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Abstract. We propose a family of statistical models for social networkevolution
over time, which represents an extension of Exponential Random Graph Models
(ERGMs). Many of the methods for ERGMs are readily adapted for these mod-
els, including MCMC maximum likelihood estimation algorithms. We discuss
models of this type and give examples, as well as a demonstration of their use for
hypothesis testing and classification.

1 Introduction

The field of social network analysis is concerned with populations ofactors, intercon-
nected by a set ofrelations (e.g., friendship, communication, etc.). These relationships
can be concisely described by directed graphs, with one vertex for each actor and an
edge for each relation between a pair of actors. This networkrepresentation of a popu-
lation can provide insight into organizational structures, social behavior patterns, emer-
gence of global structure from local dynamics, and a varietyof other social phenomena.

There has been increasing demand for flexible statistical models of social networks,
for the purposes of scientific exploration and as a basis for practical analysis and data
mining tools. The subject of modeling a static social network has been investigated in
some depth. In particular, there is a rich (and growing) bodyof literature on theExpo-
nential Random Graph Models (ERGM) [1–4]. Specifically, ifN is some representation
of a social network, andN is the set of all possible networks in this representation, then
the probability distribution function for any ERGM can be written in the following
general form.

P(N) =
1

Z(θ)
exp

{

θ
′
u(N)

}

.

Here,θ ∈ R
k, andu : N → R

k. Z(θ) is a normalization constant, which is typically
intractable to compute. Theu function represents the sufficient statistics for the model,
and, in a graphical modeling interpretation, can be regarded as a vector of clique po-
tentials. The representation forN can vary widely, possibly including multiple relation
types, valued or binary relations, symmetric or asymmetricrelations, and actor and re-
lation attributes. The most widely studied models of this form are for single-relation
social networks, in which caseN is generally taken to be the weight matrixA for the
network (sometimes referred to as asociomatrix), whereAij is the strength of directed
relation between theith actor andjth actor.



Often one is interested in modeling the evolution of a network over multiple sequen-
tial observations. For example, one may wish to model the evolution of coauthorship
networks in a specific community from year to year, trends in the evolution of the World
Wide Web, or a process by which simple local relationship dynamics give rise to global
structure. In the following sections, we propose a model family that is capable of model-
ing network evolution, while maintaining the flexibility ofERGMs. Furthermore, these
models build upon ERGMs, so that existing methods developedfor ERGMs over the
past two decades are readily adapted to apply to the temporalmodels as well.

2 Discrete Temporal Models

We begin with the simplest case of the proposed models, before turning to the fully
general derivation. One way to simplify a statistical modelfor social networks is to
make a Markov assumption on the network from one time step to the next. Specifically,
if At is the weight matrix representation of a single-relation social network at timet,
then we can assumeAt is independent ofA1, . . . , At−2 givenAt−1. Put another way,
a sequence of network observationsA1, . . . , At has the property that

P(A2, A3, . . . , At|A1) = P(At|At−1)P(At−1|At−2) · · · P(A2|A1).

With this assumption in mind, we can now set about deciding what the form of the con-
ditional PDFP(At|At−1) should be. Given our Markov assumption, one natural way to
generalize ERGMs for evolving networks is to assumeAt|At−1 admits an ERGM rep-
resentation. That is, we can specify a functionΨ : Rn×n×Rn×n → R

k and parameter
vectorθ ∈ R

k, such that the conditional PDF has the following form.

P(At|At−1, θ) =
1

Z(θ, At−1)
exp

{

θ
′
Ψ (At, At−1)

}

(1)

2.1 An Example

To illustrate the expressivity of this framework, we present the following simple ex-
ample model. For simplicity, assume the weight matrix is binary (i.e., an adjacency
matrix). Define the following statistics, which representdensity, stability, reciprocity,
andtransitivity, respectively.
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The statistics are each scaled to a constant range (in this case[0, n]) to enhance inter-
pretability of the model parameters. The conditional probability mass function (1) is
governed by four parameters:θD controls thedensity, or the number of ties in the net-
work as a whole;θS controls thestability, or the tendency of a link that does (or does
not) exist at timet − 1 to continue existing (or not existing) at timet; θR controls the
reciprocity, or the tendency of a link fromi to j to result in a link fromj to i at the next
time step; andθT controls thetransitivity, or the tendency of a tie fromi to j and from
j to k to result in a tie fromi to k at the next time step. The transition probability for
this temporal network model can then be written as follows.

P(At|At−1, θ) =
1

Z(θ, At−1)
exp







∑

j∈{D,S,R,T}

θjΨj(A
t, At−1)







2.2 General Models

We can generalize the form of (1) by replacingA1, A2, . . . , AT with general networks
N1, N2, . . . , NT ∈ N , which may include multiple relations, actor attributes, etc. Fur-
thermore, we generalize the Markov assumption to allow anyK-order dependencies,
so that the previous discussion was forK = 1. In this case, the functionΨ is also
generalized byΨ : NK+1 → R

k. The fully general model can therefore be written as

P(NK+1, NK+2, . . . , NT |N1, . . . , NK , θ) =

T
∏

t=K+1

P(N t|N t−K , . . . , N t−1, θ),

where

P(N t|N t−K, ..., N t−1, θ)=
1

Z(θ, N t−K, ..., N t−1)
exp

{

θ
′
Ψ (N t, N t−1, ..., N t−K)

}

.

Note that specifying the joint distribution requires one tospecify a distribution over
the first K networks. This can generally be accomplished fairly naturally using an
ERGM for N1 and exponential family conditional distributions forN i|N1 . . . N i−1

for i ∈ {2, . . . , K}. For simplicity of presentation, we avoid these details in subsequent
sections by assuming the distribution over these initialK networks is functionally in-
dependent of the parameterθ.

3 Estimation

The estimation task for models of the above form is to use the sequence of observed
networks,N1, N2, . . . , NT , to find an estimator̂θ that is close to the actual parameter
valuesθ in some sensible metric. As with ERGMs, the intractability of the normalizing
constantZ often makes explicit solution of maximum likelihood estimation difficult.
However, general techniques for MCMC sampling to enable approximate maximum
likelihood estimation for ERGMs have been studied in some depth and have proven



successful for a variety of models [3]. By a slight modification of these algorithms, we
can apply the same general techniques as follows.

Let

L(θ; N1, N2, . . . , NT ) = logP(NK+1, NK+2, . . . , NT |N1, . . . , NK , θ), (2)

M(t, θ) = Eθ

[

Ψ(Nt, N t−1, . . . , N t−K)|N t−1, . . . , N t−K
]

,

C(t, θ) = Eθ

[

Ψ(Nt, N t−1, . . . , N t−K)Ψ(Nt, N t−1, . . . , N t−K)′|N t−1, . . . , N t−K
]

.

where expectations are taken over the random variableN
t, the network at timet. Note

that

∇L(θ; N1, . . . , NT ) =

T
∑

t=K+1

(

Ψ(N t, N t−1, . . . , N t−K)−M(t, θ)
)

and

∇2L(θ; N1, . . . , NT ) =
T

∑

t=K+1

(M(t, θ)M(t, θ)′ − C(t, θ)) .

The expectations can be approximated by Gibbs sampling fromthe conditional distri-
butions [3], so that we can perform an unconstrained optimization procedure akin to
Newton’s method: approximate the expectations, update parameter values in the direc-
tion that increases (2), repeat until convergence. A related algorithm is described by [5]
for general exponential families, and variations are givenby [3] that are tailored for
ERG models. The following is a simple version of such an estimation algorithm.

1. Randomly initialize θ
(1)

2. For i = 1 up until convergence
3. For t = K + 1, K + 2, . . . , T

4. Sample N̂
t,1
(i) , . . . , N̂

t,B

(i) ∼ P(Nt|N t−K , . . . , N t−1, θ(i))

5. µ̂t
(i) = 1

B

∑B

b=1 Ψ (N̂ t,b

(i) , N
t−1, . . . , N t−K)

6. Ĉt
(i) = 1

B

∑B

b=1 Ψ (N̂ t,b

(i) , N
t−1, . . . , N t−K)Ψ (N̂ t,b

(i) , N
t−1, . . . , N t−K)′

7. Ĥ(i) =
∑T

t=K+1[µ̂
t
(i)µ̂

t′
(i) − Ĉt

(i)]

8. θ
(i+1) ← θ

(i) − Ĥ−1
(i)

∑T

t=K+1

[

Ψ (N t, N t−1, . . . , N t−K)− µ̂t
(i)

]

The choice ofB can affect the convergence of this algorithm. Generally, larger
B values will give more accurate updates, and thus fewer iterations needed until con-
vergence. However, in the early stages of the algorithm, precise updates might not be
necessary if the likelihood function is sufficiently smooth, so that aB that grows larger
only when more precision is needed may be appropriate. If computational resources are
limited, it is possible (though less certain) that the algorithm might still converge even
for smallB values (see [6] for an alternative approach to sampling-based MLE, which
seems to remain effective for smallB values).

To examine the convergence rate empirically, we display in Figure 1 the conver-
gence of this algorithm on data generated from the example model given in Section 2.1.



The simulated data is generated by sampling from the examplemodel with randomly
generatedθ, and the loss is plotted in terms of Euclidean distance of theestimator
from the true parameters. To generate the initialN1 network, we sample from the pmf

1
Z(θ) exp{θ′

Ψ(N1, N1)}. The number of actorsn is 100. The parameters are initialized
uniformly in the range[0, 10), except forθD, which is initialized to−5θS−5θR−5θT .
This tends to generate networks with reasonable densities.The results in Figure 1 rep-
resent averages over 10 random initial configurations of theparameters and data. In
the estimation algorithm used,B = 100, but increases to1000 when the Euclidean
distance between parameter estimates from the previous twoiterations is less than1.
Convergence is defined as the Euclidean distance betweenθ

(i+1) andθ
(i) being within

0.1. Since this particular model is simple enough for exact calculation of the likelihood
and derivatives thereof (see below), we also compare against Newton’s method with ex-
act updates (rather than sampling-based). We can use this todetermine how much of the
loss is due to the approximations being performed, and how much of it is intrinsic to the
estimation problem. The parameters returned by the sampling-based approximation are
usually almost identical to the MLE obtained by Newton’s method, and this behavior
manifests itself in Figure 1 by the losses being visually indistinguishable.
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Fig. 1. Convergence of estimation algorithm on simulated data, measured in Euclidean distance
of the estimated values from the true parameter values. The approximate MLE from the sampling-
based algorithm is almost identical to the MLE obtained by direct optimization.

4 Hypothesis Testing

As an example of how models of this type might be used in practice, we present a simple
hypothesis testing application. Here we see the generalityof this framework pay off, as



we can use models of this type to represent a broad range of scientific hypotheses. The
general approach to hypothesis testing in this framework isfirst to write down potential
functions representing transitions one expects to be of some significance in a given
population, next to write down potential functions representing the usual “background”
processes (to serve as a null hypothesis), and third to plug these potentials into the
model, calculate a test statistic, and compute a p-value.

The data involved in this example come from the United States108th Senate, having
n = 100 actors. Every time a proposal is made in the Senate, be it a bill, amendment,
resolution, etc., a single Senator serves as the proposal’ssponsor and there may possi-
bly be severalcosponsors. Given records of all proposals voted on in the full Senate, we
create a sliding window of 100 consecutive proposals. For a particular placement of the
window, we define a binary directed relation existing between two Senators if and only
if one of them is a sponsor and the other a cosponsor for the same proposal within that
window (where the direction is toward the sponsor). The datais then taken as evenly
spaced snapshots of this sliding window,A1 being the adjacency matrix for the first 100
proposals,A2 for proposal 31 through 130, and so on shifting the window by 30 pro-
posals each time. In total, there are 14 observed networks inthis series, corresponding
to the first 490 proposals addressed in the 108th Senate.

In this study, we propose to test the hypothesis that intraparty reciprocity is inher-
ently stronger than interparty reciprocity. To formalize this, we use a model similar to
the example given previously. The main difference is the addition of party membership
indicator variables. LetPij = 1 if the ith andjth actors are in the same political party,
and 0 otherwise, and let̄Pij = 1−Pij . Define the following potential functions, repre-
sentingstability, intraparty density, interparty density,1 overall reciprocity, intraparty
reciprocity, andinterparty reciprocity.
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1 We split density to intra- and inter-party terms so as to factor out the effects on reciprocity of
having higher intraparty density.



The null hypothesis supposes that the reciprocity observedin this data is the result
of an overall tendency toward reciprocity amongst the Senators, regardless of party.
The alternative hypothesis supposes that there is a stronger tendency toward reciprocity
among Senators within the same party than among Senators from different parties. For-
mally, the transition probability for the null hypothesis can be written as

P0(A
t|At−1, θ(0)) =

1

Z0(θ
(0), At−1)

exp







∑

j∈{S,WD,BD,R}

θ
(0)
j Ψj(A

t, At−1)







,

while the transition probability for the alternative hypothesis can be written as

P1(A
t|At−1, θ(1)) =

1

Z1(θ
(1), At−1)

exp







∑

j∈{S,WD,BD,WR,BR}

θ
(1)
j Ψj(A

t, At−1)







.

For our test statistic, we use the likelihood ratio. To compute this, we compute
the maximum likelihood estimators for each of these models,and take the ratio of the
likelihoods. For the null hypothesis, the MLE is

(θ̂
(0)
S = 336.2, θ̂

(0)
WD = −58.0, θ̂

(0)
BD = −95.0, θ̂

(0)
R = 4.7)

with likelihood value ofe−9094.46. For the alternative hypothesis, the MLE is

(θ̂
(1)
S = 336.0, θ̂

(1)
WD = −58.8, θ̂

(1)
BD = −94.3, θ̂

(1)
WR = 4.2, θ̂

(1)
BR = 0.03)

with likelihood value ofe−9088.96. The likelihood ratio statistic (null likelihood over
alternative likelihood) is therefore about0.0041. Because the null hypothesis is com-
posite, determining the p-value of this result is a bit more tricky, since we must deter-
mine the probability of observing a likelihood ratio at least this extreme under the null
hypothesis for the parameter valuesθ

(0) thatmaximize this probability. That is,

p-value= sup
θ(0)

P0


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(1) P1(A1, . . . , A14|θ̂

(1)
)
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.

In general this seems not to be tractable to analytic solution, so we employ a genetic
algorithm to perform the unconstrained optimization, and approximate the probability
for each parameter vector by sampling. That is, for each parameter vectorθ(0) (for the
null hypothesis) in the GA’s population on each iteration, we sample a large set of se-
quences from the joint distribution. For each sequence, we compute the MLE under
the null hypothesis and the MLE under the alternative hypothesis, and then calculate
the likelihood ratio and compare it to the observed ratio. Wecalculate the empirical
frequency with which the likelihood ratio is at most0.0041 in the set of sampled se-
quences for each vectorθ

(0), and use this as the objective function value in the genetic
algorithm. Mutations consist of adding Gaussian noise (with variance decreasing on



each iteration), and recombination is performed as usual. Full details of the algorithm
are omitted for brevity (see [7] for an introduction to GAs).The resulting approximate
p-value we obtain by this optimization procedure is 0.024.

This model is nice in that we can compute the likelihoods and derivatives thereof
analytically. In fact, it is representative of an interesting subfamily of models, in which
the distributions of edges at timet are independent of each other given the network at
time t − 1. In models of this form, we can compute likelihoods and perform Newton-
Raphson optimization directly, without the need of sampling-based approximations.
However, in general this might not be the case. For situations in which one cannot
tractably compute the likelihoods, an alternative possibility is to use bounds on the
likelihoods. Specifically, one can obtain an upper bound on the likelihood ratio statistic
by dividing an upper bound on the null likelihood by a lower bound on the alternative
likelihood. When computing the p-value, one can use a lower bound on the ratio by
dividing a lower bound on the null likelihood by an upper bound on the alternative
likelihood. See [8,9] for examples of how such bounds on the likelihood can be tractably
attained, even for intractable models.

In practice, the problem of formulating an appropriate model to encode one’s hy-
pothesis is ill-posed. One general approach which seems intuitively appealing is to write
down the types of motifs or patterns one expects to find in the data, and then specify var-
ious other patterns which one believes those motifs could likely transition to (or would
likely not transition to) under the alternative hypothesis. For example, perhaps one be-
lieves that densely connected regions of the network will tend to become more dense
and clique-like over time, so that one might want to write down a potential representing
the transition of, say, k-cliques to more densely connectedstructures.

5 Classification

One can additionally consider using these temporal models for classification. Specif-
ically, consider a transductive learning problem in which each actor has a static class
label, but the learning algorithm is only allowed to observethe labels of some random
subset of the population. The question is then how to use the known label information,
in conjunction with observations of the network evolving over time, to accurately infer
the labels of the remaining actors whose labels are unknown.

As an example of this type of application, consider the alternative hypothesis model
from the previous section (model 1), in which each Senator has a class label (party
affiliation). We can slightly modify the model so that the party labels are no longer
constant, but random variables drawn independently from a known multinomial distri-
bution. Assume we know the party affiliations of a randomly chosen 50 Senators. This
leaves 50 Senators with unknown affiliations. If we knew the parametersθ, we could
predict these 50 labels by sampling from the posterior distribution and taking the mode
for each label. However, sinceboth the parametersand the 50 labels are unknown, this
is not possible. Instead, we can perform Expectation Maximization tojointly infer the
maximum likelihood estimator̂θ for θ and the posterior mode given̂θ.

Specifically, let us assume the two class labels areDemocrat andRepublican, and
we model these labels as independent Bernoulli(0.5) randomvariables. The distribution



on the network sequence given that all 100 labels are fully observed is the same as given
in the previous section. Since one can compute likelihoods in this model, sampling from
the posterior distribution of labels given the network sequence is straightforward using
Gibbs sampling. We can therefore employ a combination of MCEM and Generalized
EM algorithms (call it MCGEM) [10] with this model to infer the party labels as fol-
lows. In each iteration of the algorithm, we sample from the posterior distribution of
the unknown class labels under the current parameter estimates given the observed net-
works and known labels, approximate the expectation of the gradient and Hessian of
the log likelihood using the samples, and then perform a single Newton-Raphson up-
date using these approximations.

We run this algorithm on the 108th Senate data from the previous section. We ran-
domly select 50 Senators whose labels are observable, and take the remaining Sena-
tors as having unknown labels. As mentioned above, we assumeall Senators are either
Democrat or Republican; Senator Jeffords, the only independent Senator, is considered
a Democrat in this model. We run the MCGEM algorithm described above to infer the
maximum likelihood estimator̂θ for θ, and then sample from the posterior distribution
over the 50 unknown labels under that maximum likelihood distribution, and take the
sample mode for each label to make a prediction.

The predictions of this algorithm are correct on 70% of the 50Senators with un-
known labels. Additionally, it is interesting to note that the parameter values the algo-
rithm outputs(θ̂S = 336.0, θ̂WD = −59.7, θ̂BD = −96.0, θ̂WR = 3.8, θ̂BR = 0.28)
are very close (Euclidean distance2.0) to the maximum likelihood estimator obtained
in the previous section (where all class labels were known).Compare the above accu-
racy score with a baseline predictor that always predicts Democrat, which would get
52% correct for this train/test split, indicating that thisstatistical model of network evo-
lution provides at least a somewhat reasonable learning bias. However, there is clearly
room for improvement in the model specification, and it is notclear whether model-
ing the evolution of the graph is actually of any benefit for this particular example. For
example, after collapsing this sequence of networks into a single weighted graph with
edge weights equal to the sum of edge weights over all graphs in the sequence, running
Thorsten Joachims’ Spectral Graph Transducer algorithm [11] gives a 90% prediction
accuracy on the Senators with unknown labels. These resultsare summarized in Table 1.
Further investigation is needed into what types of problemscan benefit from explicitly
modeling the network evolution, and what types of models aremost appropriate for
basing a learning bias on.

Method Accuracy
Baseline 52%
Temporal Model 70%
SGT 90%

Table 1.Summary of classification results.



6 Open Problems and Future Work

If we think of this type of model as describing a process giving rise to the networks one
observes in reality, then one can think of a single network observation as a snapshot
of this Markov chain at that time point. Traditionally one would model a network at a
single time point using an ERGM. It therefore seems natural to investigate the formal
relation between these Markov chain models and ERGMs. Specifically, any Markov
chain of the form described here has a stationary distribution which can be character-
ized by an ERGM. Can one give a general analytic derivation ofthis stationary ERGM
for any Markov chain of the form described here? To our knowledge, this remains an
open problem. One can also ask the reverse question of whether, given any ERGM, one
can describe an interesting set of Markov chains having it asa stationary distribution.
Answering this would not only be of theoretical interest, but would potentially also lead
to practical techniques for sampling from an ERGM distribution by formulating a more
tractable Markov chain giving rise to it. Indeed, one can askthese same questions about
general Markov chains (not just networks) having transition probabilities in an expo-
nential family, the stationary distributions of which can be described by exponential
families.

Moving forward, we hope to move beyond these ERG-inspired models toward mod-
els that incorporate latent variables, which may also evolve over time with the network.
For example, it may often be the case that the phenomena represented in data can most
easily be described by imagining the existence of unobserved groups or factions, which
form, dissolve, merge and split as time progresses. The flexibility of the ERG mod-
els and the above temporal extensions allows a social scientist to “plug in” his or her
knowledge into the formulation of the model, while still providing general-purpose es-
timation algorithms to find the right trade-offs between competing and complementary
factors in the model. We would like to retain this flexibilityin formulating a general
family of models that include evolving latent variables in the representation, so that the
researcher can “plug in” his or her hypotheses about latent group dynamics, evolution
of unobservable actor attributes, or a range of other possible phenomena into the model
representation. At the same time, we would like to preserve the ability to provide a
“black box” inference algorithm to determine the parameterand variable values of in-
terest to the researcher, as can be done with ERG models and their temporal extensions.
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