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Abstract

A random effects model is proposed for the analysis of binary dyadic data that
represent a social network or directed graph, using nodal and/or dyadic attributes
as covariates. The network structure is reflected by modeling the dependence
between the relations to and from the same actor or node. Parameter estimates
are proposed that are based on an iterated generalized least squares procedure.
An application is presented to a data set on friendship relations between American
lawyers.
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1 Introduction

Social network analysis is concerned with relations, i.e., patterns of ties between
interdependent entities. The special form and structure of the usually binary
network data leads to non-standard statistical analysis of social networks. The
complicated dependency structures lead to complexities in the statistical model-
ing.

Important concepts are the reciprocity of relations and the role or position
of the entities. These concepts are usually defined endogenously, based on the
relations within the social network, but can be extended in a statistical approach
using exogenous or explanatory variables.

The statistical model proposed here takes into account the dependent na-
ture of the data and the relation with explanatory variables. It can be seen as
an extension of the well-known p1 model for the analysis of complete network
data (Holland and Leinhardt, 1981). This extension to a Generalized Linear
Mixed Model (GLMM) allows the inclusion of covariates and models the remain-
ing variability by random effects.

After a succinct introduction to social network analysis in the following sub-
section, the p1 and related models are described in the next two subsections. The
p2 model is proposed in Section 2. IGLS estimation of the p1 and p2 model using
first-order Taylor approximations is treated in the third section. An overview of
GL(M)Ms and estimation methods for binary dependent data developed in other
research areas and their relation to the p2 model is given. All these models can
be qualified as modified logistic regression models. Model selection and testing
procedures are proposed in Section 3 as well. In Section 4 the p2 model is illus-
trated by a data set on friendship relations between the associate lawyers of an
American law firm. We conclude with a discussion of the p2 model and suggest
improvements of its estimation.

1.1 Social networks and some notation

Here we will give just a brief introduction to social networks. For an elaborate
description of social networks, their development, application and analysis, see
Wasserman and Faust (1994).

A social network is a finite set of actors and the relation(s) defined on this set
(Wasserman and Faust, 1994, p. 20). The actors are social entities (people,
organizations, countries, etc.) whose specific ties (friendship, competition, collab-
oration, etc.), constitute the network. A social network with one directed relation
can be represented by a directed graph, or by a matrix known as a sociomatrix
or adjacency matrix. For undirected relations the sociomatrix is symmetric. The
close association between social network analysis and graph theory is apparent in
the terminology. Actors are sometimes called nodes, ties are called lines or arcs
and often these terms are used interchangeably, as is also done here.
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Assuming that the network consists of n actors, it can be represented by an
n × n matrix of zeros and ones. In this adjacency matrix, denoted by Y , each
row and the corresponding column represent an actor in the network, or a node
in the graph. Yij is the tie variable from actor i to actor j, or the indicator of
a directed line from node i to node j, that takes on values 1 (tie present) or 0
(tie absent). The pair of tie variables (Yij, Yji) is called a dyad, that can be null,
(0, 0), mutual or reciprocal, (1, 1), or asymmetric, (0, 1) and (1, 0). Usually Yii is
defined to be 0, since in most applications self-ties are undefined or non-existent.
Ignoring the diagonal, the n(n− 1) tie variables or, equivalently, the n(n− 1)/2
dyads, are considered the complete network data.

Together with attributes of the actors, the data form a so-called social rela-
tional system (Wasserman and Faust, 1994, p. 89). We will deal with a social
relational system consisting of directed relations and attributes for all actors.
The focus is on complete network data, i.e., data representing all existing ties of
a given kind within a given set of n actors, but the methods are applicable also
if the relational data are incomplete.

1.2 The p1 model

Complete network data can be analyzed by many statistical and non-statistical
methods and models. For an overview, see Chapters 13 and 15 of Wasserman

and Faust (1994).
The model proposed here starts from the so-called p1 model for complete

network data, introduced by Holland and Leinhardt (1981). This defines
the probability function of each dyad (Yij, Yji) representing the directed relations
between nodes i and j in a complete network consisting of n nodes as

P{Yij = y1, Yji = y2}= exp{y1(µ+ αi + βj) + y2(µ+ αj + βi) + y1y2ρ}/kij,
y1, y2 = 0, 1; i, j = 1, . . . , n; i 6= j, (1)

where

kij = 1+exp(µ+αi+βj)+exp(µ+αj +βi)+exp(2µ+αi+βj +αj +βi+ρ). (2)

The dyads are assumed to be independent.
The interpretation of the parameters in Holland and Leinhardt’s (1981)

terminology is that µ is a density parameter, constituting an overall mean, αi
is a productivity parameter, characterizing i as a sender, βj is an attractiveness
parameter, characterizing j as a receiver, and ρ is a parameter indicating the
force of reciprocation. The parameters αi and βj are collected in n × 1 vectors
α and β. Imposing an identification restriction on both vectors, the number
of non-redundant parameters is 2n, which increases with the number of nodes.
Holland and Leinhardt called the probability function (1) p1: “... the first or
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simplest family of distributions on digraphs that might be considered for social
network data. This is because it expresses the two elementary social tendencies
of reciprocation and differential attraction.” (Holland and Leinhardt, 1981,
footnote p. 36). Our model is called p2 since we regard it as a direct successor
to the p1 model: it retains reciprocation and differential attraction but now links
these concepts to actor and dyadic attributes. Further, the number of statistical
parameters is limited by treating the parts of the productivity and attractiveness
parameters that are not explained by the covariates as random effects.

1.3 Earlier extensions of the p1 model

Following Holland and Leinhardt’s pioneering 1981 article, a considerable
amount of research has been devoted to the p1 model. Central was – and still
is – the question of how to define adequate models and estimation methods for
the analysis of network data. Holland and Leinhardt (1981) obtain Maxi-
mum Likelihood estimators for the p1 model using generalized iterative scaling.
After showing that the ML estimators can be readily obtained from an Iterative
Proportional Fitting (IPF) algorithm by redefining the complete network data
as a four-dimensional contingency table (Fienberg and Wasserman, 1981),
Wasserman has (co-)authored many papers on interesting extensions of p1. An
overview of procedures for model fitting and parameter estimation is given in
Wasserman and Weaver (1985).

Extensions of p1 to deal with network data of multiple relations estimated with
IPF are described in Fienberg, Meyer, and Wasserman (1985). Analysis
of network data on valued (discrete, not just binary) relations in the line of
the p1 model is proposed by Wasserman and Galaskiewicz (1984) and by
Wasserman and Iacobucci (1986). Kenny and La Voie (1984) proposed the
Social Relations Model (SRM) that can be viewed as a random effects model for
continuous social interaction data (e.g., social networks or so-called round robin
experiments) with a complex but accurate variance structure (see also Warner,
Kenny and Stoto, 1979). Snijders and Kenny (1999) formulate the SRM
as a multilevel model with cross-nested random effects, that can be estimated
with standard multilevel software like MLwiN (Rasbash, Browne, Healy,
Cameron, and Charlton, 2000).

Holland and Leinhardt (1981, p. 34) mention the importance of using
available covariates or nodal attributes in the analysis of network data with-
out further suggestions for implementation. Fienberg and Wasserman (1981)
incorporate covariates in the p1 model by defining subgroups on the basis of
(categorical) nodal attributes and assuming the expansiveness and actractiveness
parameters to be equal for actors in the same subgroup. This idea is further de-
veloped in the so-called a priori stochastic blockmodels introduced in Holland,
Laskey, and Leinhardt (1983) and in a direct extension of the p1 model by
Wang and Wong (1987).
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The notion that the assumption of dyad independence is strong and often
doubtful can already be found in Fienberg et al. (1985) and in Wong’s (1987)
Bayesian version of the p1 model. We cannot assume that actor i’s relation with
actor j is completely independent of his (her) relation with actor k, even after
taking into account actor attributes. The models for Markov graphs proposed
by Frank and Strauss (1986) do express dependence between dyads involving
the same actors and more general network dependence structures. The idea is
to find those network characteristics that provide sufficient statistics to represent
the dependence. Estimating the resulting models, however, is – in general –
not straightforward. Among other things, Frank and Strauss (1986) suggest
pseudolikelihood estimation where the likelihood function is approximated by the
product over all observations of the conditional probability of one observation
given all other observations, which method is elaborated in Strauss and Ikeda

(1990). Models that can be formulated as so-called logit models are estimated
relatively easily with logistic regression estimation techniques such as Iterative
Generalized Least Squares. This approach was extended to the p1 model by
Rennolls (1995) and, more completely, by Wasserman and Pattison (1996),
see also Anderson, Wasserman, and Crouch (1999). The resulting model is
a so-called p∗ model which takes network dependence into account by the choice
of suitable network statistics (to be specified by the researcher). This approach
allows estimation of many different models with standard software for logistic
regression. Generalizations of p∗ to multivariate relations and to valued relations
can be found in Pattison and Wasserman (1999) and in Robins, Pattison,
and Wasserman (1999), respectively.

Even though the parameter estimates obtained with pseudolikelihood are re-
ported for some models to be consistent with the corresponding Maximum Like-
lihood estimates (Strauss and Ikeda, 1990), their standard errors as produced
by standard software packages cannot be used because of the non-independence
of observations. Different models can be compared by likelihood ratio statistics,
but the null distributions of these statistics are as yet unknown. In an application
of an autologistic model for the study of spatial patterns of damaged trees, using
a model with less far-ranging dependence structure, Preisler (1993) proposed
a solution by using a parametric bootstrap procedure to estimate standard er-
rors. Snijders (2002) tried to solve the estimation problem using Markov Chain
Monte Carlo methods by regarding the p∗ model as an exponential family for
which analytic calculations are impossible but which can be simulated. The p∗

model, however, is shown to have convergence problems; alternative conditional
estimation methods are proposed by Snijders and Van Duijn (2002).
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2 The p2 model

The aim of the p2 model is to relate binary network data to covariates while taking
into account the specific network structure. This requires a kind of bivariate
logistic regression model capable of handling the dependence of network data.

The p2 model is based on formula (1). The density and reciprocity parameters,
however, are allowed to vary over dyads, and are therefore denoted µij and ρij.
Moreover, parameters αi, βj, µij, and ρij are further modelled using covariates.

We first consider the node-specific parameters αi and βj. Covariates and
random effects are included in a linear regression model for the productivity and
attractiveness parameters:

α = X1γ1 +A, (3)

β = X2γ2 +B. (4)

This formulation expresses the plausible idea that attractiveness (or popular-
ity) and productivity (or sociability) depend on actor attributes (denoted by X1

and X2, respectively, where the same or different attributes may be used for at-
tractiveness and productivity) with corresponding weights γ1 and γ2. Naturally,
the attributes do not explain all variation in attractiveness and productivity pa-
rameters, as is represented by the residual terms A and B, n × 1 vectors with
components Ai and Bi. The residuals are modeled as normally distributed ran-
dom variables with expectation 0 and variances σ2

A and σ2
B, respectively. Param-

eters σ2
A and σ2

B can be interpreted as unexplained variance, that is, the variance
of the α’s and β’s that is left after taking into account the effect of the covariates
X1 and X2. The productivity and attractiveness parameters of the same node
are correlated: cov(Ai, Bi) = σAB for all i. Independence is assumed for param-
eters of different actors by setting cov(Ai, Aj)=cov(Bi, Bj)=cov(Ai, Bj) = 0 for
i 6= j (cf. Wong, 1987).

If no external information on actors is available, the terms X1γ1 and X2γ2

vanish and σ2
A and σ2

B denote the variances of the α and β parameters, respec-
tively. Then a pure random effects model results with, apart from the density
and reciprocity parameters, only two variance parameters and one covariance pa-
rameter. Thus, the p2 model without covariates is a more parsimonious model
than the p1 model with well-interpretable parameters. Obviously, the fit of p1

will be better than the fit of p2 without covariates.
Second, the reduction of parameters enables relaxation of the assumption

that the density and reciprocity and parameters are constant over dyads, made
by Holland and Leinhardt (1981) for the p1 model for reasons of model
identification, and also proposed by Fienberg and Wasserman (1981) and by
Wasserman and Galaskiewicz (1984). In the p2 model these parameters
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are linearly related to dyadic attributes, denoted by Z1 and Z2. The density
parameters are modelled as

µij = µ+Z1ijδ1. (5)

Because of the substantive interpretation of reciprocity ρ is assumed to be con-
stant within dyads: ρij = ρji (cf. Fienberg and Wasserman, 1981), and
modelled as

ρij = ρ+Z2ijδ2, (6)

where we require Z2ij = Z2ji.
Both parameter equations contain a constant (intercept) and a variable part.

As can be seen from (5) and (6), different dyadic attributes may be used to model
density and reciprocity. From an interpretational point of view, however, it is
recommended to choose the dyadic attributes selected to model reciprocity which
appear in Z2 from the variables (and their linear combinations) that are used
in Z1, to explain density. Thus, it is possible to distinguish a reciprocity effect
from the “overall” density effect. To distinguish between the meaning of effects
on density and on reciprocity, it should be kept in mind that ρij is the log-odds
ratio in the 2× 2 table corresponding to the dyad (Yij, Yji) while the probability
that Yij = 1 is an increasing function of µij but also of ρij; further, µij is the
log-odds of Yij given that Yji = 0 whereas µij + ρij is the log-odds of Yij given
that Yji = 1.

In our example analyzing the friendship networks between lawyers we study
the effect of “similarity” and “superiority” in terms of seniority, where a low
number indicates a high status. Similarity (of dyads) is considered an important
determinant for the explanation of density and reciprocity, as has been demon-
strated extensively in friendship research (see, e.g., Zeggelink, 1993).

We will define similarity as the absolute difference between two nodal attribute
values, and thus in fact define dissimilarity: the larger the value the more dissim-
ilar the two nodes are. (Dis)similarity can be defined more generally as a variable
measuring the distance between two nodes with respect to some characteristic. A
negative dissimilarity effect on density has the interpretation that, other things
being equal, a relation is more probable between similar than between dissimilar
actors. A negative dissimilarity effect on reciprocity has the interpretation that
similar pairs of actors are more likely to have a mutual or null relation than dis-
similar pairs. A positive dissimilarity effect on reciprocity can be understood as
reducing the accompanying negative density effect that affects the probability of
a mutual relation twice (cf. (1)). We can separate the effect of similarity on the
occurrence of reciprocal relations from the effect of similarity on the occurrence
of any relation when we use similarity to model both µ and ρ.

Superiority is a non-symmetric variable that, in our application, is defined as
the difference between the sender’s seniority and the receiver’s seniority. This
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variable is only suitable for modeling density and not for reciprocity because
its value depends on the direction. A positive superiority effect on the density
indicates that a relation from a junior to a senior lawyer (indicated by a positive
difference in seniority) is more likely than a relation in the opposite direction.

Deriving dyadic covariates from nodal attributes may lead to collinear nodal
and dyadic attributes, and therefore requires special attention of the researcher
in the model selection process. Dyadic attributes can also be obtained from
other available network data, for instance a (symmetrized) network of a different
relation.

3 Estimation of the p2 model

In this section we start with the IGLS estimation procedure for the p1 model
defined as a Generalized Linear Model. From this, the IGLS estimation of the
p2 model, a Generalized Linear Mixed Model, involving more complex formulas,
follows straightforwardly, as will be shown in the second subsection, followed
by a subsection on model selection and testing. A comparison of the p2 model
with other GL(M)Ms for dependent binary data and their estimation methods
concludes the section.

3.1 The p1 model formulated as a GLM

The probability function (1) can be rewritten as the product of two probability
functions: the unconditional probability of Yij, and the conditional probability
of Yji, given the value of Yij,

P{Yij = y1, Yji = y2} = P{Yij = y1}P{Yji = y2|Yij = y1} =

(exp{y1(µ+ αi + βj)}+ exp{y1(µ+ αi + βj + ρ) + µ+ αj + βi})/k1ij ×
exp{y2(µ+ αj + βi + y1ρ)}/k2ji, (7)

with

k1ij = kij as in (2)

and

k2ji = 1 + exp(µ+ αj + βi + y1ρ).

The order of i and j is arbitrary. In Bonney’s (1987) regressive logistic
model for dependent binary observations, each of the conditional probabilities is
assumed to be logistic. For the p1 model only the second (conditional) component
has a logistic structure.
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The dyads can be modeled using the expected values (denoted by E) of their
components: {

Yij = E(Yij) + E1ij

Yji = E(Yji|Yij) + E2ji,
(8)

where

E(Yij) = P{Yij = 1} = (exp(µ+ αi + βj) + (9)

+ exp(2µ+ αi + αj + βi + βj + ρ))/k1ij,

and

E(Yji|Yij = y1) = P{Yji = 1|Yij = y1} = exp(µ+ αj + βi + y1ρ)/k2ji. (10)

This implies that E(E1ij) = E(E2ji) = 0. Note that var(E1ij) = var(Yij);
var(E2ji) = var(Yji|Yij).

Define θ1ij = (µ, ρ, αi, αj, βi, βj) and θ2ji = (µ, ρ, αj, βi). Let F1(θ1ij) denote
E(Yij), and F2(θ2ji, y1) denote E(Yji|Yij = y1). Because the values of the dyad
elements are 0 and 1, their variances can be expressed as

var(Yij) = F1(θ1ij)(1− F1(θ1ij)) (11)

and
var(Yji|Yij = y1) = F2(θ2ji, y1)(1− F2(θ2ji, y1)). (12)

This Generalized Linear Model can be estimated using Iterative Generalized
(or Weighted) Least Squares (IGLS), yielding Maximum Likelihood estimators
of θ = (µ, ρ,α,β) (see, e.g. McCullagh and Nelder, 1989, Section 2.5).
Identification restrictions are needed for α and β, e.g., α1 = β1 = 0 or

∑
i αi =∑

j βj = 0 as in Holland and Leinhardt (1981).
The general IGLS estimation algorithm alternately computes first θ given the

current value of the variances (11) and (12), and then these variances given the
residuals obtained in the first step. IGLS for non-linear models requires an extra
step: updating the linearization of the non-linear link functions F1(θ1ij) given in
(10) and F2(θ2ji, y1) given in (10).

The linearization at each iteration step is based on a first-order Taylor expan-
sion (omitting subscripts of F and θ) around the current point θ0 :

F (θ) ≈ F (θ0) +
∂F

∂θ

∣∣∣θ=θ0(θ − θ0) . (13)

We introduce the following matrix notation, with D = ∂F/∂θ
∣∣∣θ=θ0 to expli-

cate the estimation process sketched above, using (8) rewritten as Y = F (θ)+E
and (13):

Y − F (θ0) +Dθ0 ≈Dθ +E, (14)

where
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• The n(n− 1)-dimensional vector Y contains both Yij and Yji for all n(n−
1)/2 dyads. The order of i and j is arbitrary and does not influence the
results.

• F (θ0) is the vector consisting of F1(θ1ij) and F2(θ2ji, y1) corresponding to
Y , cf. (8).

• Matrix D contains all partial first derivatives evaluated in θ = θ0. For each
of the unconditional relations two sender and two receiver effects and for
each conditional relation one sender and one receiver effect are included.
The partial derivatives are given in the Appendix.

• E is a vector containing the disturbance or error terms E1ij and E2ji in (8)
with variances V1ij as in (11), and V2ji as in (12), respectively. The dyad
independence implies that all elements of E are uncorrelated. We denote
the covariance matrix of E by V . V is a square n(n− 1) matrix with the
appropriate expression V1ij or V2ji on the main diagonal. All off-diagonal
elements of V are 0.

It is not necessary to have complete information on all dyads. Missing dyads, or
dyads with only one tie variable are allowed. The dimension of Y , F (θ0), D, E,
and V is then equal to the number of available directed relations.

In each iteration cycle, a GLS regression is performed where the left hand
side of (14) is used as the dependent variable which we denote by Y̆ . The
“explanatory” variables are represented by D. The iteration steps in the non-
linear IGLS algorithm are the following.

1. In each iteration the GLS estimator for θ is computed, given D and V
obtained in the previous iteration. The GLS estimator obtained in the first
step of the (t+ 1)th iteration is

θ̂t+1 = (D′tV̂
−1

t Dt)
−1D′tV̂

−1

t Y̆ t, (15)

where D̂t and V̂ t are the matrices with parameters according to the previ-
ous iteration θ̂t.

2. In the next step V̂ t+1 is calculated.

3. In the third and last step the explanatory variables D are first updated and
then the dependent variable Y̆ .

Convergence is reached if the difference between subsequent elements of θ̂
is sufficiently small. The covariance matrix of θ̂ is estimated as (D′V −1D)−1,
evaluated in the found solution.
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3.2 IGLS estimation of the p2 model

The p2 model is derived from the p1 model by substituting α, β, µ, and ρ by
the regression equations (3), (4), (5), and (6), respectively. The presence of
random effects (A and B) together with the “fixed” regression coefficients (γ1,
γ2, δ1, and δ2) renders a Generalized Linear Mixed Model (GLMM) that can be
estimated with IGLS, analogous to the IGLS estimation of the p1 model presented
in the previous subsection. We use a similar approach as Goldstein (1991)
in his treatment of non-linear multilevel models, but with a more complicated
covariance structure (because of – in multilevel terminology – crossed instead of
nested random effects).

This procedure is presented after defining the p2 model in accordance with
(8):{

Yij = F1(θ,X1i,X1j,X2i,X2j,Z1ij ,Z2ij , Ai, Aj, Bi, Bj) + E1ij

Yji = F2(θ,X1j,X2i,Z1ji,Z2ji, y1, Aj, Bi) + E2ji
, (16)

with θ = (µ, ρ,γ1,γ2, δ1, δ2). F1 and F2 are the conditional expected values of
Yij and Yji, respectively, given the values of A and B. Their exact formulation
can be derived from (10) and (10) substituting αi, αj, βi, βj, µ and ρ by (3), (4),
(5), and (6). The (now both conditional) variances of Yij and Yji are again of the
binomial form F (1− F ).

Following Goldstein (1991), the functions F1 and F2 are linearized ap-
plying a first-order Taylor expansion, as was done for the p1 model, cf. (13).
The expansion is not just around the fixed effects parameter θ (in an arbitrary
point), but also around the random parameters A and B in 0 (their expected
value). Define this point as θ0 = (µ0, ρ0,γ0

1,γ
0
2, δ

0
1, δ

0
2), and let F1(θ0,X,Z) de-

note F1(θ0,X1i,X1j,X2i,X2j,Z1ij ,Z2ij , 0, 0, 0, 0), while F2(θ0,X,Z) denotes
F2(θ0,X1j,X2i,Z1ji,Z2ji, y1, 0, 0). Omitting again all subscripts for notational
ease, the approximating equation used for estimation is (cf. (14)):

Y − F (θ0,X,Z) +D(X,Z)θ0 ≈D(X,Z)θ +CU +E. (17)

Y is defined as before. D is again the covariate matrix with all partial derivatives,
now a function of X and Z, D(X,Z) = ∂F (θ,X, Z)/∂θ

∣∣∣θ=θ0 (see also the

Appendix). X and Z denote the matrices containing the sender and receiver
covariates, and density and reciprocity covariates, respectively. U is the stacked
vector of A and B. Its covariance matrix is given by

ΣU =

(
σ2
AI σABI

σABI σ2
BI

)
,

where I is an n × n identity matrix. C is a design matrix for U providing
the appropriate random terms for Y , C = ∂F (θ,X, Z, U)/∂U

∣∣∣θ=θ0 , where
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F (θ,X, Z, U) represents the two elements of (16). E is defined as before, now
with covariance matrix ΣE.

The dependent variable Y̆ is the left hand side of (17). Its variance can now
be expressed as

V = CΣUC
′ + ΣE.

Note that the order of nodes i and j does make a difference in view of the
asymmetric definition of F1 and F2 in the random terms A and B. Therefore, it
seems sensible to order the pairs of actors such that actors are (almost) as often
node i as they are node j.

The IGLS iteration process consists again of three steps. In the first step the
“fixed” effects parameter vector is estimated (cf. (15))

θ̂t+1 = (D(X,Z)′tV̂
−1

t D(X,Z)t)
−1D(X,Z)′tV̂

−1

t Y̆ t.

In the second step V is estimated in the way proposed by Goldstein (1986)
which is similar to a modified Hildreth-Houck model known in the econometric
literature (see, e.g., Maddala (1977), Ch. 17). A regression model is formulated
for the parameters representing the dependence structure, that is the elements of
ΣE and ΣU :

Y ∗ = X∗v∗ + e∗,

where Y ∗ = vec((Y̆ −D(X,Z)θ)(Y̆ −D(X,Z)θ)′) consists of the residuals of
the first step, and v∗ = (σ2

A, σ
2
B, σAB) contains the parameters to be estimated.

X∗ is a design matrix corresponding to the parameters in v∗, whose elements are
given in the Appendix.

Then, the GLS estimator for the parameters of the random part is

v∗ = (X∗
′
V ∗−1X∗)−1X∗

′
V ∗−1Y ∗, (18)

where V ∗, a square n2(n − 1)2 matrix, is the covariance matrix of e∗. In the
normal case, V ∗ = V ⊗ V , and then the GLS estimator is equal to the ML
estimator (Goldstein, 1986).

The third iteration step consists of updating Y̆ , D(X,Y ), and V .
The estimation process is much more computationally demanding for p2 than

for p1, because of the second step in the iteration process which involves large
matrices and the time consuming computation of the inverse of the symmetric
matrix V . The n(n− 1) square matrix V can be broken down using the decom-
position formula (cf. e.g. Goldstein, 1986, App. 1)

V −1 = (CΣUC
′ + ΣE)−1 (19)

= ΣE
−1 −ΣE

−1CΣUG
−1C ′ΣE

−1,

where G = I+C ′ΣE
−1CΣU is a 2n×2n matrix (instead of n(n−1)×n(n−1)),

reducing the computational burden considerably. More information is given in
the Appendix.

11



In the open software system StOCNET (Boer, Huisman, Snijders, and
Zeggelink, 2003), free at the web (http://stat.gamma.rug.nl/stocnet), a p2

module (Zijlstra and Van Duijn, 2003) is available that performs the IGLS
estimation of the p2 model sketched above.

3.3 Model selection and testing

From the model estimation process several statistics are obtained that may be
used for model selection and parameter testing, such as the value of the likeli-
hood function (or deviance) and the standard errors (or covariance matrix) of the
parameter estimates. The problem with these measures is that they are based on
the Taylor-expansion of the likelihood function. The quality of this approxima-
tion is unknown and may vary from model to model (see also Rodŕıguez and
Goldman, 1995), in particular for models with many parameters, making the
usual forward or backward testing procedures also more difficult to perform. The
likelihood is exact if the variances of the random effects, σ2

A and σ2
B, are zero.

Since Likelihood Ratio tests are not very reliable with these approximated
likelihoods (Goldstein, 1995, p. 103), our proposal is to use Wald tests for
the testing of parameters and to use a careful model selection procedure identi-
fying important (possibly significant) covariates to be tested simultaneously in
backward selection steps.

The Wald test statistic W testing the hypothesis that θ = 0 is given by (see,
e.g., Serfling, 1980, p. 157)

W = θ̂
′
V̂
−1
θ̂,

where V̂ is the covariance matrix of θ̂ which is computed according to the ap-
proximation in the preceding subsection. W has an approximate χ2 distribution
with the dimension of θ as the number of degrees of freedom. W reduces to the
well-known t-statistic for one-dimensional θ.

3.4 Relation of the p2 model to other GL(M)Ms

Defining the p1 and p2 models as GLM and GLMM respectively, puts them in
a long and rich tradition of models for binary data in which the assumption of
independent pairs is inappropriate. In this section we will give a short overview of
related Generalized Linear (Mixed) Models, most of which have been developed
for medical applications. The applicability of most models discussed is not limited
to pairs of observations but can be extended to longitudinal data.

Rosner (1982) showed that ignoring the interdependence of paired data (fol-
lowing a normal or binomial distribution) leads to invalid results. He developed
a polytomous logistic regression model that may be viewed as a reparametriza-
tion of the p1 model assuming equal sender and receiver effects for every actor
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(Rosner, 1984). The model can be extended with covariates specific for the pair
and its elements and is estimated with an iterative Newton-Raphson procedure.

The regressive logistic models proposed by Bonney (1987) also include the
p1 model with equal sender and receiver effects as a special case. These models
are explicitly designed for sequentially ordered binary data as the key of this
approach is the conditioning of one binary outcome on the other (preceding)
binary outcomes. By clever parametrization a logistic regression model can be
formulated for the conditional observations. This model can be estimated with
standard computer programs for logistic regression.

Connolly and Liang (1988) generalized Rosner’s (1984) model to con-
ditional logistic regression models for clusters of binary data, that is a logistic
model for one observation conditional on the other observation. The model in-
cludes covariates (for each observation) and the parameters of its pseudolikelihood
function are estimated using estimating functions.

Prentice (1988) points out that the conditional models are most appropriate
for exploring the dependence between the observations within a pair or cluster,
a point elaborated by Neuhaus and Jewell (1990). Alternatively, Prentice

(1988) derives a joint model (with covariates for each observation) that also allows
for regression on the marginal expectations. It can be estimated with generalized
estimating equations. He also mentions the mixture model to accommodate pair
or cluster specific covariates. This approach is taken by Stiratelli, Laird and
Ware (1984) where estimation is feasible with the EM algorithm (see also An-

derson and Aitkin, 1985). The resulting random effects model accommodating
the dependence through random regression coefficients is related to the models
of Goldstein (1991) and Longford (1994) that are estimated with Iterative
Generalized Least Squares (IGLS) and Fisher scoring, respectively.

Many improvements of and alternatives to the earlier mentioned estima-
tion methods have been proposed: Restricted Maximum Likelihood (REML)
by Schall (1991); MCMC estimation using the Gibbs sampler by Zeger and
Karim (1991), see also Browne and Draper (2003); Penalized Quasi-Likelihood
(PQL) by Breslow and Clayton (1993), based on an approximation of the
unconditional likelihood; second order approximations by (Goldstein (1994)
and Goldstein and Rasbash (1996); numerical integration by Hedeker and
Gibbons (1997), see also Rabe-Hesketh, Pickles and Skondral (2001);
stochastic EM by McCulloch (1997); nonparametric (latent class) EM by
Aitkin (1999); and Laplace approximation by Raudenbush, Yang, and Yosef

(2000).

4 Data and analysis

To illustrate the p2 model we use data collected by Lazega (1992, 1995, 2001)
in a Northeastern US law firm on informal relationships between 71 lawyers,
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divided in 36 partners and their 35 associates. Complete networks are available on
advice, collaboration, and friendship relations that are defined as binary directed
relational variables. Using the p2 module version 2.0.0.7 (Zijlstra and Van

Duijn, 2003) available in StOCNET version 1.4 (Boer et al., 2003), we analyze
the friendship network between the 35 associates of the law firm, consisting of 595
dyads. The overall density of the friendship network of associates, defined as the
percentage of present directed friendship relations, is 0.153. Of the potential 1190
relations, 182 are present, in 62 mutual and 58 asymmetric dyads. Analyses with
the p2 model of the advice relationships between partners, between associates,
and between all lawyers, can be found in Lazega and Van Duijn (1997).

Several actor covariates are available expressing the formal structure of the
organization: location (the firm has three offices in three different cities, 26 of
them are in the main office), practice specialty (21 are litigators; 14 corporate
lawyers), and seniority (the associates are subdivided into 5 groups corresponding
to time of entrance in the firm). Other available actor characteristics are gender
(20 men and 15 women), age (ranging from 26 to 53 years with mean 35), and
lawschool attended (17 lawyers had their training at the University of Connecti-
cut). From these covariates, similarity variables are derived to explain density
and reciprocity. From seniority a “superiority” variable is derived that can be
used to model the density parameter (see Section 2). Gender, age, and seniority
are used as sender and receiver effects. The networks on advice and collaboration
are also available as covariates for the density parameter, although we have to
be cautious to use the advice and collaboration data as explanatory variables for
the friendship relation because these networks are outcome variables themselves.

- - - insert TABLE 1 here - - -

First an “empty” model is estimated giving overall estimates of µ and ρ and es-
timates of the variance parameters, presented as Model 0 in Table 1. No p-values
are reported for the parameters of the empty model (nor of these parameters in
the two subsequent models), since they cannot be left out of the p2 model. In
Model 0, the variance of “sending” friendship seems to be somewhat larger than
the “receiving” friendship variance. A small negative covariance is observed. The
density parameter µ is negative, indicating a network density smaller than 0.5;
the reciprocity parameter ρ is positive, as expected.

Next, all covariates are added to the model one by one, leading to a series
of models with one or two (in case of reciprocity which is accompanied by the
corresponding density) parameters, not shown here. Location and gender turn out
to be important density variables (i.e. as dissimilarity variables). For location also
a weak reciprocity effect is found. Seniority is important both as a density variable
as well as a sending variable (young associates tend to send more friendship
relations). A positive density effect of ”superiority” is found. Finally, a positive
receiver effect for age is found.
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Then a model is estimated that contains all variables found to be important in
the previous step. In a backward selection procedure discarding all non-significant
effects, a first model is obtained (Model 1). Table 1 shows the parameter estimates
of Model 1, their standard errors, and a two-sided p-value based on the Wald
statistic. In this model, the superiority effect and the dissimilarity density effects
of location, seniority, gender and specialty are retained. The density of friendships
is smallest among associates of different seniority and gender who do not work in
the same office and who have a different practice. A friendship relation is more
likely from a junior associate to a senior associate than vice versa. Having one of
the above characteristics in common increases the density. A reciprocity effect of
similarity of location is included in the model, mainly for illustrational purposes.
The positive parameter estimate implies that the negative dissimilarity effect of
location is reduced considerably for mutual dyads.

Finally, the advice and collaboration networks are added to Model 1 as ex-
planatory variables. Again, a backward selection procedure is applied, resulting
in Model 2 presented in Table 1. Similarity with respect to office, seniority and
gender are still quite important, but advice is now the variable with the largest
parameter estimate. The similarity effect of location is reduced because its cor-
responding reciprocity effect is not included in the model. The superiority effect
and the dissimilarity effect of specialty are no longer included in the model.
These effects become insignificant when advice is included in the model. Advice
takes over the role of superiority and specialty similarity. This can be explained
by the fact that both both variables contribute to the ”explanation” of advice
relationships between the associates (cf. Lazega and Van Duijn, 1997).

In both Models 1 and 2 no explanatory variables for the sender and receiver
effects are included. It is observed that the sender and the receiver variances
are still of the same order of size while the covariance is almost zero in Model 1
and slightly positive in Model 2, implying considerable differences between the
friendship sending and receiving behavior of individual associates. Apparently,
this heterogeneity could not be explained by the available covariates characteriz-
ing mostly the formal structure.

5 Summary and discussion

The p2 model was presented as an extension of the p1 model with nodal and dyadic
attributes and random effects. Both models were formulated as Generalized Lin-
ear Models and an algorithm to perform IGLS estimation with a first-order Taylor
approximation was proposed.

In line with the p1 model, the p2 model assumes complete network data,
although this is not required for the estimation of the model which can handle
dyads of which one or both relations are missing, assuming missingness at random.
Missing one or more attributes of a certain actor implies deletion of all dyadic
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relations involving that actor; likewise, missing dyadic attributes implies deletion
of the corresponding dyadic relation.

The most important difference of the p2 model with other models for depen-
dent binary data is its cross-nested random structure coming from the network in
which relations to and from the same actor are assumed to be related. It is exactly
this assumption of ”dyad dependence” that makes the p2 model so interesting, but
at the same time difficult to estimate. Although the IGLS estimation of the first-
order Taylor approximation of the non-linear p2 model can be viewed as relatively
straightforward, it is easy to criticize. It is a so-called first-order Marginal Quasi
Likelihood (MQL) estimation method, which Breslow and Clayton (1993)
and Rodŕıguez and Goldman (1995, 2001) demonstrated to underestimate
the variance parameters and the fixed effects, especially if the variance compo-
nents are large. A second-order approximation together with PQL improves the
estimates considerably (Goldstein, 1994; Goldstein and Rasbash, 1996).
Further research about higher order approximations for the p2 model would be
relevant.

Aitkin (1999) proposed an elegant, nonparametric approximation method
which, however, cannot be adapted for the p2 model because of the cross-nested
random effects. Probably the best way to improve the estimation of the p2 model
will be via exact, although computationally intensive, MCMC methods, following
Browne and Draper (2003). Such an approach is expected to also eliminate
the sensitivity of the current IGLS method to the order of the dyad elements.

Wright (1997) notices the problem of extra-binomial variation for binary
data with a hierarchical structure, especially if the data are sparse, that is with
relatively few observations per cluster. The p2 model does not allow for extra-
binomial variation, but this could be easily incorporated by adding a dispersion
parameter to the variance equations (11) and (12).

Similarly, extensions to binary data with a different dependence structure are
feasible. Especially extensions to more complex variance structures are considered
important. These may arise from the availability of multiple relations, e.g., in
the simultaneous analysis of the friendship, advice, and collaboration networks,
or from the presence of multiple networks, e.g. the friendship networks in various
companies .

The approximate nature of the estimation method is also apparent in the
model selection process, which has to be performed with even more care than
usual. We cannot use likelihood ratio or deviance tests, but have to resort to
Wald tests. With improvement of the estimation method, the model testing may
be improved as well.

Even in view of these limitations, we consider the model to be a suitable and
interesting extension of the p1 model, as is illustrated in its application to the
analysis of informal networks in a law firm.
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Appendix

First derivatives of F1 and F2

First some additional notation is introduced to simplify the expressions. Define
a = exp(µ + αi + βj), b = exp(µ + αj + βi), and c = exp(ρ) , then (10) can be
rewritten as

F1(θ1ij) =
a(1 + bc)

1 + a+ b+ abc
.

The first partial derivatives can now be expressed as

∂F1

∂µ
=

2abc+ a+ ab2c

(1 + a+ b+ abc)2

∂F1

∂αi
=
∂F1

∂βj
=

a(1 + bc)(1 + b)

(1 + a+ b+ abc)2

∂F1

∂αj
=
∂F1

∂βi
=

ab(c− 1)

(1 + a+ b+ abc)2

∂F1

∂ρ
=

abc(1 + b)

(1 + a+ b+ abc)2
.

Further, defining d as exp(y1ρ), (10) can be written as

F2(θ2ji, y1) =
bd

1 + bd
.

The first partial derivatives are then

∂F2

∂µ
=

∂F2

∂αj
=
∂F2

∂βi
=

bd

(1 + bd)2

∂F2

∂ρ
=

y1bd

(1 + bd)2
.

These are all first partial derivatives needed for the p1 model. From these ex-
pressions the partial derivates for the p2 model are derived easily (leaving out the
subscripts):

∂F

∂γ1

= X1
∂F

∂α

∂F

∂γ2

= X2
∂F

∂β

∂F

∂δ1

= Z1
∂F

∂µ
∂F

∂δ2

= Z2
∂F

∂ρ
.
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Building blocks of v∗

The elements of (18) can be obtained relatively easily, using the following matrix
properties, (see, e.g. Goldstein, 1986, Goldstein and Rasbash, 1992, and
Searle, 1982), and assuming the matrices M,N,O, P have the correct dimen-
sions:

(M ⊗N)−1 = M−1 ⊗N−1;

(vec(P ))′(M−1 ⊗N−1)vec(Q) = tr(P ′M−1QN−1);

tr(PQ) = tr(QP ),

where tr is the trace operator (summing the main diagonal elements).
Let CA contain the first n columns of C (corresponding to A) and CB its

last n columns C (corresponding to B). Then X∗ can be rewritten as

X∗ = (vec(CACA
′), vec(CBCB

′), vec(2CACB
′)).

Let
R = Y̆ −D(X,Z)θ,

then
Y ∗ = vec(RR′).

The evaluation of the right hand side of (18) is broken down in two steps. First
X∗

′
V ∗−1Y ∗ is computed. Using the symbols introduced before, we get

X∗
′
V ∗−1Y ∗ =

 (vec(CACA
′))′(V ⊗ V )−1vec(RR′)

(vec(CBCA
′))′(V ⊗ V )−1vec(RR′)

2(vec(CACB
′))′(V ⊗ V )−1vec(RR′)

 .
This expression can be rewritten, using V ∗−1 = V −1 ⊗ V −1 and applying the
matrix properties stated above, as (CA

′ΣE
−1R−CA′HR)′(CA

′ΣE
−1R−CA′HR)

(CB
′ΣE

−1R−CB ′HR)′(CB
′ΣE

−1R−CB ′HR)
2(CA

′ΣE
−1R−CA′HR)′(CB

′ΣE
−1R−CB ′HR)

 ,
where

H = ΣE
−1CΣUG

−1C ′ΣE
−1,
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with
G = I +C ′ΣE

−1CΣU .

For the actual computation the 2n-dimensional vector

C ′ΣE
−1R−C ′HR

is evaluated. The first element of X∗
′
V ∗−1Y ∗ is then the sum of the squared

first n elements. Its second element the sum of the squared second n elements.
Its third element twice the sum of the crossproducts of the first n with the last
n elements.

For the evaluation of the symmetric 3 × 3 matrix (X∗
′
V ∗−1X∗)−1 a similar

kind of computational scheme is performed. This leads to the evaluation of

C ′ΣE
−1C −C ′HC,

a symmetric 2n× 2n matrix that consists of four n× n matrices:(
CAA CAB

CBA CBB

)
,

with CAB = C ′BA. The six distinct elements of (X∗
′
V ∗−1X∗)−1 can then be

computed as:

(1, 1) : tr(CAACAA);

(1, 2) : tr(CABCBA);

(1, 3) : 2tr(CAACBA);

(2, 2) : tr(CBBCBB);

(2, 3) : 2tr(CBACBB);

(3, 3) : tr(CABCAB) + tr(CBACBA) + 2tr(CAACBB).
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TABLE 1
Results of the p2 analysis of Lazega’s associates’ friendship network

Model 0 Model 1 Model 2
Est. (S.E.) Est. (S.E.) p-value Est. (S.E.) p-value

Density µ -2.70 (0.23) -0.64 (0.35) -1.62 (0.37)
Location1 -2.33 (0.43) <0.001 -1.45 (0.31) <0.001
Seniority2 -0.58 (0.09) <0.001 -0.49 (0.09) <0.001
Seniority3 0.18 (0.07) 0.011
Gender1 -0.55 (0.17) 0.001 -0.58 (0.18) 0.002
Specialty2 -0.51 (0.17) 0.002
Advice 1.50 (0.21) <0.001
Cowork 0.53 (0.24) 0.027

Reciprocity ρ 3.29 (0.31) 2.21 (0.36) 2.22 (0.35)
Location1 1.72 (0.94) 0.068

Sender
Variance σ2

A 1.08 (0.25) 1.19 (0.27) 1.36 (0.30)
Receiver
Variance σ2

B 0.75 (0.19) 0.63 (0.17) 0.65 (0.18)
Covariance σAB -0.33 (0.16) -0.01 (0.16) 0.16 (0.17)
1 dichotomized difference of sending and receiving actor covariate values
2 absolute difference of sending and receiving actor covariate values
3 difference of sending and receiving actor covariate values


