handles directed networks.
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error terms for the formation of subgraphs in Gn
` . So, the probability that a subgraph

g` ∈ Gn
` with characteristics X(g`) = (Xi)i∈N(g`) is formed is

(6.1) p` = π`
∏

i∈N(g`)
F` (γ`,XiHi(X(g`))) .

Let S`(g) denote the number of subnetworks in Gn
` (consisting of individuals with

characteristics X(g`)) that form in a network g, counted excluding networks already
counted as subset of some `′ < `, as under the well-ordered condition. Under the
conditions of Theorem 2, the SUGM in (6.1) is then easily estimated and consistent.45

It is important to note that such a formulation allows us to do welfare computations
and changes in welfare due to changes in, say, the distribution of X if they include
parameters that a policymaker may control - or it may be that a policymaker could
change the π function in some well-defined way by say, subsidizing interactions among
groups with certain sorts of characteristics who might tend to meet infrequently.

6.1.2. Strategic Network Formation and Potential Functions.
There is a nice connection between strategic network formation models and poten-

tial functions that spans a series of papers: Jackson and Watts (2001), Butts (2009),
Mele (2011), Badev (2013). For example, Butts (2009) and Mele (2011) show that
if links are recognized independently over time, and then added or deleted based on
individual choices according to a logistic function, then the steady-state distribution
can be represented as an ERGM. In those models, only one agent makes a decision at a
time and links must be directed. Here we generalize the set of models that are covered,
and also extend to allow for mutual consent. We also provide a directed version of the
formation model which generalizes the results of Mele (2011).

Agent i’s payoff from network g can depend on which subgraphs i is a member of,
as well as things such as to whom his or her neighbors are connected.

Let G denote some set of subgraphs from which agents derive utility.
Consider some agent i and a subgraph g` ∈ G that i is a member of, i ∈ g`. Let the

members of g` (including i) have a vector of characteristics described by X`. Agent i
gets some marginal payoff,

v(g`, X`),
from having this subgraph in the network where this function can depend on the type
of subgraph and the characteristics of all the agents involved in the subgraph.

Agent i’s utility from a network g is then
(6.2) ui(g) =

∑
g`∈G,i∈g`

v(g`, X`).

45 Although the probabilities of various subgraphs are directly estimable (and hence identified) under
the conditions of Theorem 2, of course whether the various parts of π`

∏
i∈N(g`) F` (γ`Hi(X(g`))) are

well identified depends on the specifics of the the functional forms involved. Just as an example,
consider a situation with two types. Set Xi = 1 if i is of type 1 and Xi = 2 if i is of type 2
and Hi(X) = Xi − Xj and consider m = 2. Then γ2 and −γ2 both lead to the same value of
F2 (γ2(Xi −Xj))×F2 (γ2(Xj −Xi)). So here it could not be judged whether the type 2 has a greater
expected utility (net of the random term) from the match than the type 1 or whether it is the
reverse. There are some obvious simplified formulations that allow for identification, for example
setting instead hi(X) = |Xi −Xj |. It might also require specifying a (nonlinear) functional form for
π` as in Currarini et al. (2010).
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Note that this allows the agent’s utility to depend on the presence of “friends of friends”
by including subgraphs of the form g` = {ij, jk}. Of course, it also allows agents’
payoffs to depend on direct links, cliques, and so forth.

Next, consider a network formation process where agents can form links in pairs and
they add the link whenever their mutual gain is positive. The idea is that they can
bargain and make side payments (either in cash or by exchange of favors) to add links
whenever those links are mutually beneficial.

In particular, a network g is to be pairwise stable with transfers if: 46

• ij ∈ g implies that ui(g) + uj(g) ≥ ui(g − ij) + uj(g − ij), and
• ij /∈ g implies that ui(g) + uj(g) ≥ ui(g + ij) + uj(g + ij).

For this setting, we can then define the following function f , which is a potential
function for network formation under pairwise stability with transfers:

(6.3) f(g) =
∑
g`⊂g

2v(g`, X`).

It follows that f(·) is a potential function for a network formation game that follows
pairwise stable with transfers. In particular, direct calculations show that for any g
and ij ∈ g:
(6.4) f(g)− f(g − ij) = (ui(g) + uj(g))− (ui(g − ij) + uj(g − ij)) .
Thus, the difference between the value that f assigns to g and what it assigns to g− ij
is exactly the sum of the differences that i and j assign to the two networks.

For any such setting, Theorem 1 in Jackson and Watts (2001) implies that there
exists at least one network that is pairwise stable with transfers, and moreover that
there are no cycles in the improving paths.47

Now let us describe a dynamic process of network formation. Let g0 be some starting
network, and let gt denote the network in place at the end of time t. Let gt−ij denote the
network of links other than ij. In each period, there exists some positive probability of
each given link being recognized (the two agents in question “meet”). The recognition
probabilities can depend on the pair in question and the network in place at the time
and the probability that link ij is recognized conditional on the network in place gt is
denoted p(ij, gt−ij).48

We emphasize that the meeting process is quite general as it is allowed to depend
on the attributes of the agents i and j as well as the network in question. Thus, for
example, it allows their meeting probability to depend on whether or not the pair
have friends in common, and can even depend on how many friends in common they

46This definition is from Bloch and Jackson (2006) and is related to the definition of pairwise stability
allowing for side payments that appears in the conclusion of Jackson and Wolinsky (1996).
47An improving path is a sequences of networks that differ from each other by one link such that if a
link is added or deleted then the pair of agents in the link see an increase in their summed utilities
from the change.
48Since each link probability could depend on the network other than the link ij, if each link’s
recognition probability does not exceed 1/

(
n
2
)

then the sum of all link recognition probabilities does
not exceed 1, and that leave the residual probability 1−

∑
ij p(ij, gt−ij) to be the probability that there

is no link recognized in the current period and the period simply advances. The scaling of probabilities
is irrelevant to the steady state of the process, and so it is fine to allow periods to pass without any
recognition.
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have, and can depend on any other aspect of the network, as well as the agents’
characteristics.

Once recognized at some time t, i and j decide whether to add or delete the link,
conditional upon the rest of the network in place at that time gt−1

−ij . The probability
that the link is added/kept is a logistic function of the mutual value of the link:49

(6.5)
exp

(
ui(gt−ij + ij) + uj(gt−ij + ij)

)
exp

(
ui(gt−ij + ij) + uj(gt−ij + ij)

)
+ exp

(
ui(gt−ij − ij) + uj(gt−ij − ij)

) .
This defines an aperiodic and irreducible Markov chain over the space of all networks,

and so it has a unique steady-state distribution. Moreover, it is a reversible Markov
chain and the unique steady-state distribution is given by50

P(g) = exp(f(g))∑
g′ exp(f(g′)) .

Thus, this is an ERGM:

P(g) =
exp

(∑
g`⊂g 2v(g`, X`)

)
∑
g′ exp

(∑
g`⊂g′ 2v(g`, X`)

) .
We can then rewrite ∑g`⊂g 2v(g`, X`) as a function that simply keeps track of statistics
of how many subgraphs of a network g are of a given form, (`,X`), denoted S`,X`(g).
This then has a SERGM representation:

P(s) = exp (∑` s`,X`2v`,X`)∑
s′ exp

(∑
` s
′
`,X`

2v`,X`
) .

We remark that link recognition probabilities do not enter the final steady-state dis-
tribution, which is only determined by the preferences as captured via the v functions.

6.1.3. Directed Network Formation.
Everything stated above has an analog for directed links ij where the decision to add

the link is taken by agent i (with stability defined by Nash equilibrium), and where the
subgraphs, g`’s, are directed. The only change is to drop the ‘2’ in the above formulas
and require that each agent obtain utility from each subgraph in which they direct
some link.51 The directed version of the above generalizes a result in Mele (2011).

49With a slight abuse of notation, we allow gt−ij+ij to denote the network where ij is present and
the network of other links is described by gt−ij , and similarly gt−ij−ij denotes the network where ij is
not present and the network of other links is described by gt−ij .
50We omit the standard proof as, for instance, it is a direct extension of the proof of Theorem 1 in
Mele (2011), noting that the link recognition probability can depend on gt−ij without affecting the
steps of his proof.
51The model can be specified to allow agents to derive utility from subgraphs in which they have some
“in-links” but no “out-links”, but can also allow them not to.
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6.1.4. Search Intensity Models.
Another interesting class of strategic/random network formation models that we can

extend to the setting here are where agents face overall costs of forming relationships -
not just costs associated with various subgraphs (as in the models above). To account
for such overall tradeoffs in the network formation processes, we can also include search
intensities as have been analyzed in various formation models such as Currarini et al.
(2009, 2010); Borgs et al. (2010); Golub and Livne (2010). Those models are of bilateral
link formation; but are easily extended to more general SUGMs as we briefly describe.

Each agent i with characteristicsXi puts in a search effort e(Xi,m,X) ∈ [0, 1] to form
cliques of size m with characteristics X. m = 2 indicates links, and so e(Xi, 2, (Xi, Xj))
is the effort that agent i expends in trying to form links with agents who have char-
acteristics Xj; and e(Xi, 3, (Xi, Xj, Xh)) is the effort that agent i expends in trying
to form triangles where the other two agents have characteristics Xj and Xh, and so
forth. “Effort” is simply a shorthand for either the time spent socializing in various
ways, or else it could simply indicate a relative openness to forming relationships of
various types.

An agent obtains a utility
u(Xi,m,X)

from being of type Xi in a clique of size m with characteristics X.
The probability that a given clique Clm forms depends on the vector of efforts for such

cliques of those in the clique, (ej(,m,X))j∈Clm , according to a function πm,X((ej(m,X))j∈Clm)
that is nondecreasing in each of its arguments.

An agent also pays a cost of network formation: c(Xi, (ei(m,X))m,X) that depends
on his or her characteristics Xi and the search efforts that he or she exerts in forming
various links and cliques, (ei(,m,X))m,X .

Thus, an agent i’s overall expected payoff as a function of the all of the agents’ efforts
is described by ∑

m,Clm:i∈Clm
πm,X((ej(m,X))j∈Clm)u(Xi,m,X)

− c(Xi, (ei(m,X))m,X)

In a case where the u’s are nonnegative, this defines a supermodular game: agent i’s
change in payoff from increasing any dimension of (ei(m,X))m,X is nondecreasing in
the vector of strategies (ej(m,X))j 6=i,m,X . In such games, pure strategy equilibria exist
and form a complete lattice (e.g., see Topkis (2001)). Additional conditions on π, u,
and c can ensure uniqueness of equilibrium, depending on the specific functional forms
that are used to parameterize the model, or one can appeal to equilibrium selection.52

Models of this structure thus define SUGMs, where the relative frequencies pm,X of
cliques of size m consisting of agents with characteristics described by the profile X.
Specifying functional forms for π, u and c then allows for estimation of parameters
of the model and of the equilibrium, provided the specification is tight enough to be
well-identified.

Although the above formulation is described for cliques, it is easily adjusted for any
subgraphs (for instance an agent may value being the center of a star with m agents).
52Here there are positive spillovers/externalities from strategies, and so generally the maximal equi-
librium will Pareto dominate the others, and so a standard refinement would be to look at the Pareto
efficient equilibrium which is then unique and pure (e.g., see Vives (2007) for some background).
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In the obvious extension one needs to keep track of the positions of the various types
of agents in the subgraph as there are then asymmetries in positions and, for instance,
agents might care about the characteristics of the agent at the center of a star.

6.2. Noise and Almost-Cliques.
Although observed social networks often exhibit significant clustering and numbers of

triangles significantly above what would be observed with independent link formation,
typically full cliques of larger sizes are rarer. One reason for a failure to see completed
large cliques is that small amounts of measurement error makes a clique exponentially
(in the number of links in the clique) less likely to be observed. We discuss a correction
for this.

Consider an example in which there is a probability ε > 0 that a data set fails to
exhibit any given link (independently across links) that is truly present. A clique of `
nodes has `(`− 1)/2 possible links. If it were present, then it would be fully observed
only with a probability that all of its links are observed, or (1−ε)`(`−1)/2. For example,
suppose that ε = .1. Then the probability that a clique of size 3 is observed without
any missing links due to measurement error is .73, while this drops to .53 for a clique
of size 4, to .35 for a clique of size 5, and to .21 for a clique of size 6.

Why is this an important issue? Suppose that the true model generates cliques of
size 3 and 4 in addition to links. The 27 percent of triangles that are missed due to
measurement error, will end up classified as two or fewer links, thus biasing downwards
the parameter on triangles and upwards that on links. The 47 percent of cliques of
size 4 that are missed, will generally contribute to increased observations of triangles
and links. For instance, deleting one link from a clique of size 4 makes it appear as
two cliques of size three. Taking two links out makes it either lead to a triangle plus
a link, or four extra links. This can substantially bias upwards the counts of triangles
and links.

There are two ways to deal with this, one more precise and the other easier but
less precise. The precise way to do this, is to model the error and include it in the
specification of a SERGM or SUGM. For example, given a SUGM with links, triangles
and cliques of size 4 together with probability ε of missing a link in the data, then the
probability of seeing a clique of size 4 becomes p4(1 − ε)6. The probability of seeing
a clique of size 4 less one link (under the sparsity conditions) becomes p46(1 − ε)5ε,
and the probability of seeing a clique of size 4 less two links (again under the sparsity
conditions) becomes p415(1 − ε)4ε2, and so forth. Thus, one can then consider the
following count statistics: links, two-stars, triangles, cliques of size 4 less two links,
cliques of size 4 less one link, and cliques of size 4, etc. Each of these has a well defined
probability given the original specified p2, p3, p4 and the ε. One can then estimate
these parameters (including the ε) using the SUGM techniques from our theorem.53

A less precise way to do correct for incomplete cliques is to simply count any structure
on ` nodes that has at least x``(` − 1)/2 links as a clique of size `, where x` ≤ 1 is
some adjustment factor. While a crude adjustment, this can still improve over ignoring
the issue altogether. For example, in a setting with links, triangles and 4-cliques, one
could make an adjustment by counting any configuration on four nodes with at least

53One then has to count these in a well-ordered way, so that triangles that are part of a 4-clique less
some links are not counted.
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4 links as a 4-clique, but then stick with counting triangles only if all three links are
present and they are not part of any modified 4 clique.

While measurement error is one possible way in which a clique could form with
missing links, another possibility is that the formation process is such that agents
choose which relationships to form, but have payoffs to cliques that allow them to
benefit from fewer than all links being present. Then allowing some noise in the
formation (either utility-based or trembles) would lead to some links in cliques not
forming. While different in interpretation, the techniques that account for such missing
links would be similar to that described above: simply directly accounting for the
probabilities that various subgraphs form. As SERGMs and SUGMs can already admit
arbitrary subgraphs as statistics, this would simply place additional restrictions on the
relationships between the probabilities of various subgraphs, but would otherwise use
similar estimation techniques as outlined in our results.

6.3. Measurement Error and Sampling. Suppose that a researcher only samples
half of the nodes of a given network. In using a SUGM, the probabilities of form-
ing various subgraphs project to the subset without any adjustment. That is, the
probability of forming a triangle on three nodes in the subsample is the same as the
probability of forming a triangle on three nodes in the overall population (accounting
for characteristics appropriately). The same is true for a count-SERGM. Thus, pa-
rameter estimates of probabilities of subgraphs can be obtained by examining those
on subgraphs without making any adjustments. From these estimates the researcher
can easily estimate (directly) the expected statistics that should appear in the overall
network, and so recreate missing data.54

6.4. Continuous Covariates.
For ease of exposition, we have focused on models in which covariates are captured

by indexing subgraphs by covariates. This encompasses covariates that take on a finite
set of values or are approximated by a finite set of values, and is a flexible approach,
although it may not work as well with fully continuous data that take on a wide range
of values.

Such continuous covariates can also easily be handled, as our models and results have
natural extensions to continuous covariates. Let us briefly discuss these extensions here
and refer the interested reader to Appendix C for full details.

We discuss the SUGM extension. Let node i be associated with a covariate vector
Xi that lies in a compact subset of Rd. Let the probability that a given subnetwork
g` ∈ G` forms be a function pn` (X`; γ) of the vector of node covariates, where γ is some
vector of parameters.

Estimating the parameters γ depends on the functional form of pn` (x`; γ). It could
take many forms, such as a linear probability model, a logistic form, etc. Consistency
and asymptotic normality of the estimators depend on the rate at which γ tends to
extremes – thereby affecting the probabilities of various subgraphs and their depen-
dence on covariate values. We provide some sufficient conditions for consistency and
asymptotic normality of the estimators in Appendix C.

54See Chandrasekhar and Lewis (2013) for further discussion on using this approach to deal with
sampled network data.
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7. Illustrative Empirical Applications

To illustrate the models we provide a few applications.

7.1. Network properties generated by SUGMs.
Our first illustration is to compare a simple model that estimates linking probabilities

based on node characteristics (caste and geography) with a SUGM that also includes
triangles. The idea is to compare how well these replicate various features of actual
networks, including features of the networks such as clustering, the size of the giant
component, average path length, degree distributions, and various eigenvalue properties
of the adjacency matrices.

For this exercise we use the Banerjee et al. (2013) data consisting of networks in
75 Indian villages. Here we focus on “advice” networks: where an edge represents
whether a household speaks to another household when having to make an important
decision. This is a simple representation of the informational network structure within
the sample of villages, and the networks are reasonably connected (with more than
two-thirds of the nodes being in a giant component) and yet also reasonably sparse for
small networks.

In addition to the average degree and clustering (which are at least partly captured
by links and triangles), we are interested in other quantities motivated by theory. We
look at the first eigenvalue of the adjacency matrix, which is a measure of diffusiveness
of a network under a percolation process (e.g., Bollobás et al., Jackson (2008)). A
related quantity is the spectral gap, which is the difference in the magnitudes of the
first and second eigenvalues of the adjacency matrix. This is intimately related to the
expansiveness of the network. We are also interested in the second eigenvalue of the
stochasticized adjacency matrix. This is a quantity that is key in local average learning
processes and modulates the time to consensus (DeMarzo et al. (2003), Diaconis and
Freedman (1981), Golub and Jackson (2012)). Additionally, we look at the fraction
of nodes that belong to the giant component of the network, as empirical networks
are often not completely connected. Finally, we consider average path length (in the
largest component).

Our procedure is as follows. For every village, we estimate each of two network
formation models. The first network formation model is a link-based model where the
probabilities can also depend on geographic and caste covariates. In particular, pairs of
household are categorized as either being “close” or “far” and then separate probabili-
ties of links are estimated for “close” and “far” pairs. “Close” refers to pairs of nodes
that are of the same caste and are below the median geographic distance (the median
GPS distance taken across all pairs of households), and “far” to those that either differ
in caste or are further than the median distance. The second network formation model
is a SUGM with the same structure except for the addition of triangles.55 We estimate
parameters for the village network for each model and then generate a random net-
work from the model based on the estimated parameters. We do 100 such simulations

55Similarly, we categorize triangles as being “close” if all nodes are of the same caste and all pairs are
below the median distance, and “far” otherwise.
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for each of the 3656 villages and for each of the two models. We then compare the
aforementioned network characteristics from the simulations with the actual data.

Table 1 presents the results. We find that networks simulated from the SUGM better
match the structural properties exhibited by the empirical Indian village networks than
those simulated from a link-based model.

Table 1. Network Properties

Data Link-based model 
with covariates

SUGM with links 
and triangles

SUGM with isolates, 
links and triangles

[1] [2] [3] [4]
Number of Unsupported Links 160.8 236.2 161.2 161.8
Number of Triangles 39.2 3.1 39.7 39.5
Average Degree 2.3243 2.3260 2.5916 2.5219
Number of Isolates 54.9722 25.7222 31.4444 65.9167
Average Clustering 0.0895 0.0105 0.1268 0.0829
Fraction in Giant Component 0.7061 0.8315 0.7982 0.6718
First Eigenvalue 5.5446 3.8578 4.6762 5.3025
Spectral Gap 0.9550 0.3354 0.6684 1.0617
Second Eigenvalue of Stochastized Matrix 0.9573 0.9632 0.9559 0.9069
Average Path Length 4.6921 5.6565 5.1215 4.1180

Notes: Column [1] presents the average value of various network characteristics across the 36 villages. Columns [2], [3] and [4] present simulation results. In a
simulation we first estimate parameters of a given model for a given village and then randomly draw a graph from the model with the estimated parameters. We run 100
simulations for each of the villages for each of the models and average across the simulations, and the entries report these averaged across the villages.  

None of the models 
are directly fit to 
any of these 
statistics.

Models are fit to 
different 
combinations of 
these statistics.

Both the SUGM and the link-based model do quite well for average degree. As
expected, the SUGM matches the triangle count and the unsupported link count (as
these are the statistics on which the model is based) whereas the link-based model
matches average degree quite closely (as this is the moment on which this model is
based).

Neither model is based on the remaining statistics. The first and most obvious thing
to note is that the link-based model does extremely poorly when it comes to matching
clustering while the SUGM does much better, which is natural given that the SUGM
explicitly includes triangles. More interestingly, conditioning on the triangles in the
SUGM is enough to deliver better matches on all of the other dimensions. For instance,
the link-based model considerably underestimates the first eigenvalue (3.86 as compared
to 5.54), whereas the SUGM performs better (4.68). Similarly, the link-based model
underestimates the expansiveness of the networks with a spectral gap of 0.34 instead
of 0.96. The SUGM again performs considerably better (0.67). These sorts of results
also hold true for the average path length, fraction of nodes in the giant component,
and the second eigenvalue of the stochasticized matrix.

Beyond these two models, we also fit a SUGM that includes isolates, in addition
to links and triangles. Not surprisingly, it fits isolates much better than either of the
previous models. The more interesting aspects are in the other features to which none
of the models are fit. Here we see that including isolates significantly improves, beyond
the improvement from triangles, the fits on clustering, the size of the giant component,
the first eigenvalue, and spectral gap. Accounting for isolated nodes changes the density
among remaining nodes in ways that better match the overall structure of the network.
The dimension on which it does not perform as well is that it worsens the fit on
the second eigenvalue (the homophily measure). However, that is likely because the
56Because we have both complete GPS and caste data for only 36 villages, we restrict attention to
these in our analysis.
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model is not sufficiently geared towards the covariates that affect segregation, and
so densifying the remaining network reduces segregation. Including a richer set of
covariates into the model would help counter-act that, but is beyond our illustrative
purposes here.

We also examine distributional outcomes. In Figure 4, we show CDFs of node degrees
and clustering. The CDFs from the empirical data are computed as follows. For every
village, we compute the degree and clustering coefficient for each 5th percentile from 5
to 95. We then average these values across the villages in our sample. The simulated
CDFs are computed by taking the analogous cross-village average from simulated data
as described in Table 1. For parsimony, we compare only the isolates-links-triangles
SUGM and the links-based model.

Figure 4a shows the degree distributions. The SUGM does considerably better than
the links-based model in matching the entire degree distribution. Specifically, the links-
based model undershoots both the lower and upper tails of the degree distribution,
despite hitting the average correctly. The SUGM, though slightly overshooting the
average degree, better matches the distribution overall.

Figure 4b shows the distribution of clustering coefficients. The link-based model is
unable to generate any non-trivial clustering and essentially has a degenerate distri-
bution (the short red curve in the upper left). The SUGM generates a distribution
similar to the data, significantly outperforming the link-based model.

(a) Average CDF of Degree (b) Average CDF of Clustering Coefficient

Figure 4. Distributions of degree and clustering coefficients - averaged
across the 75 villages. The figure displays the CDFs from the data (grey),
the isolates-links-triangles SUGM (blue), and the link-based model (red).

The results of the analysis in this section are not sensitive to the covariates included.
That is, it is not simply that the SUGM allows for more parameters that enable it to
better match the data. It is that it includes richer network structures. In Appendix F,
we enrich the links-based model to include polynomials of a large set of demographic
covariates including geographic distance, caste composition, quality of access to elec-
tricity, quality of latrines in the household, number of beds, number of rooms, etc. We
show that the links-based model, even aided by a considerable amount of data and
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more degrees of freedom, cannot replicate structural features of the network that are
captured by very simple SUGMs that rely on minimal amounts of covariate data.

It is perhaps not surprising that SUGMs do a much better job at recreating network
structures that standard link-based models, but nonetheless it is important. Moreover,
the fact that the SUGMs do a better job than a link-based model of recreating not only
local clustering and triangle patterns but also many other features of the real networks
that it is not based upon suggests that there is substantial value added of modeling
the formation of triangles and isolates.

7.2. Links across social boundaries.
Individuals are associated with groups and identities that can lead to strong social

norms about interactions across groups. For instance, in much of India there are still
strong forces that influence if and when individuals form relationships across castes.

Here we further illustrate our models in answering the question posed at the begin-
ning of this paper: Are people significantly more likely to form cross-caste relationships
when those links are unsupported (without any friends in common) compared to when
those links are supported with at least one friend in common? The SERGM/SUGM
statistical framework allows us to look at whether individuals have significantly higher
ratios of cross caste relationships over within-caste relationships when those relation-
ships are unsupported compared to when they are supported. The idea is that cliques
of three more more may dictate greater adherence to a group norm which individuals
are able to avoid in isolated bilateral relationships.

To analyze this, we examine data from the 75 Indian villages mentioned above. We
work with two caste categories: the first consists of people in scheduled castes and
scheduled tribes and the second consists of those people in any other caste. Scheduled
castes and scheduled tribes are those defined by the Indian government as being dis-
advantaged. This is a fundamental caste distinction over which the strongest cultural
forces are likely to focus. Additional norms are at work with finer caste distinctions,
but those norms are more varied depending on the particular castes in question while
this provides for a clear caste barrier.

The SUGM that we analyze is defined as follows.57 Individuals may meet in pairs or
triples and then decide whether to form a given link or triangle. The link is formed if
and only if both individuals wish to form the link, and a triangle is formed if and only
if all three individuals wish to form it.

In particular, there are probabilities, denoted πL(diff), πL(same), that a given link
has an opportunity to form (that the pair of people involved meet and can choose
to form the relationship) that depend on the pair of individuals being of different
castes or of the same caste, respectively. Similarly, there are probabilities, denoted
πT (diff), πT (same), that a given triangle has an opportunity to form (that the three
people involved meet and can choose to form the relationship) that depend on the triple
of individuals being of all the same castes or two of the same and one of a different
caste.

Preferences are similarly described. Let pL(same) be the probability that an individ-
ual will desire to form a link with an individual of the same caste group, and pL(diff)
be the probability that an individual will desire to form a link with an individual of a

57We could use either SERGMs or SUGMs, here.
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different caste group. Correspondingly, let pL(same) be the probability that an indi-
vidual will desire to form a triangle when all individuals are of the same caste group,
and pT (diff) be the probability that an individual will desire to form a triangle when
it consists of people from both caste groups.

The hypothesis that we explore is that pT (diff)/pT (same) < pL(diff)/pL(same) so
that people are more reluctant to involve themselves in cross-caste relationships when
those are “public” in the sense that other individuals observe those relationships; with
a null hypothesis that they are equal pT (diff)/pT (same) = pL(diff)/pL(same).

Note that the probability that a “same” link forms is

PL(same) = pL(same)2πL(same)

as it requires both agents to agree, and the probability that a “different” link forms is

PL(diff) = pL(diff)2πL(diff).

Similarly, the probability that a “same” triangle forms is

PT (same) = pT (same)3πT (same)

and a “different” triangle forms is

PT (diff) = pT (diff)3πT (diff),

where the cubic captures the fact that it takes three agreements to form the triangle.
The difference in the exponents reflects that it is more difficult to get a triangle to form
than a link. Hence, to perform a careful test, we have to adjust for the exponents as
otherwise we would just uncover a natural bias due to the exponent that would end up
favoring cross-caste links.

Another challenge in identifying a preference bias is that it could be confounded
by the meeting bias. Thus, we first model the meeting process more explicitly and
show that it should produce an bias towards making triangles relatively more likely to
be cross-caste than links. Thus, our test is conservative in the sense that if we find
cross-caste links relatively more likely, that is evidence for a (strong) preference bias.

Consider a meeting process where people spend a fraction f of their time mixing in
the community that is predominantly of their own types and a fraction 1− f of their
time mixing in the other caste’s community. Then at any given snapshot in time, a
community would have f of its own types present and 1− f of the other type present,
as depicted in Figure 5.

Having two randomly picked nodes bump into each other within a community, there
is a f 2+(1−f)2 probability of the nodes being of the same type, and a 1−(f 2+(1−f)2)
probability of them being of different types.58 Thus, the relative meeting frequency of
different type links compared same type links is

πL(diff)
πL(same) = 1− (f 2 + (1− f)2)

f 2 + (1− f)2 .

For triangles, picking three individuals out of the community at any point in time
would lead to a f 3 + (1 − f)3 probability that all three are of the same type, and

58 To keep things simple, we consider equal-sized groups, but the argument extends with some ad-
justments to asymmetric sizes.
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Community A Community B

(a) Individuals all on own-
community side of river

Community A Community B

(b) Fraction f = 1
4 mixed

across communities

Figure 5. A geographically driven meeting process such that individu-
als spend 3/4 of their time in their own community are thus more likely
to meet their own kind.

1− (f 2 + (1− f)2) of them being of mixed types, and so
πT (diff)
πT (same) = 1− (f 3 + (1− f)3)

f 3 + (1− f)3 .

It follows directly that for f ∈ (0, 1):

(7.1) πT (same)
πT (diff) <

πL(same)
πL(diff) .

So different type triangles are more likely to have opportunities to form under this
random mixing model than different type links. In particular, note that

pT (diff)
pT (same) <

pL(diff)
pL(same) if and only if

(
PT (diff)
PT (same)

πT (same)
πT (diff)

)1/3

<

(
PL(diff)
PL(same)

πL(same)
πL(diff)

)1/2

.

In summary, given (7.1), a sufficient condition for pT (diff)
pT (same) <

pL(diff)
pL(same) is that

(PT (diff)/PT (same)) < (PL(diff)/PL(same))3/2.

Figure 6 shows the results. For the bulk of villages, cross-caste relationships rel-
ative to within-caste relationships are more frequent as isolated links as opposed to
being embedded in triangles, even when adjusting for the fact that triangles take more
consent. The difference is significant well beyond a 99.9 percent confidence level.59

In the left panel of Figure 6 villages are color coded by the relative sizes of the two
caste-based groups. The red villages are such that one of the two caste designations
dominates the village and the other group is relatively small, while the blue villages
are ones in which the two caste designations are more balanced in terms of sizes. In
other contexts, homophily has been found to be strongest when groups are evenly
59This is from doing a conservative nonparametric test: under the null hypothesis the number of
villages for which the ratio is less should be 1/2 with a binomial distribution on the number above or
below.
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Figure 6. Comparison of the relative propensity to form cross-caste
versus same-caste relationships for triangles (vertical axis) compared to
links (horizontal axis). The propensity is lower for triangles than links
in a significant number of villages, even when adjusting link propensities
downwards by raising them to the 3/2 power to adjust for the number
of consents needed to form the subgraphs. The color coding on the left
panel distinguishes those villages that have above/below the median size
minority group.

balanced (e.g., see McPherson et al. (2001); Currarini et al. (2009, 2010)). Here we see
that the social pressures against mixed-caste triangles are stronger when the two caste
designations are more evenly balanced.

7.3. Multigraphs and motives for linking.
Does the fact that two agents borrow and lend money to each other make it more

likely that they will also seek advice from each other, or engage in other sorts of
relationships? Is it more likely that pairs of agents who have multiple relationships
with each other will be embedded in cliques?

These questions involve multigraphs, and asks whether different sorts of relationships
are dependent upon each other and on network features. The observation that different
types of relationships that individuals have with each other may be interdependent
dates back to Simmel (1908). Our SERGM and SUGM models extend directly to
multigraph settings in obvious ways, as we illustrate in the application below.

We begin by presenting three basic theories for multiplexing in social relationships
and then employ our techniques to investigate them in data.

First, there may be a fixed cost of forming relationships. Conditional on having
established one relationship with another person, it is cheaper to construct the second
relationship. That is, if i is willing to link to j to borrow kerosene/rice, then it might
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be cheaper to for i to also establish a social link with j. Decreasing marginal costs
after a first relationship would lead individuals to tend to form multiple relationships
with other individuals rather than many single relationships with different individuals.

Second, decisions of individuals to form relationships depend on their compatibility
and characteristics. To the extent that compatibility is driven by characteristics beyond
those quantified in a data set, pairs of individuals’ decisions to form relationships could
be correlated even after controlling for all observable characteristics. Thus, if i and j
lend each other kerosene and rice, then they are likely to be “compatible,” which then
suggests that they are more likely to have social and other links together.

Third, is what we call a support theory based on incentives for informal favor ex-
change. In such a theory there are two ways to support the exchange of costly favors.
One way is to have frequent enough favor exchange so that it is in each individual’s
interest to provide favors whenever his or her friend asks for one. In this way, an
isolated pair of individuals who have multiple relationships (exchanging various types
of favors, etc.) can sustain more favor exchange. This theory is thus based on com-
plementarities between relationships: the value of one type of relationships provides
additional incentives to perform in other types of relationships thus enhancing the
value of those other relationships. Another source of incentives to exchange favors is
to embed that exchange in a clique. If some individual in a clique fails to provide a
favor when asked, then all of the other individuals in the clique collectively punish the
agent by not providing favors future favors to that individual. The embedding in a
clique provides the additional incentives necessary to motivate costly favor provision.60

Thus, the leverage needed to incentivize the provision of favors comes either through
building valuable multi-level bilateral relationships, or else by embedding the exchange
within cliques with more individuals, or both. Under this theory, it should be rare to
see favor exchange between two individuals who do not share multiple relationships
and do not have friends in common.

To examine these theories, we use the framework outlined in Section 3.3. We again
use the data collected across 75 Indian villages collected by Banerjee et al. (2013). The
specific usefulness of the data is that it includes multigraphs including various forms
of favor exchange links (whether households borrow or lend kerosene, rice, money,...)
and social links (whether household members visit each other socially, go to temple
together, ...). Favor exchange links indicate whether households borrow/lend kerosene,
rice from/to each other and social links indicate whether members of a household visit
members of another household or receive these members as guests.61

Let us first distinguish between the first two theories: the fixed cost theory and
compatibility theories. To do this we examine multiplexing of supported links (those
in cliques) to those that are not supported. Under a theory of fixed costs of link-
ing, multiplexing would have no reason to depend on whether links are supported or
not, while under a theory of compatibility (based on unobserved characteristics) mul-
tiplexing would be more likely when links are supported then when they are not. In
particular, under compatibility, if i and j both have links to k, then that indicates that

60For more on this, see Jackson et al. (2012).
61For the purposes of our analysis, we use all 75 Indian villages and construct networks at the household
level. We build undirected, unweighted multigraphs with two link types (where a link of a given type
is present if either household claimed that type of relationship with the other).
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they are both compatible with k, for instance sharing common characteristics. In that
case, i and j are more likely to share common characteristics with each other than if
they were not both linked to some common k, and thus are more likely to have high
multiplexing. Unsupported links are more likely to have arisen spuriously and are thus
less likely to be multiplexed.

Table 2. Support and Multiplexing

Fraction that are Multiplexed  

Supported Multiplexed
Supported or 
Multiplexed

Supported Unsupported Difference

Favor 0.7303 0.7688 0.9210 0.7945 0.6991 0.0954***
Social 0.6828 0.5594 0.8327 0.6132 0.4436 0.1696***

Difference 0.0376*** 0.2094*** 0.0883*** 0.1813*** 0.2555*** -0.0742***
Notes: Two households have a favor link if they borrow/lend material goods such as kerosene or rice to/from each other.  Two 
households have a social link if they have members that visit each other's households.

Fraction with Designated Property

The data are consistent with the compatibility theory but not with fixed cost theory,
as seen in the last column of Table 2: the difference between the fraction of supported
links that are multiplexed and the unsupported links that are multiplexed is significant
and positive for both favor and social links.62 This does not necessarily mean that fixed
costs are not at play, but that fixed cost theory cannot be the sole explanation for the
high levels of multiplexing.

Next, we consider the support theory. Under that theory, favor exchange links should
be more likely to either be embedded in triangles or multiplexed than social links.63

Indeed, as seen in Table 2, more than 92 percent of favor links are either supported or
multiplexed, while the same is true of only 83 percent of the social links.64 Moreover,
when looking at unsupported links, favor exchange links are almost 26 percent more
likely to be multiplexed than social links, which is consistent with the theory. This
difference is not predicted by either the fixed cost or compatibility theories.

The analysis shows that neither fixed cost nor compatibility theories could account
for the data alone or in combination, while support theory could.65 It is possible that
all three theories have some role in what is going on, and so what we learn from
the analysis is that neither a fixed cost nor a compatibility theory can account for
all aspects of the data, and that there are significant differences between the support

62All of the differences in the table are significant beyond the 99 percent level.
63Social links might still involve some favor exchange, so the prediction is valid only to the extent
that there are some social relationships that do not involve some sort of favor exchange.
64Of course, social links could include things like sharing of information and other sorts of favors, and
so some of those links might not be purely hedonic and might require some support or multiplexing
to function as well.
65Support theory would suggest that the percentage of favor links that are supported or multiplexed
should be 100 percent. There are three possible reasons why the number is only 92 percent. One is
measurement error. A second is that there are other types of relationships that are not included here.
A third is that some favor exchange might be frequent enough between a pair that it is self-sustaining
without any support or multiplexing.
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and multiplexing of favor exchange versus social links and so incentives seem to be an
integral part of the story consistent with support theory.66

This exercise of counting supported links and unsupported links separately and di-
rectly is legitimized under our SUGMs, in which all of the three theories are embedded.

8. Conclusion

We presented two new classes of models of network formation, SERGMs and SUGMs,
based on the idea that network formation is driven by the properties of a network
and/or by the formation of various subgraphs. This turns the focus away from the
network as the unit of analysis, and instead focuses on its properties, subgraphs and
statistics. This perspective allows us to develop direct estimation techniques and to
derive results concerning consistency and asymptotic distributions of the estimators.
Given the growing literature on estimation of network formation, such results are es-
sential.

Models of network formation, such as those described here, can be useful beyond
simply studying network patterns, such as in situations where network features are
drivers of economic behaviors. For example, farmers may be significantly more likely
to learn to use a new farming technology in one network than another, and so influ-
encing the network of communication among farmers could be useful. SERGMs and
SUGMs, can help us understand the drivers of network formation and thus which sorts
of interventions might lead to improvements in network features of interest. Moreover,
it is apparent that accounting for endogeneity of networks is important in studying
peer influence (e.g., Aral et al. (2009); Goldsmith-Pinkham and Imbens (2013); Jack-
son (2013); Lindquist and Zenou (2013)) and so having practical models of network
formation is useful beyond direct estimation.

It is important to emphasize that our models can easily simulate networks. This
can be difficult (impossible) for standard ERGMs. Here, our work suggests several
avenues. First, in the case of sparse networks, the SUGMs are perfectly suited for easily
generating networks: the model directly translates into an algorithm for generating
networks by generating various subnetworks. Second, in the case of SERGMs, the
models are well-adapted to generating statistics of networks, even though in some
cases it might be difficult to generate the networks themselves. For example, if some
profile of statistics S is generated, then randomly picking a network g that exhibits
statistics exactly S can be a hard problem. This suggests a third avenue in line with
our interpretation of SUGMs. Instead of viewing S as the realized statistic of the
network, nature forms a network by forming subnetworks, even when they are dense.
So, the S profile of generated subnetworks is picked by nature based on the SERGM.
This will generate some incidental subnetworks, and so a different observed S ′ from S,
but is still a perfectly well-defined model for generative purposes.67

66There are other patterns in the data that the three theories yield no predictions about, which present
interesting questions for future research.
67In fact, by simulating such processes one can estimate the relationship between S′ and S which
can then be used for estimation purposes when networks are not sparse, similar to the algorithm we
provide for SUGMs. We leave the general treatment of such algorithms and estimations for future
research.
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Also, given our results, a researcher can use variations of standard approaches of
model selection to deduce which statistics to incorporate in a SERGM or SUGM.
Consider the following example. Suppose that a researcher is interested in developing
a model that captures the density, homophily, and clustering in an observed network.
An objective function can be built where a model’s score is based on the total difference
between its predictions of the relevant statistics (under best-fit parameters) and the
observed statistics; and, as is commonly done, a penalty can be included for the number
of parameters in the model. Then one can examine SUGMs that incorporate various
subsets of characteristic-based links, triangles, larger cliques, isolated nodes, and so
forth, and check to find which model minimizes the objective function and is thereby
selected.

Finally, we note that the approach we have taken can be further extended. In
fact, once one adopts a SERGM formulation, many other sorts of applications beyond
networks, such as matching problems, partitioning problems, club membership and
others can also be incorporated.
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Appendix A. Proofs

Proof of Theorem 1.
Consider a sequence of count statistics Sn = (Sn1 , . . . , Snk ) whose `-th entry takes

on nonnegative integer values with some maximum value S
n
` → ∞, and the count

SERGMs specified with Kn(s) = ∏
`

(
S
n
`
s`

)
.

(A.1) Pβ (Sn = s) =
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`

(
S
n
`
s`

)
exp (βn · s)∑

s′∈An
∏
`

(
S
n
`
s′
`

)
exp (βn · s′)

.
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We rewrite (A.1) as

(A.2) Pβ (Sn = s) =
∏
`

[(
S
n
`
s`

)
exp (βn` s`)

]
∑
s′∈An
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`

[(
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s′
`

)
exp (βn` s′`)

] .
If we consider the distribution conditional on Sn lying in

Bn =
∏
`

{bEβn
`
[Sn` ](1− ε)c, . . . , bEβn

`
[Sn` ](1 + ε)c} ⊂ An

(for large enough n under the not conflicted condition), then we can write

Pβ (Sn = s|s ∈ Bn) =
∏
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Next, we consider binomial distributions which we will relate back to the above
expressions for the SERGM.

For each `, consider a binomial distribution that has pn` =
Eβn

`
[Sn` ]

S
n
`

, with range from
0 to Sn` . Taking a product of independent binomial distributions
(A.4)
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] .
The corresponding probability that S̃n = s given s ∈ Bn can be written as

(A.5) PBin
(
S̃n = s|s ∈ Bn
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For a binomial distribution, the probability that S̃n` ∈ Bn
` → 1. Thus, under inde-

pendent binomial distributions, the probability that S̃n ∈ Bn → 1, and so it follows
from (A.4) and (A.5) that

(A.6)
PBin

(
S̃n = s|s ∈ Bn

)
PBin

(
S̃n = s

) =
∑
s′
`
∈[0,Sn` ]

(
S
n
`
s′
`

)
exp (βn` s′`)∑

s′
`
∈Bn

`

(
S
n
`
s′
`

)
exp (βn` s′`)

→ 1,

uniformly for s ∈ Bn.
Collecting from (A.2) and (A.4) it follows that for s ∈ Bn

(A.7) Pβ

(
S̃n = s

)
≥ PBin

(
S̃n = s

)
.

Collecting from (A.3) and (A.5) it follows that for s ∈ Bn

(A.8) PBin
(
S̃n = s|s ∈ Bn

)
= Pβ

(
S̃n = s|s ∈ Bn

)
.
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Then (A.7) and (A.8) and the fact that Pβ

(
S̃n = s|s ∈ Bn

)
≥ Pβ

(
S̃n = s

)
, together

with (A.6), imply that

(A.9)
Pβ

(
S̃n = s

)
PBin

(
S̃n = s

) → 1,

uniformly for s ∈ Bn.
The remainder of the claimed results then follows easily from standard properties of

the binomial distribution (see also, Lemma E.1).
In particular, the variance terms are computed as follows. First consider a bi-

nomial Bin(pn` ;n) with pn` n → ∞. By the Lindeberg-Feller Central Limit Theorem√
n (p̂n` − pn` ) N (0, pn` (1− pn` )) . Letting βn` = g (pn` ) = log pn`

1−pn
`
, note

g′(p) = 1
p

+ 1
1− p = 1

p(1− p) .

Finally, by the delta method,
√
n
(
β̂n` − βn`

)
 N

(
0, pn` (1− pn` ) [g′(pn` )]2

)
and therefore observing that pn` = expβn`

1+expβn
`

, pn` (1 − pn` )
[

1
pn
`

(1−pn
`

)

]2
= 1

pn
`

(1−pn
`

) and sub-
stituting for βn` , we have

√
n
(
β̂n` − βn`

)
 N

0, 1
expβn

`

1+expβn
`

(
1− expβn

`

1+expβn
`

)
 .

This argument replacing n with S̄n` shows the result.

Proof of Theorem 2. We provide the proof without covariates to save on notation,
but it extends directly. We begin the proof by showing the following. For any `, the
fraction of counts of subnetworks ` generated incidentally by some other subnetworks
goes to 0. That is, consider some ` and g` ∈ Gn

` on m` nodes. Let

p̃n` = E(S̃n` )
yn`
(
n
m`

) .
This is no more than pn` , as the denominator includes all possible subgraphs of size `
(where yn` is the number of subgraphs of type ` that can be formed on any given m`

nodes).68 Let us consider the probability zn` that g` is incidentally generated by other
subnetworks.

We show that zn` /p̃n` → 0, which implies that zn` /pn` → 0.
Consider g` ∈ Gn

` and an incidentally generating subclass (`j, hj)j∈J .

68Here we provide the proof that applies without subgraphs being characteristic dependent. The
extension to characteristic dependent subgraphs is straightforward simply by adjusting all numbers
to reflect possible networks with given node characteristics as dependent on n and the sets of nodes
that have particular characteristics as a function of n, but it is notationally much more intensive.
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We show that the probability zn` (J) that it is generated by this subclass goes to zero
relative to p̃n` , so that zn` (J)/p̃n` → 0 for each J , and since there are at most M` ≤ km`

such generating classes, this implies that zn` /p̃n` → 0.
For a subnetwork in Gn

`j
, the probability of getting at least one such network that

has the hj nodes out of the m` in g` is no more than69

yn`j

(
n

m`j − hj

)
p̃n`j ≤ yn`jn

m`j−hj p̃n`j .

Thus,
zn` (J)
p̃n`

≤
Πj∈Jn

m`j−hjynj p̃
n
`j

p̃n`
.

Therefore
zn` (J)
p̃n`

≤
Πj∈Jy

n
j n

m`j p̃n`j

n
∑

j
hj p̃n`

.

Recall that MJ = ∑
j∈J hj −m` and that M ≥ 1 (since |J | ≥ 2 and each set of hj

intersects with at least one other set of hj′ for some j′ 6= j).
Therefore

zn` (J)
p̃n`

≤
Πj∈Jy

n
`j
nm`j p̃n`j

nMJnm` p̃n`
.

The numerator is of the order Πj∈JE(Snj ) while the denominator is of the order nMJE(Sn` ).
Under the sparseness condition,

Πj∈JE(Sn`j)
nMJE(Sn` ) → 0,

and so we have verified the claim.
To finish the ratio consistency proof, note that the claim then implies that Ŝn` (g)

Sn
`
→

1. Thus, dividing top and bottom by S
n

` (g), it follows that p̂n` (g)
Sn
`
/S

n
` (g) → 1. Given

the growing condition and properties of the binomial distribution, it also follows that
Sn` /S

n
` (g)

pn
`
→ 1, and so p̂n` (g)

pn
`
→ 1.

Next, note that the above also implies that the distribution D1/2
n (p̂n1 (g), ..., p̂nk(g))′

converges to the distribution of D1/2
n (p̃n1 (g), ..., p̃nk(g))′, where p̃n` (g) = Sn` /S

n
` (g).

The asymptotic normality of the (joint) distribution then follows from the usual
Linderberg-Feller central limit theorem applied to triangular arrays of binomial random
variables. This applies under the growing conditions of the theorem.70

69This is a loose upper bound as it simply adds the probability that each possible one forms - but
becomes more accurate as the probability of any one occurring vanishes.
70 Let X1T , ..., XTT be a triangular array of Ber(pT ) random variables and pTT → ∞ (as under the
growing condition). To apply the Lindeberg-Feller central limit theorem for triangular arrays, we
check the Lindeberg condition: for any ε > 0,

1
TpT (1− pT )

∑
t≤T

E
[
X2
t 1
{
|Xt| ≥ ε

√
TpT (1− pT )

}]
= o(1).

The condition is implied by the fact that TpT → ∞, and from the sparsity conditions which imply
that pT is bounded away from 1.
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Proof of Theorem 3.
Let Gn denote the set of all possible subgraphs in the model:

(A.10) Gn = ∪`Gn
` .

Letting G be the set of subgraphs that are truly formed, we can write

P(G) =
∏
g`∈G

exp(θ`)
exp(θ`) + 1

∏
g` /∈G

1
exp(θ`) + 1 .

This can be rewritten as

P(G) =
exp

(∑
g`∈G θ`

)
∏
g`∈Gn (exp(θ`) + 1) .

Note that ∏
g`∈Gn

(exp(θ`) + 1) =
∑
A⊂Gn

(
exp(

∑
`

|A ∩Gn
` |θ`)

)
.

Given that the number of A’s that have counts s′ ∈ ∏`{0, . . . , S
n
` } is exactly∏

`

(
S
n
`

s′`

)
,

it follows that∏
g`∈Gn

(exp(θ`) + 1) =
∑

s′∈
∏
`
{0,...,Sn` }

(∏
`

Kn
` (s′`)

)
exp(

∑
`

s′`θ`),

where Kn
` (s′`) =

(
S
n
`
s′
`

)
. This means that we can write

(A.11) P(G) = exp (∑` |Gn
` ∩G| · θ`)∑

s′∈
∏
`
{0,...,Sn` } (∏`K

n
` (s′`)) exp (∑` s

′
`θ`)

.

Note that there are Kn
` (S̃) different collections of truly generated subgraphs G that

have the same value S̃ and that each is equally likely. Thus

(A.12) P(S̃)
Kn
` (S̃) exp

(∑
` S̃` · θ`

)
∑
s′∈
∏
`
{0,...,Sn` } (∏`K

n
` (s′`)) exp (∑` s

′
`θ`)

,

which is the same as (5.3), which completes the proof.

Appendix B. A Useful Lemma on SERGM Statistic Domains

Lemma B.1. Consider a SERGM with associated Pβ(s) as described in (3.1) and
consider any ε > 0. Suppose that for each β in some set B there exists Aβ such that
Pβ(Aβ) ≥ 1− ε. For each s let As = ∪β∈B:s∈AβAβ. Letting

Pβ (s) = KS(s) exp (βs)∑
s′∈As KS(s′) exp (βs′) ,

it follows that for any β ∈ B and s ∈ Aβ:
1

1− ε ≥
Pβ (s)
Pβ (s) ≥ 1.
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Proof of Lemma B.1.
Let

P̂β (s) = KS(s) exp (βs)∑
s′∈Aβ KS(s′) exp (βs′) .

Since Pβ(Aβ) ≥ 1− ε, it follows that
1

1− ε ≥
∑
s′ KS(s′) exp (βs′)∑

s′∈Aβ KS(s′) exp (βs′) ≥ 1.

this implies that for any β and s ∈ Aβ:
1

1− ε ≥
P̂β (s)
Pβ (s) ≥ 1.

Note also that for any β and s ∈ Aβ
P̂β (s) ≥ Pβ (s) ≥ Pβ (s) .

The claimed result follows from the last two sets of inequalities.
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Appendix C. Online Appendix: Extension to Continuous and
Interdependent Covariates

We consider an environment in which nodes draw covariates that can be continuous
and even interdependent. Then, based on their characteristics, they form a graph
via the SUGM process. We are interested in estimating both probability functions as
well as possible parameters which may correspond to random utility foundations (e.g.,
coefficients in a logistic regression term).

Environment. Every node i ∈ {1, ..., n} draws a d-dimensional covariate vector xni ∈
X . For simplicity we let X = ∏d

k=1 [xL,k, xH,k] be a d-dimensional product of intervals
of R.71 We assume x`x′` has full rank along the sequence. For expositional simplicity
in our proofs we considering a sequence of fixed-regressors, x`,n where n indexes the
sequence. Clearly stochastic regressors can be accomodated.

Example C.1. Let xni = (1, uni ), where uni ∈ [0, 1] such that the design matrix carries
full rank. In the simulation exercise corresponding to this example, we will draw them
as independent U [0, 1] random variables.

SUGM Formation. Given characteristics, the n nodes engage in a SUGM graph
formation process. The realized data sequence consists of a triangular array of random
graphs and covariate vectors drawn from a random field {(gn, (xn1 , ..., xnn)) : n ∈ N}.
The researcher observes this for a given n and a given realization.

Specifically, consider a set of nicely ordered statistics (Sn` ) again with each statistic
counting subgraphs H` with m` nodes, where the statistics S` do not condition on
covariates. We are therefore counting, for instance, 4-cliques, triangles (not in 4-
cliques), and unsupported links.

A group of size m` forms with a probability pn` (x`,j; γ`) which depends on some
function of the m` individuals’ characteristics and a parameter γ`, whose value in
theory may depend on n.72

To make things concrete, examples of pn` (x`; γ) include:
(1) a linear probability model with uniform link function pn` (x`,j; γ`) = γ′`,nxj,`,

(2) a logistic regression model pn` (x`,j; γ`) = exp(γ′`,nxj,`)
1+exp(γ`,nxj,`)

,
for j ∈ {1, ..., S`(g)}. It should be clear that there are any number of examples here
that could be used and the choice is up to the modeler’s discretion as to what best
describes the nature of the problem at hand.

A truly generated object is a subgraph on m` nodes that is generated in the `th
phase independently with probability pn` (x`,j; γ`). Incidental generation may occur and
the union is the graph gn.

The group-level characteristic, x`, is of course a function of individual level charac-
teristics: x`,i1,...,im` = f` (xi1 , ...., xi`). For example, f` (xi, xj) = |xi − xj|.

71We will allow these covariates to be interdependent. The substantive assumption we need to make
is that the sequences of design matrices and have full rank.
72It is easy to modify this such that f` = f`,i so that every node makes its own decision to be in the
group or not, and its covariates are not treated symmetrically with the other m` nodes.
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Example C.1. [Continued] The sequence of graphs gn are triangles and links-based. A
triangle forms with probability defined by log-odds

log pnT (xT ; γT )
1− pnT (xT ; γT ) = γ′0,n,TxT = (α0,n,T , β0,T )xT

where xT = (1, uT ) and uT = (|ui − uj|+ |uj − uk|+ |uk − ui|)/3.
A link forms with probability

log pnL(xL; γL)
1− pnL(xL; γL) = γ′0,n,LxL = (α0,n,L, β0,L)xL

where xL = (1, uL) and uL = |ui − uj|/2.
Pairs and triples that are further in covariate space are less likely to link.

Estimation. The above defines a well-defined network-generation process. As before,
we need a relative sparsity condition to hold so that when we count a structure, with
probability approaching one it was not incidentally generated. Here we provide a
sufficient condition for relative sparsity hold as the continuous covariates vary. The
condition is that given m` nodes, no matter what the value of each covariate is among
these nodes, the probability of forming the subgraph isomorphic to H` shrinks at the
same as n grows to infinity. This will ensure the relative rate of incidentally generated
objects is unaffected by the particular values of the covariates.73

Lemma C.1. Given a growing sequence of graphs with associated covariates and co-
variate space X , and probability functions pn` (x`; γ`) smooth in both arguments,

min
x1,...,xm`∈X

m`
pn` (x`; γ`) = O

(
max

x1,...,xm`∈X
m`
pn` (x`; γ`)

)
.

If relative sparsity is satisfied at xi = 1 for all i, then relative sparsity is satisfied for
any sequence of covariates.

Proof. We can always replace incidental generation probabilities with their maximal
values over the covariates, the truly generating probability with its minimal probability.
These are all of the same order as when evaluated with xi = 1 by hypothesis.

Of course this isn’t the only condition to maintain relative sparsity, but it may often
be a natural condition to assume.

We now show properties of estimators from the two examples of pn` (x`; γ`) we have
discussed.

73Such an assumption excludes the possibility that individuals who are close in wealth are more
likely to form pairs than triads for wealth levels below some threshold but beyond this threshold it is
when individuals are far from others in wealth that pairs are more likely to form than triads. (More
specifically, in this example a wealth covariate should not be used, but rather, a wealth covariate with
an indicator for whether individuals are below or above the threshold must be used.)
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Linear Probability Model. Consider the linear probability model discussed above:
pn` (x`; γ`) =

∑
k

γk` xk,`, k = 1, ..., d

where γk0,n,` → 0 as n→∞. It is straightforward to check that the following is true.

Theorem C.1. Assume ‖γ0,n,`‖1 = Θ(1/nm`−h`) with 0 < h` < m` and the h` are such
that relative sparsity condition is satisfied. Then

√
nm`+h` (γ̂ − γ0,n,`) N (0, V )

where V = plim 1
nm`

(x′`x`)−1( nh`
nm`

x′`ε`ε
′
`x`) 1

nm`
(x′`x`)−1.

We omit the proof, which is entirely standard. We get super-consistent rates as the
parameters are going to zero rapidly, but not too rapidly so that a central limit theorem
still applies. Because relative sparsity applies, only a vanishing proportion of `-objects
are incidentally generated.

Logistic Regression. We turn to our main example where pn` (x`,j; γ`) is given by a
logistic link function. In all that follows γ0,n consists of elements that are either order
constant or tending to −∞. The rates will be set in the assumptions.

Theorem C.2. Assume that ‖γ0,n‖1 · supx∈X ‖x‖∞ . h` · log nm` for 0 ≤ h` < m`.
Additionally, assume that relative sparsity holds. Then

J1/2
n (γ̂` − γ0,`,n) N (0, Id) .

Proof. Follows from Lemma C.3. The first hypothesis of the lemma is the same as that
in Lemma C.2 and is assumed here for each `. Additionally, assumption (2) of Lemma
C.3 follows from relative sparsity. Relative sparsity implies that the h` are ordered such
that for every ` share of incidentally generated `-th objects goes to zero, corresponding
to the number of incidentals being on the order of Op(zn,` · nm`) in Lemma C.3.

This means that the rate of convergence of the parameters governing the probability
is given by

√
nm`−k` where 0 < h` < m` tunes the sparsity of the model.

Example C.1. [Continued] Consider αn0,L = log(1/n0.7) and αn0,T = log(1/n1.75), β0,L =
−2 and β0,T = −3. Then triangles form at order 1/n1.75 and links at order 1/n0.7. The
theorem shows that all parameters have estimators that are consistent and, in the case
of links, are asymptotically normally distributed at

√
n1.3-rate and

√
n1.25-rates (for

links and triangles, respectively).

For some intuition as to why this works, first consider the case of a triangular array of
n i.i.d. Bernoulli random variables distributed with probability pn ↓ 0 at a rate Θ(1/nh)
for 0 < h < 1. Then the log odds is given by log p

1−p = αn where αn = −h log(C ·n) for
some constant C > 0. It is easy to show by the Lindeberg-Feller central limit theorem
for triangular arrays that in this case

√
n

(
p̂n − pn√

pn

)
 N (0, 1)
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provided pnn → ∞. This implies that √npn (α̂− αn) =
√
n1−h (α̂− αn)  N (0, 1).

This follows from observing that αn will be consistent74 and by the delta method√
n

pn
(α̂− α) N

0,
[
∂p

{
log pn

1− pn

}]2
 = N

(
0, p−2

n

)
which implies √npn (α̂− α) N (0, 1) .

Next we offer an intuition for why this works with a finite set of discrete covariates.
Let log p(x)

1−p(x) = αn + βx for x in some finite discrete set. It is clear that repeating the
above argument delivers the same rate of convergence at every covariate value.

We now consider the general case. The data consists of a triangular array {(yi,n, xi,n) :
n ∈ N} where yi,n is a binomial outcome governed by pn(xi,n; γ0,n). To conserve on no-
tation let qin = p (x′inγ0n) and put Jn = ∑

i≤n qin (1− qin)xinx′in. Under the maintained
assumptions it will be the case that nh

n
Jn

P−→ J .

Lemma C.2. Assume that ‖γ0,n‖1 · supx∈X ‖x‖∞ . h · log n for 0 ≤ h < 1. Then,

J1/2
n (γ̂n − γ0n) N (0, Id).

Equivalently, the result implies that
√
n1−h (γ̂n − γ0n) N (0, J−1). This shows the

sub-
√
n rate of convergence.

Observe that in the example where qin ∝ exp(α0n + β0win), then this corresponds to
α0n = log(C · n−h) where 0 ≤ h < 1 and some constant C > 0. More generally, the
requirement ensures that the parameter (times covariate value) does not diverge too
rapidly so that a central limit theorem can be applied.

Proof of Lemma C.2. The result is an extension of/corollary to Theorem 5.2 of
Hjort and Pollard (1993). The convexity-based argument allows consistency and as-
ymptotic normality to be argued in one step. Consider the random convex function

An (s) =
∑
i≤n

log fi
(
yin, γ0n + J−1/2

n s
)
− log fi (yin, γ0n)

This is minimized by s = J1/2
n (γ̂n − γ0n).

This can be expressed as

An (s) = U ′ns−
1
2s
′s− rn (s)

where75

Un = J−1/2
n

∑
i≤n

(yin − qin)xin  N (0, I) ,

which applies by a Lindeberg-Feller central limit theorem for triangular arrays, as
minx qi(x) = Θ(maxx qi(x)) = ω(1/n) by hypothesis on γ0,n, x`, and the Bernoulli

74 |α̂− α| =
∣∣∣log p̂n

1−p̂n
− log pn

1−pn

∣∣∣ ≤ {( 1−p̄n
p̄n

)(
1

(1−p̄n)2

)}
|p̂n − pn| .p

|p̂n−pn|
p̄n

= Op

(√
1
npn

)
→ 0.

75Observe that J−1/2
n =

√
n1−h

(
nh

n

∑
i≤n qin (1− qin)xinx′in

)−1/2
.
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probability. Meanwhile

rn (s) =
∑
i≤n

1
6qi (1− qin) · ηi

(
s′J−1/2

n xin
)
·
(
s′J−1/2

n xin
)3
.

The proof of Theorem 5.2 of Hjort and Pollard (1993) shows rn(s)→ 0. This exploits
that λn := maxi≤n

∣∣∣J−1/2
n xin

∣∣∣→ 0, which holds by the fact that the covariates live in a
compact set (making clear that this isn’t a tight assumption).

Observe that because of relative sparsity, incidental generation is small. Therefore,
for most of the data the preceding result directly applies. However, for a vanishing
proportion of m`-tuples, the structures are present due to incidental generation. This
can be written in the notation of the preceding lemma by saying that some of our n
data points are “invalid”, but the probability that an observation is invalid is bounded
by zn ↓ 0 at a fast enough rate. Note that relative sparsity directly implies this.

Lemma C.3. Assume the hypotheses of Lemma C.2. Assume either
(1) every observation that is zero become independently invalid with probability at

most zn ↓ 0, or
(2) an Op(zn · n) share of observations become invalid, with zn ↓ 0.

Then the conclusion of Lemma C.2 holds.

Proof. Clearly the second condition is implied by the first, so we only prove the former.
Without loss of generality let 1, .., n∗ denote the set of valid observations and n∗+1, ..., n
the valid observations. Note that n∗ is random and is Op (znn).

Un = J−1/2
n

∑
i≤n

(yin − qin)xin = J−1/2
n

∑
i≤n∗

(yin − qin)xin +
∑

n∗<i≤n
(yin − qin)xin

 .
Observe that

nh

n

∑
n∗<i≤n

qin (1− qin)xinx′in = nh

n
znn = op (1) .

This implies

J−1/2
n

∑
i≤n

(yin − qin)xin =
nh
n

∑
i≤n∗

qin (1− qin)xinx′in + nh

n

∑
n∗<i≤n

qin (1− qin)xinx′in

−1/2

×
√
nh

n

∑
i≤n∗

(yin − qin)xin +
∑

n∗<i≤n
(yin − qin)xin

 .
Thus nh

n

∑
i≤n∗

qin (1− qin)xinx′in + nh

n

∑
n∗<i≤n

qin (1− qin)xinx′in

−1/2
P−→ J−1/2.
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Meanwhile, we have ∑i≤n∗ (yin − qin)xin = Op

(
1√
n1−h

)
and to complete the argument

1
√
znn

∑
n∗<i≤n

(yin − qin)xin = 1√
n1−k

∑
n∗<i≤n

(yin − qin)xin = Op (1) , where k = h+ δ

=⇒ O

(
1√
n1−h

) ∑
n∗<i≤n

(yin − qin)xin = O

(
1√

n1−k+δ

) ∑
n∗<i≤n

(yin − qin)xin

= O

(
1
nδ/2
· 1√

n1−k

) ∑
n∗<i≤n

(yin − qin)xin

= Op

(
n−δ/2

)
= op (1)

showing the result.

Example C.1. [Continued] Recall we have set αnL = log(1/n0.7) and αnT = log(1/n1.75),
βL = −2 and βT = −3. Let n = 100. Then the average degree is 3.75, the average
clustering is 0.14, the fraction of nodes in the giant component is 92% and the maximal
eigenvalue of the adjacency matrix is 5.5. Thus, the resulting graph is comparable in
structure to the empirical data.

We then run 200 simulations of this process where we generate a graph and then esti-
mate the model parameters via sequential logistic regressions. First we regress whether
a triple exists on a constant and the triad-level covariate over all

(
n
3

)
observations to get

(α̂bT , β̂bT ), for simulation b = 1, ..., 100. Second, on the unused ij pairs not in triangles
we regress whether a link exists on a constant and the pair-level covariate which is a
logit on all

(
n
2

)
observations less used pairs. From this we get (α̂bL, β̂bL) for b = 1, ..., 100.

The results are displayed in Figure 7.

(a) Links parameter (b) Triads parameter

Figure 7. Displays the distribution of estimated parameter value as
well as the median 95% confidence interval from a simple logistic regres-
sion.

We show that the parameters are correctly centered and exhibit good coverage prop-
erties.
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Appendix D. Online Appendix: Isolates, Links, Triangles Example

Here we perform some additional diagnostic exercises around the Statnet ERGM
estimation from Section 2.1.1.

First, we randomly generate networks that have exactly 20 isolates, 45 links and 10
triangles on 50 nodes. Thus, the statistics of the networks are identical, and only the
location of the links and triangles changes. Any two networks with exactly the same
statistics should lead to exactly the same parameter estimates as they have exactly
the same likelihood under all parameter values. Thus, the only variation comes from
imperfections in the software and estimation procedure. As illustrated in (Figure 8),
although there is slightly less noise in the parameter estimates, they still cover similar
ranges and exhibit similar features as those in Figure 1, and have similar difficulties in
the standard error calculations.

(a) Isolate Param-
eter Estimates

(b) Link Parame-
ter Estimates

(c) Triangle Pa-
rameter Estimates

Figure 8. Standard ERGM estimation software (Statnet) output for
1000 draws of networks on 50 nodes, each having exactly 20 isolated
nodes, 45 links, and 10 triangles. The red lines (on top of each other)
are the median left and right 95 percent confidence interval lines (not
capturing 95 percent of the estimates). Networks with identical statistics
should lead to identical parameter estimates: all of the variation comes
from imprecisions in the estimation procedure.

Second, we report the distribution of the statistics from the simulated networks
(Figure 9) - they are fairly tightly clustered about the mean values.

Next, for each of the 1000 simulated networks, using the parameter estimates we
simulate a network using Statnet’s simulation command. We then check whether the
simulated networks come anywhere close to matching the original networks. Although
most of the networks turn out to have nearly 20 isolates, they generally have thousands
of links and triangles. Figure 10 looks nothing like the counts from the original networks
(Figure 9).

Simulating a network from an ERGM is even a more daunting task than estimating
parameters from one, as there is no obvious network from which to seed the simulation
procedure, and again there are far too many from which to calculate likelihoods. This
is another advantage of SUGMs and count SERGMs, which are easily simulated.
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(a) Number of Isolates (b) Number of Links (c) Number of Triangles

Figure 9. For the 1000 simulated networks we report the distribution
of the number of isolates, links and triangles.

(a) Number of Isolates (b) Number of Links (c) Number of Triangles

Figure 10. For each of the 1000 simulated networks, using the pa-
rameter estimates from Statnet we simulate a network using Statnet’s
simulation command. The resulting distribution of the number of iso-
lates, links and triangles are pictured here. They do not match the
networks that generated them, which are pictured in Figure 9.

(a) Estimated pI : p̂I (b) Estimated pL: p̂L (c) Estimated pT : p̂T

Figure 11. For each of the 1000 simulated networks, we solve for
estimated probabilities of isolates, links and triangles for a SUGM as
defined in (2.5).
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(a) Estimated θI : θ̂I (b) Estimated θL: θ̂L (c) Estimated θT : θ̂T

Figure 12. For each of the 1000 simulated networks, we solve for esti-
mated SERGM parameters for isolates, links and triangles for as defined
in (2.6).

Appendix E. Online Appendix: Additional Consistency Results

General Consistency Results. Consider a sequence of SERGMs (Sn, Kn
Sn , An, β

n)
as defined in (3.1).

A sequence of SERGMs is expectations-identified with respect to a sequence of di-
agonal matrices Cn > 0 with positive diagonal entries if there exists γ > 0 such that

|CnEβ[Sn]− CnEβn [Sn]| > γ |β − βn|

for all n.76

Expectations identification is an intuitive condition that requires that different pa-
rameters distinguish themselves with different means. It is a sort of minimal condition
since if two different parameter values generate very similar expected statistics, then
observing the realized statistic will not allow us to distinguish the parameters.

A sequence of SERGMs is concentrated with respect to a sequence of diagonal ma-
trices Cn > 0 with positive diagonal entries if

Cn(Sn − Eβn [Sn]) P−→ 0 for βn ∈ B,
where B is a set of admissible parameters.

The concentration condition requires that there is some normalization (Cn) for which
the statistics will concentrate around their means. As we have not scaled statistics we
have to allow for some renormalizations.77

Note that the choice of Cn in the following theorem links them across the two con-
ditions. To guarantee concentration there has to exist a sequence of Cn that goes to
0 fast enough, while to guarantee expectations identification they cannot go to 0 too
quickly. So, the Cn’s identify the rate at which the statistics approach their means.
The key to verifying consistency is then seeing whether there exists such sequences for
which both conditions hold simultaneously.

76Here the subscript notation Eβ [Sn] indicates that the expectation takes the probability to be spec-
ified by (3.1) with parameters (Sn,Kn

Sn , An, β).
77Notice that the exponential term in the associated likelihood can be written exp (S′β) =
exp

(
S′CnC

−1
n β

)
and we are interested in the associated parameters β, not C−1

n β which will typi-
cally trail off to infinity at polynomial rates in n.
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Proposition E.1. If a sequence of SERGMs (Sn, Kn
Sn , An, β

n) is expectations-identified
and concentrated with respect to some Cn, then the random vectors are consistent so
that

|β̂n(Sn)− βn| P−→ 0.

The proof of Proposition E.1 is relatively routine.
It is also useful to state a ratio version of Proposition E.1 to address cases where

parameters are, for instance, close to 0. Thus, we wish to have a stronger notion
of consistency, not only requiring that the estimator approaches the true parameter,
but that it does so in terms of a ratio. This requires corresponding definitions of
concentration and identification that are ratio based. We do this in Proposition E.4.

The result is fairly tight in that a version of a converse holds as well. In particular,
the following result holds.78

A sequence of SERGMs (Sn, Kn
Sn , An, β

n), is rate-expectations-identified with rates
given by a sequence of diagonal matrices Cn > 0 with positive diagonal entries if there
exist γH > γL > 0 such that

γH |β − βn| > |CnEβ[Sn]− CnEβn [Sn]| > γL|β − βn|
for all n.

Rate-expectations-identification is a condition that says that the sequence of diagonal
matrices Cn accurately captures the rate at which the expected statistics Eβ[Sn] nears
Eβn [Sn]| as we let the vector of parameters β approach βn.

Proposition E.2. If a sequence of SERGMs (Sn, Kn
Sn , An, β

n) is rate-expectations-
identified with rates Cn, then the random vectors are consistent (|β̂n(Sn)−βn| P−→ 0) if
and only if the sequence is concentrated with respect to βn and the same sequence Cn.

Below, we also discuss a characterization of consistency in terms of variance of the
statistics in greater detail. The argument is similar to those for standard estimators,
e.g. Amemiya (1973): For consistency, we need enough variation so that the system
accumulates information and concentrates around its mean. This corresponds to need-
ing the norm of the variance matrix tending to infinity, just as we would in typical
regression-like applications.

Proof of Proposition E.1. Recall that the MLE β̂n(s) is the β that solves
s = Eβ[Sn].

Thus, since concentration implies that

Cn(Sn − Eβn [Sn]) P−→ 0,
it follows that

Cn(E
β̂n(Sn)[S

n]− Eβn [Sn]) P−→ 0.
Given that expectations identification implies that

|Cn(Eβ[Sn]− Eβn [Sn])| > γ|β − βn|
78We state a version for Proposition E.1, and the analog for ratio-consistency of the type in Proposition
E.4 in the appendix is left to the reader.
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for all n, it follows that
|β̂n(Sn)− βn| P−→ 0

as claimed.

These results can be rephrased in terms of standard properties of extremum estima-
tors and identifiable uniqueness.79

Proposition E.3. If a sequence of SERGMs (Sn, Kn
Sn , An, β

n) satisfies concentration,
rate-expectations identification, and the βn all lie in a compact set, then |β̂n(Sn) −
βn| P−→ 0.

Proof of Proposition E.3. Let
mn (β) := Cn (Sn − Eβ [S]) .

The objective function is Qn(β) := mn(β)′mn(β).
First, we want to show that the moment function satisfies a uniform law of large

numbers: supβ∈B ‖mn (β)‖ = op (1). By concentration, we have pointwise convergence
of mn (β) to zero in probability. Therefore, we need to only check stochastic equicon-
tinuity: that for every η > 0 there is a δ > 0 with

P
(

sup
‖β−β′‖<δ

|mn (β)−mn (β′)| > η

)
< η.

A sufficient condition (Andrews, 1994) is if a Hölder condition is satisfied:
|mn (β)−mn (β′)| ≤ Xn · ‖β − β′‖

whereXn is someOp (1) random variable. This is directly guaranteed by rate-expectations
identification with Xn = γH .

Second, one can check that expectations identifiability guarantees identifiable unique-
ness. Together with compactness of B, this implies the above implies that β̂ is consistent
for βn.
Proof of Proposition E.2. Recall that the MLE β̂n(s) is the β that solves

s = Eβ[Sn].
Given Proposition E.1, we need only show that if consistency holds then concentration
must also hold.

Given that rate-expectations identification implies that
an|Eβ[Sn]− Eβn [Sn]| < γH |β − β0|

for all n, it follows that if if consistency holds so that

|β̂n(Sn)− βn| P−→ 0,
then it must be that

an|E
β̂n

[Sn]− Eβn [Sn]| P−→ 0.

79Following, e.g., Gallant and White (1988), we say the sequence βn is identifiably unique on B if
lim inf

n→∞
inf

β∈Bβn (ε)
Q0,n(βn)−Q0,n(β) > 0.
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This implies that
an|Sn − Eβn [Sn]| P−→ 0,

which implies concentration.

Ratio Convergence Results. A sequence of SERGMs (Sn, Kn
Sn , An, β

n) is ratio-
expectations-identified with respect to a sequence of diagonal Cn with positive diagonal
entries if there exists γ > 0 such that∣∣∣∣∣ Cn

hhEβ[Snh ]
Cn
hhEβn [Snh ] − 1

∣∣∣∣∣ > γ

∣∣∣∣∣ βh
(βn)h

− 1
∣∣∣∣∣

for all n and h.
A sequence of SERGMs (Sn, Kn

Sn , An, β
n) is ratio-concentrated with respect to a

sequence of diagonal Cn with positive diagonal entries if
Cn
hhS

n
h

Cn
hhEβ0 [Snh ] − 1 P−→ 0

for each h.

Proposition E.4. If a sequence of SERGMs (Sn, Kn
Sn , An, β

n) is ratio-expectations-
identified and ratio-concentrated with respect to a sequence of diagonal Cn with positive
diagonal entries, then β̂n(Sn)h

(βn)h
P−→ 1 for each h.

Proof of Proposition E.4. Again, recalling that the MLE β̂n(s) is the β that solves

s = Eβ[Sn].

Thus, since ratio-concentration implies that
Cn
hhS

n
h

ECn
hh
βn [Snh ] − 1 P−→ 0

it follows that
Cn
hhEβ̂n(Sn)[S

n
h ]

Cn
hhEβn [Snh ] − 1 P−→ 0.

Given that ratio expectations identification implies that

| C
n
hhEβ[Snh ]

Cn
hhEβn [Snh ] − 1| > γ| βh(βn)h

− 1|

for all n, h, it follows that
β̂n(Sn)h

(βn)h
− 1 P−→ 0

or
β̂n(Sn)h

(βn)h
P−→ 1,

as claimed.
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Relationship with Binomial Models.
We now discuss some conditions for consistency from the perspective of a binomial

distribution. Consider the probability distribution defined over
{

0, ..., X̄n

}
by

Pβ (Xn = x) = Kn (x) · exp (β · x)∑
x′ Kn (x′) · exp (β · x′) .

We can ask under what assumptions on {Kn (·)}n∈N does β̂ P−→ β? It may seem odd
first that a single draw along a sequence of distributions can generate a consistent
estimation. However, we observe that we can transform this distribution into one that
resembles a reweighted binomial distribution:

(E.1) Pβ (Xn = x) =

(
X̄n
x

)
· exp (β · x+ λn (x))∑

x′

(
X̄n
x′

)
· exp (β · x′ + λn (x′))

,

where λn(x) := log (ωn(x)) := log
(
Kn(x)/

(
X̄
x

))
.

This comes from the fact that Pβ (Xn = x) = (X̄nx )·exp(β·x)∑
x′ (X̄nx′ )·exp(β·x′)

is the distribution

corresponding to the probability distribution of a binomial, Bin
(
X̄n; p = expβ

1+expβ

)
. In

turn, assumptions on λn (x) will allow for consistency of the MLE of β.

Lemma E.1. β̂ :=
exp sn

S̄n

1+exp sn
S̄n

be the MLE in the above model. Assume ωn (·) is such that

covBin(X̄n;p) (x, ωn (x)) = o
(

EBin(X̄n;p) [ωn (x)]
)

uniformly in a compact neighborhood of p. Then β̂
P−→ β.

Proof. First the normalizing constant can be written as

φ (β) =
EBin
p [ωn (s′n)]
(1− p)S̄n

.

This follows from(
S̄n
sn

)
· exp

(
log

(
p

1− p

)
· sn + λn (sn)

)
=
(
S̄n
sn

)
·
(

p

1− p

)sn
× ωn (sn)

and therefore∑
s′n

(
S̄n
s′n

)
· exp

(
log
(

p

1− p

)
· s′n + λn (s′n)

)
=
∑
s′n

(
S̄n
s′n

)
·
(

p

1− p

)s′n
× ωn (s′n) =

EBinp [ωn (s′n)]

(1− p)S̄n
.

Second, the maximum likelihood estimator solves the FOC of

sn log
(

p

1− p

)
+ log (1− p)S̄n − log

(
EBin
p [ωn (s′n)]

)
,

given by

0 = sn
p

p (1− p) + sn
1− p

p (1− p) −
S̄n

1− p −
∂pEBin

p [ωn (s′n)]
EBin
p [ωn (s′n)] .
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The parameter p̂ is therefore given implicitly by

p̂ = sn

S̄n
−
∂pEBin

p [ωn (s′n)]
EBin
p [ωn (s′n)] ×

1
1− p̂ .

Third, observe that

∂pEBin
p [ωn (s′n)] = 1

p (1− p)EBin
p

[{
s′n − pS̄n

}
ωn (s′n)

]
,

which follows from

∂pEBin
p [ωn (s′n)] =

∑
s′n

(
S̄n
s′n

)
· ∂p

{
ps
′
n (1− p)S̄n−s

′
n

}
× ωn (s′n)

=
∑
s′n

(
S̄n
s′n

)
· ps′n (1− p)S̄n−s

′
n × ωn (s′n)×

s′np −
(
S̄n − s′n

)
1− p


= 1

p (1− p)EBin
p

[{
s′n − pS̄n

}
ωn (s′n)

]
.

Thus

p̂ = sn

S̄n
−

EBin
p̂

[{
s′n − pS̄n

}
ωn (s′n)

]
EBin
p̂

[ωn (s′n)] × 1
1− p̂ .

Under the assumed condition that supp′∈Bδ(p)
covBin(S̄n;p′)(s,ωn(s))

EBin(S̄n;p′)[ωn(s)]
= o (1), the result fol-

lows.

A Characterization of Consistency in terms of Variance.
We provide an alternative characterization of consistency of SERGMs in terms of

the variance of the statistics.
We say that a SERGM is expectations-identified if β′ 6= β implies that Eβ[S] 6=

Eβ′ [S].
For simplicity, we present the univariate case, though the multivariate case follows

simply by controlling the norm of the covariance matrix instead.

Proposition E.5. Consider an expectations-identified SERGM.
(1) For any ε > 0 such that ε ≤ varβ [S]

maxβ′∈[β−ε,β+ε] |k3
β′ (S)| ,

Pβ

[
|β̂(S)− β| > ε

]
≤ 4
ε2varβ(S) .

(2) Conversely, let B > 0 be such that varβ[S] ≤ B and |S − Eβ′ [S]| ≤ BEβ′ [|S −
Eβ′ [S]|] for all β′ within 1

(B+1)B of β. Then

Pn
β

[
|β̂n(S)− β| > 1

3(B + 1)B

]
>

1
2B − 1 .
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Consider a sequence of expectations-identified SERGMs indexed by the number of
nodes n. We say that the sequence is consistent at β if there are sequences εn → 0 and
rn →∞ such that

Pn
β

[
|β̂n(S)− β| > εn

]
<

1
rn
.

Corollary E.1. Consider a sequence of expectations-identified SERGMs indexed by
the number of nodes n.

(1) If varnβ[S]→∞ and Skewn
β[S]→ 0, then the sequence is consistent at β.

(2) Conversely, if there is some B > 0 such that varnβ[S] ≤ B and |S − En
β′ [S]| ≤

BEn
β′

[∣∣∣S − En
β′ [S]

∣∣∣] for all β′ within 1
(B+1)B of β for large enough n, then the

sequence is not consistent.

To see an implication of this result, consider a SERGM defined on a count of “large”
subgraphs, for instance the number of components that contain some given percentage
of the nodes. The variance of such a statistic is necessarily bounded, and so such a
SERGM cannot be consistent.

Proof of Proposition E.5.
First, note that since β′ 6= β implies that Eβ[S] 6= Eβ′ [S], and also since Eβ[S] is

continuous in β, it must be that Eβ[S] is monotone in β.
Let β̂(S) be the MLE of β as a function of the statistic S. We know that β̂(s) is the

β such that Eβ[S] = s, which varies continuously in β.
Let us consider

Pβ

[
|β̂(S)− β| > ε

]
Note that s′(β) = varβ(S), and also that s′′(β) = Eβ

[
(S − Eβ[S])3

]
.

Therefore,

s(β + ε) = s(β) +
ˆ ε

0

[
varβ(S) +

ˆ x

0
k3
β+y(S)dy

]
dx

and

s(β − ε) = s(β)−
ˆ ε

0

[
varβ(S) +

ˆ x

0
k3
β−y(S)dy

]
dx.

Thus,

min [|s(β + ε)− s(β)|, |s(β − ε)− s(β)|] ≥ εvarβ(S)− ε2

2

(
max

β′∈[β−ε,β+ε]
|k3
β′(S)|

)
,

and by the choice of ε ≤ varβ [S]
maxβ′∈[β−ε,β+ε] |k3

β′ (S)| ,

min [|s(β + ε)− s(β)|, |s(β − ε)− s(β)|] ≥ εvarβ(S)/2.

Given the monotonicity of Eβ(S) in β, it then follows that

|β̂(S)− β| > ε implies |S − Eβ(S)| > εvarβ(S)/2.

Thus,
Pβ

[
|β̂(S)− β| > ε

]
≤ Pβ

[
|S − En

β(S)| > εvarβ(S)/2
]
.
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By Chebychev’s inequality it then follows that

Pβ

[
|S − En

β(S)| > εvarβ(S)/2
]
≤ varβ(S)

(εVarβ(S)/2)2 = 4
ε2Varβ(S) .

Therefore,
Pβ

[
|β̂(S)− β| > ε

]
≤ 4
ε2Varβ(S) ,

as claimed.
Now let us examine the converse statement in the proposition.
Note that varβ[S] ≤ B , it follows that E[|S − En

β(S)|] ≤ B + 1, and therefore by
assumption it also follows that |S − En

β(S)| ≤ (B + 1)B.80 It then follows that
varnβ(S) ≤ |S − En

β(S)|E[|S − En
β(S)|] ≤ (B + 1)BE[|S − En

β(S)|],
and by similar reasoning

k3
β[S] ≤ |S − En

β(S)|varnβ(S) ≤ (B + 1)2B2E[|S − En
β (S)|].

By similar reasoning to the proof of the first part of the proposition, we can deduce
that

Pβ

[
|β̂(S)− β| > ε

]
≥ Pβ

[
|S − Eβ(S)| > εVarβ(S) + ε2

(
max

β′∈[β−ε,β+ε]
|k3
β′(S)|

)]
.

Therefore,
Pβ

[
|β̂(S)− β| > ε

]
≥ Pβ

[
|S − En

β (S)| >
(
ε(B + 1)B + ε2(B + 1)2B2

)
E[|S − En

β(S)|]
]
.

For ε = 1
3(B+1)B , it follows that

Pβ

[
|β̂(S)− β| > ε

]
≥ Pβ

[
|S − En

β(S)| > E[|S − En
β(S)|]/2

]
.

Given that |S − En
β(S)| < BE[|S − En

β(S)|], it follows that there exists δ = 1
2B−1 such

that
Pβ

[
|S − En

β(S)| > E[|S − En
β(S)|]/2

]
≥ δ.

establishing the second part of the proposition.
To see this last claim, let p = Pβ

[
|S − En

β(S)| > E[|S − En
β(S)|]/2

]
and note that

(1− p)E
[
|S − En

β(S)|
∣∣∣ |S − En

β (S)| ≤ E[|S − En
β(S)|]/2

]
+pE

[
|S − En

β(S)|
∣∣∣ ‖S − En

β(S)| > E[|S − En
β(S)|]/2

]
= E[|S − En

β(S)|]
and so, since |S − En

β(S)| < BE[|S − En
β(S)|], it follows that

(1− p)E[|S − En
β(S)|]/2 + pBE[|S − En

β(S)|] ≥ E[|S − En
β(S)|].

Therefore, p ≥ δ = 1
2B−1 , as claimed.

80To see that E[|S − Enβ(S)|] ≤ B + 1, note that for a nonnegative random variable X,
E[X] ≤ P[X ≤ 1]1 + P[X > 1]E[X|X > 1]

and
P[X > 1]E[X|X > 1] < P[X > 1]E[X2|X > 1] ≤ E[X2],

and the claim follows.
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Proof of Corollary E.1.
The second claim follows directly from Proposition E.5.
To see the first claim, let us consider two cases. First consider a case such that

V arnβ(S)/|k3
β(S)n| is bounded away from 0. In that case apply the first part of Propo-

sition E.5, with εn = (V arnβ(S))−a for any a < 1/2. Next consider a case such that
varnβ(S)/|k3

β(S)n| → 0. In that case, set εn = varnβ(S)
|k3
β

(S)n| . In that case, we need to check

that (varnβ(S))3

|k3
β

(S)n|2 →∞, which is equivalent to Skewn
β(S)→ 0.
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Appendix F. Online Appendix: Extension of Table 1

Here we present an extension of the analysis in Table 1. Instead of simply control-
ling for “close” versus “far” links on the dimensions of caste and GPS, we allow for
a considerably richer specification. The goal here is to show that even when we con-
trol, flexibly, for a rich set of covariates, a link-based model exploiting the observable
homophily is unable to replicate key features of observed networks. To do this, we
estimate a link-based model within each village using the following vector of controls:

• Geographic distance between households,
• Square of geographic distance between households,
• Households are of different caste,
• Difference in number of rooms household has,
• Square of difference in number of rooms,
• Difference in number of beds,
• Square of difference in number of beds,
• Difference in quality of electricity,
• Square of difference in quality of electricity,
• Difference in latrine quality,
• Square of difference in latrine quality,
• Whether or not both households have the same status in terms of owning or

renting their house.
We use a logistic regression for this estimation.

The estimated a vector of regression coefficients for each village capture how charac-
teristics of a dyad correspond to linking probabilities. This gives a predicted probability
that each household is linked to each of the other households in the village. We use
these predicted probabilities to generate 100 simulated networks per village and study
the characteristics of the resulting networks. These are presented in column [3] of Table
3.

Table 3. Estimation of Additional Models: Extension of Table 1

Data Link-based model 
with covariates

Link-based model 
with extended 

covariates

SUGM with links 
and triangles

SUGM with isolates, 
links and triangles

[1] [2] [3] [4] [5]
Number of Unsupported Links 160.8 236.2 236.2 161.2 161.8
Number of Triangles 39.2 3.1 3.1 39.7 39.5
Average Degree 2.3243 2.3260 2.3234 2.5916 2.5219
Number of Isolates 54.9722 25.7222 27.3750 31.4444 65.9167
Average Clustering 0.0895 0.0105 0.0134 0.1268 0.0829
Fraction in Giant Component 0.7061 0.8315 0.8082 0.7982 0.6718
First Eigenvalue 5.5446 3.8578 4.0746 4.6762 5.3025
Spectral Gap 0.9550 0.3354 0.3728 0.6684 1.0617
Second Eigenvalue of Stochastized Matrix 0.9573 0.9632 0.9642 0.9559 0.9069
Average Path Length 4.6921 5.6565 5.5407 5.1215 4.1180

Notes: Column [1] presents the average value of various network characteristics across the 36 villages. Columns [2], [3], [4] and [5] present simulation results. In a simulation we first estimate
parameters of a given model for a given village and then randomly draw a graph from the model with the estimated parameters. We run 100 simulations for each of the villages for each of the
models and average across the simulations, and the entries report these averaged across the villages.  

Models are fit to 
different 
combinations of 
these statistics.

None of the models 
are directly fit to 
any of these 
statistics.

Column [3] contains the statistics from the enriched link-based model, while the
remainder of the table is exactly the same as what is presented in the body of the
paper. Adding over 12 parameters to flexibly control for demographic attributes makes
almost no difference in generating network characteristics that match the observed
data, providing very small improvements, and still not coming close to doing as well
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as the simple SUGMs. Moreover, since the specification developed here makes use
of considerably richer data than those used in the two candidate SUGM models, it
suggests that by decomposing a network into a tapestry of random structures (triangles,
links and even isolates), considerable value is added in modeling higher order features
of networks in a parsimonious way.
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