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Abstract. We propose a family of statistical models for social netwer&lution
over time, which represents an extension of ExponentiabBenGraph Models
(ERGMSs). Many of the methods for ERGMs are readily adaptedHese mod-
els, including MCMC maximum likelihood estimation algbwits. We discuss
models of this type and give examples, as well as a demoiestiattheir use for
hypothesis testing and classification.

1 Introduction

The field of social network analysis is concerned with popois ofactors, intercon-
nected by a set aElations (e.qg., friendship, communication, etc.). These relatijps
can be concisely described by directed graphs, with onexéor each actor and an
edge for each relation between a pair of actors. This netwagtesentation of a popu-
lation can provide insight into organizational structysexcial behavior patterns, emer-
gence of global structure from local dynamics, and a vadétther social phenomena.
There has been increasing demand for flexible statisticdltsaf social networks,
for the purposes of scientific exploration and as a basisractjzal analysis and data
mining tools. The subject of modeling a static social netwais been investigated in
some depth. In particular, there is a rich (and growing) baoiditerature on theexpo-
nential Random Graph Models (ERGM) [1-4]. Specifically, ifV is some representation
of a social network, and/ is the set of all possible networks in this representatioent
the probability distribution function for any ERGM can beitten in the following

general form.
1

PN = 7w

Here,® € R*, andu : N' — RF. Z() is a normalization constant, which is typically
intractable to compute. Thefunction represents the sufficient statistics for the model
and, in a graphical modeling interpretation, can be reghesea vector of clique po-
tentials. The representation fof can vary widely, possibly including multiple relation
types, valued or binary relations, symmetric or asymmesiiations, and actor and re-
lation attributes. The most widely studied models of thisyfare for single-relation
social networks, in which cas¥ is generally taken to be the weight matrixfor the
network (sometimes referred to asagiomatrix), whereA;; is the strength of directed
relation between th&" actor and;j*” actor.

exp {0u(N)}.



Often one is interested in modeling the evolution of a nekvamer multiple sequen-
tial observations. For example, one may wish to model théutieo of coauthorship
networks in a specific community from year to year, trenda@evolution of the World
Wide Web, or a process by which simple local relationshipedyits give rise to global
structure. In the following sections, we propose a modellfatimat is capable of model-
ing network evolution, while maintaining the flexibility &#RGMs. Furthermore, these
models build upon ERGMSs, so that existing methods develépeERGMs over the
past two decades are readily adapted to apply to the tempordels as well.

2 Discrete Temporal Models

We begin with the simplest case of the proposed models, défwning to the fully
general derivation. One way to simplify a statistical mofiel social networks is to
make a Markov assumption on the network from one time stelpetaéxt. Specifically,
if A! is the weight matrix representation of a single-relatiociaonetwork at timet,
then we can assumé’ is independent oft!, ..., A*~2 given A*~!. Put another way,
a sequence of network observatiofs . . ., A* has the property that

P(A%, A%, AYNAY) = P(ATATHP(ATHAT2) - P(A%]AY).

With this assumption in mind, we can now set about decidingtwte form of the con-
ditional PDFP(A*|A*~!) should be. Given our Markov assumption, one natural way to
generalize ERGMs for evolving networks is to assuftigd’~! admits an ERGM rep-
resentation. That is, we can specify a funct®n R,, ,, x R,,»,, — R* and parameter
vectord € R*, such that the conditional PDF has the following form.

P(AtlAt_l,e) = mexp {O/W(At,At_l)} (1)

2.1 An Example

To illustrate the expressivity of this framework, we preste following simple ex-
ample model. For simplicity, assume the weight matrix isabjn(i.e., an adjacency
matrix). Define the following statistics, which represepnsity, stability, reciprocity,
andtransitivity, respectively.
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The statistics are each scaled to a constant range (in tg(a]) to enhance inter-
pretability of the model parameters. The conditional plolitg mass function (1) is
governed by four paramete#s; controls thedensity, or the number of ties in the net-
work as a wholefs controls thestability, or the tendency of a link that does (or does
not) exist at time — 1 to continue existing (or not existing) at timefx controls the
reciprocity, or the tendency of a link fromto j to result in a link fromj to ¢ at the next
time step; and; controls theransitivity, or the tendency of a tie fromto ;5 and from

j to k to result in a tie fromi to & at the next time step. The transition probability for
this temporal network model can then be written as follows.

_ 1 _
P(AH A, 0) = 70 AT P > 0w(Al AT
’ je{D,5,R,T}

2.2 General Models

We can generalize the form of (1) by replacig, A2, ..., AT with general networks
N, N2,...,NT € N, which may include multiple relations, actor attributes, Eur-
thermore, we generalize the Markov assumption to allow &Ergrder dependencies,
so that the previous discussion was fér = 1. In this case, the functio# is also
generalized by : N5+1 — RF. The fully general model can therefore be written as

T
PN N2 NTINY, L NR ) = [ P(NIINTTE,L N 6),
t=K+1

where

1
(0, Nt-K,__ Nt—1

P(NYN*E . N1 0)= Z ) exp{ @ (N, N1 ., N"5)}.

Note that specifying the joint distribution requires onepecify a distribution over
the first K networks. This can generally be accomplished fairly ndifuasing an
ERGM for N and exponential family conditional distributions foF|N*! ... N¢~!
fori € {2,..., K}. For simplicity of presentation, we avoid these detailsibsequent
sections by assuming the distribution over these infiahetworks is functionally in-
dependent of the parameter

3 Estimation

The estimation task for models of the above form is to use ¢ggisnce of observed
networks,N', N2, ..., N7, tofind an estimato# that is close to the actual parameter
valuesf in some sensible metric. As with ERGMs, the intractabilityte normalizing
constantZ often makes explicit solution of maximum likelihood esttioa difficult.
However, general techniques for MCMC sampling to enable@pmate maximum
likelihood estimation for ERGMs have been studied in somgtld@and have proven



successful for a variety of models [3]. By a slight modifioatbf these algorithms, we
can apply the same general techniques as follows.
Let

L(O;N', N% ... NT) =log P(NETT NEF2  NTIN' ... N 0), (2
M(t,0) = E [W(N', N*"!, ..., N"F) N7 L NTE]
C(t,0) =Eg [(W(N', N'~!, .. NF)W(N', N1 NEY NS NTRT

where expectations are taken over the random varb)ehe network at time. Note
that

T
VLO;N',...,NT)= " (Z(N',N'"',... . N'"5) - M(t0)
t=K+1
and
T
V2LO;N',... NT)= > (M(t,0)M(t,0) — C(t,0)).
t=K+1

The expectations can be approximated by Gibbs sampling fhenconditional distri-
butions [3], so that we can perform an unconstrained opétitin procedure akin to
Newton’s method: approximate the expectations, updatnpeter values in the direc-
tion that increases (2), repeat until convergence. A rélakgorithm is described by [5]
for general exponential families, and variations are gibgr{3] that are tailored for
ERG models. The following is a simple version of such an esiiom algorithm.

1. Randomly initialize 6"
2. For ¢« = 1 up until convergence
Fort=K+1,K+2,...,T

Sample N(ti’)l, s N(ti’)B ~ P(NYNE Nt 90)

fily =5 Sy W(NG, N N
A B \rt,b — — 7t,b — _
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The choice ofB can affect the convergence of this algorithm. Generallgda
B values will give more accurate updates, and thus fewertiteraneeded until con-
vergence. However, in the early stages of the algorithntigeeupdates might not be
necessary if the likelihood function is sufficiently smoath that aB that grows larger
only when more precision is needed may be appropriate. Ipcoational resources are
limited, it is possible (though less certain) that the aildpon might still converge even
for small B values (see [6] for an alternative approach to samplingda4_E, which
seems to remain effective for smatlvalues).

To examine the convergence rate empirically, we displayigute 1 the conver-
gence of this algorithm on data generated from the examptiehgiven in Section 2.1.



The simulated data is generated by sampling from the examptel with randomly
generated, and the loss is plotted in terms of Euclidean distance ofet$tenator
from the true parameters. To generate the ini¥alnetwork, we sample from the pmf

% exp{0’'¥(N', N1)}. The number of actorsis 100. The parameters are initialized

uniformly in the rangé0, 10), except fo p, which is initialized to—505 — 50 — 567
This tends to generate networks with reasonable densitiesresults in Figure 1 rep-
resent averages over 10 random initial configurations ofpirameters and data. In
the estimation algorithm used = 100, but increases ta000 when the Euclidean
distance between parameter estimates from the previougdvations is less thai.
Convergence is defined as the Euclidean distance bet@&eh andé” being within
0.1. Since this particular model is simple enough for exactudaton of the likelihood
and derivatives thereof (see below), we also compare adé@veton’s method with ex-
act updates (rather than sampling-based). We can use the$domine how much of the
loss is due to the approximations being performed, and hoehrotiit is intrinsic to the
estimation problem. The parameters returned by the sagiptased approximation are
usually almost identical to the MLE obtained by Newton'’s hwat, and this behavior
manifests itself in Figure 1 by the losses being visuallystidguishable.
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Fig. 1. Convergence of estimation algorithm on simulated datasorea in Euclidean distance
of the estimated values from the true parameter values. gpr@amate MLE from the sampling-
based algorithm is almost identical to the MLE obtained bgctioptimization.

4 Hypothesis Testing

As an example of how models of this type might be used in pragive present a simple
hypothesis testing application. Here we see the generdlityis framework pay off, as



we can use models of this type to represent a broad rangesuitsici hypotheses. The
general approach to hypothesis testing in this framewdiksisto write down potential

functions representing transitions one expects to be ofessignificance in a given
population, next to write down potential functions reprasey the usual “background”
processes (to serve as a null hypothesis), and third to pleset potentials into the
model, calculate a test statistic, and compute a p-value.

The data involved in this example come from the United Sthd& Senate, having
n = 100 actors. Every time a proposal is made in the Senate, be it,atiiendment,
resolution, etc., a single Senator serves as the propapatisor and there may possi-
bly be severatosponsors. Given records of all proposals voted on in the full Senate, w
create a sliding window of 100 consecutive proposals. Fartqular placement of the
window, we define a binary directed relation existing betwie Senators if and only
if one of them is a sponsor and the other a cosponsor for the papposal within that
window (where the direction is toward the sponsor). The dathen taken as evenly
spaced snapshots of this sliding windoW, being the adjacency matrix for the first 100
proposalsA? for proposal 31 through 130, and so on shifting the window 0y 8-
posals each time. In total, there are 14 observed networtkssrseries, corresponding
to the first 490 proposals addressed in the't@nate.

In this study, we propose to test the hypothesis that inttgpaciprocity is inher-
ently stronger than interparty reciprocity. To formalibést we use a model similar to
the example given previously. The main difference is thataddof party membership
indicator variables. LeP;; = 1 if the i*" andj*" actors are in the same political party,
and 0 otherwise, and It = 1 — P,;. Define the following potential functions, repre-
sentingstability, intraparty density, interparty density,! overall reciprocity, intraparty
reciprocity, andinterparty reciprocity.
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having higher intraparty density.
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The null hypothesis supposes that the reciprocity obsdnvdds data is the result
of an overall tendency toward reciprocity amongst the Sesategardless of party.
The alternative hypothesis supposes that there is a strégmgency toward reciprocity
among Senators within the same party than among Senatarsiffferent parties. For-
mally, the transition probability for the null hypothesecbe written as

1

t) at—1 p(0)y _ (0)y, (At pt—1
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while the transition probability for the alternative hypesis can be written as

1
t)at—1 p(1)y _ 2: (D) gy (At At—1
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For our test statistic, we use the likelihood ratio. To cotepthis, we compute
the maximum likelihood estimators for each of these modwald, take the ratio of the
likelihoods. For the null hypothesis, the MLE is

A (0 »(0 »(0 »(0
(6 = 336.2,0'7) ) = —58.0,6') = —95.0,6'% = 4.7)
with likelihood value ofe=2°94-46_ For the alternative hypothesis, the MLE is
(05 = 336.0,6%), = —58.8,0%) = —94.3,0), = 4.2,6%), = 0.03)

with likelihood value ofe=9988-96 The likelihood ratio statistic (null likelihood over
alternative likelihood) is therefore abo0041. Because the null hypothesis is com-
posite, determining the p-value of this result is a bit meoieky, since we must deter-
mine the probability of observing a likelihood ratio at letiss extreme under the null
hypothesis for the parameter valud thatmaximize this probability. That is,

Sup,(0) Po(Al, ..., A14|é(0))

(0)
(1)) <0.0041|6

p-value= sup Py -
6 supé(l) ,Pl (Al, ey A14|0

In general this seems not to be tractable to analytic sslugo we employ a genetic
algorithm to perform the unconstrained optimization, apdraximate the probability
for each parameter vector by sampling. That is, for eachnpater vectog?) (for the

null hypothesis) in the GA's population on each iteratioe, sample a large set of se-
quences from the joint distribution. For each sequence, ampate the MLE under
the null hypothesis and the MLE under the alternative hygsi) and then calculate
the likelihood ratio and compare it to the observed ratio. dakculate the empirical
frequency with which the likelihood ratio is at masb041 in the set of sampled se-
quences for each vectdf”), and use this as the objective function value in the genetic
algorithm. Mutations consist of adding Gaussian noisehwdériance decreasing on



each iteration), and recombination is performed as usudll détails of the algorithm
are omitted for brevity (see [7] for an introduction to GAShe resulting approximate
p-value we obtain by this optimization procedure is 0.024.

This model is nice in that we can compute the likelihoods amrdvdtives thereof
analytically. In fact, it is representative of an interegtsubfamily of models, in which
the distributions of edges at tinteare independent of each other given the network at
timet — 1. In models of this form, we can compute likelihoods and penfdlewton-
Raphson optimization directly, without the need of samplimsed approximations.
However, in general this might not be the case. For situatianwhich one cannot
tractably compute the likelihoods, an alternative pofigjbis to use bounds on the
likelihoods. Specifically, one can obtain an upper bouncherlikelihood ratio statistic
by dividing an upper bound on the null likelihood by a loweubd on the alternative
likelihood. When computing the p-value, one can use a loveemb on the ratio by
dividing a lower bound on the null likelihood by an upper bdwmn the alternative
likelihood. See [8,9] for examples of how such bounds oniketihood can be tractably
attained, even for intractable models.

In practice, the problem of formulating an appropriate niddeencode one’s hy-
pothesis s ill-posed. One general approach which seemnsiviely appealing is to write
down the types of motifs or patterns one expects to find in ¢ie,dnd then specify var-
ious other patterns which one believes those motifs coladyitransition to (or would
likely not transition to) under the alternative hypothesis. For eXaperhaps one be-
lieves that densely connected regions of the network wilditeo become more dense
and clique-like over time, so that one might want to write da\potential representing
the transition of, say, k-cliques to more densely connestiedttures.

5 Classification

One can additionally consider using these temporal modelsléssification. Specif-
ically, consider a transductive learning problem in whielecle actor has a static class
label, but the learning algorithm is only allowed to obsethwe labels of some random
subset of the population. The question is then how to usertbek label information,
in conjunction with observations of the network evolvingotime, to accurately infer
the labels of the remaining actors whose labels are unknown.

As an example of this type of application, consider the afitve hypothesis model
from the previous section (model 1), in which each Senatgréalass label (party
affiliation). We can slightly modify the model so that the fyalabels are no longer
constant, but random variables drawn independently fromcavk multinomial distri-
bution. Assume we know the party affiliations of a randomlgs#n 50 Senators. This
leaves 50 Senators with unknown affiliations. If we knew theameter®, we could
predict these 50 labels by sampling from the posterioribistion and taking the mode
for each label. However, sing®th the parameterand the 50 labels are unknown, this
is not possible. Instead, we can perform Expectation Mazation tojointly infer the
maximum likelihood estimato# for 6 and the posterior mode givefh.

Specifically, let us assume the two class labelsCam@ocrat and Republican, and
we model these labels as independent Bernoulli(0.5) randoiables. The distribution



on the network sequence given that all 100 labels are fubgoled is the same as given
in the previous section. Since one can compute likelihootisis model, sampling from
the posterior distribution of labels given the network sse is straightforward using
Gibbs sampling. We can therefore employ a combination of MGihd Generalized
EM algorithms (call it MCGEM) [10] with this model to infer éhparty labels as fol-
lows. In each iteration of the algorithm, we sample from tlestprior distribution of
the unknown class labels under the current parameter ésirgiven the observed net-
works and known labels, approximate the expectation of thdignt and Hessian of
the log likelihood using the samples, and then perform alsiNgwton-Raphson up-
date using these approximations.

We run this algorithm on the 108Senate data from the previous section. We ran-
domly select 50 Senators whose labels are observable, kadha remaining Sena-
tors as having unknown labels. As mentioned above, we asaliifBenators are either
Democrat or Republican; Senator Jeffords, the only indéeenSenator, is considered
a Democrat in this model. We run the MCGEM algorithm desdtikove to infer the
maximum likelihood estimatad for 8, and then sample from the posterior distribution
over the 50 unknown labels under that maximum likelihoodrittistion, and take the
sample mode for each label to make a prediction.

The predictions of this algorithm are correct on 70% of theSedators with un-
known labels. Additionally, it is interesting to note thhetparameter values the algo-
rithm outputs(ds = 336.0,0ywp = —59.7,0pp = —96.0,0wr = 3.8,0pr = 0.28)
are very close (Euclidean distanz®) to the maximum likelihood estimator obtained
in the previous section (where all class labels were kno@aojnpare the above accu-
racy score with a baseline predictor that always predictm@=at, which would get
52% correct for this train/test split, indicating that thtatistical model of network evo-
lution provides at least a somewhat reasonable learnirgy Hiawvever, there is clearly
room for improvement in the model specification, and it is clear whether model-
ing the evolution of the graph is actually of any benefit fas fharticular example. For
example, after collapsing this sequence of networks infaglesweighted graph with
edge weights equal to the sum of edge weights over all grapthgisequence, running
Thorsten Joachims’ Spectral Graph Transducer algorittithdives a 90% prediction
accuracy on the Senators with unknown labels. These reselgimmarized in Table 1.
Further investigation is needed into what types of problearsbenefit from explicitly
modeling the network evolution, and what types of modelsraost appropriate for
basing a learning bias on.

Method Accuracy
Baseline 52%
Temporal Modell 70%
SGT 90%

Table 1. Summary of classification results.



6 Open Problems and Future Work

If we think of this type of model as describing a process gjvise to the networks one
observes in reality, then one can think of a single networkeolmtion as a snapshot
of this Markov chain at that time point. Traditionally one wid model a network at a
single time point using an ERGM. It therefore seems natarahtestigate the formal
relation between these Markov chain models and ERGMs. figadly, any Markov
chain of the form described here has a stationary distobutihich can be character-
ized by an ERGM. Can one give a general analytic derivatichisfstationary ERGM
for any Markov chain of the form described here? To our kndgés this remains an
open problem. One can also ask the reverse question of whegithen any ERGM, one
can describe an interesting set of Markov chains having d stationary distribution.
Answering this would not only be of theoretical interest, Wwould potentially also lead
to practical techniques for sampling from an ERGM distrifaiby formulating a more
tractable Markov chain giving rise to it. Indeed, one canthslse same questions about
general Markov chains (not just networks) having transifioobabilities in an expo-
nential family, the stationary distributions of which cae 8escribed by exponential
families.

Moving forward, we hope to move beyond these ERG-inspiredetsdoward mod-
els that incorporate latent variables, which may also evoler time with the network.
For example, it may often be the case that the phenomenasesyiesl in data can most
easily be described by imagining the existence of unobgagk@ups or factions, which
form, dissolve, merge and split as time progresses. Thebflexiof the ERG mod-
els and the above temporal extensions allows a social stiémt'plug in” his or her
knowledge into the formulation of the model, while still piding general-purpose es-
timation algorithms to find the right trade-offs between pating and complementary
factors in the model. We would like to retain this flexibility formulating a general
family of models that include evolving latent variableslie representation, so that the
researcher can “plug in” his or her hypotheses about latentggdynamics, evolution
of unobservable actor attributes, or a range of other plesglienomena into the model
representation. At the same time, we would like to presemeeability to provide a
“pblack box” inference algorithm to determine the parameisd variable values of in-
terest to the researcher, as can be done with ERG modelseintkthporal extensions.
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