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The Multilevel p2 Model
A Random Effects Model for the Analysis of Multiple

Social Networks
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Abstract. The p2 model is a random effects model with covariates for the analysis of binary directed social network data coming from a single
observation of a social network. Here, a multilevel variant of the p2 model is proposed for the case of multiple observations of social networks,
for example, in a sample of schools. The multilevel p2 model defines an identical p2 model for each independent observation of the social
network, where parameters are allowed to vary across the multiple networks. The multilevel p2 model is estimated with a Bayesian Markov
Chain Monte Carlo (MCMC) algorithm that was implemented in free software for the statistical analysis of complete social network data, called
StOCNET. The new model is illustrated with a study on the received practical support by Dutch high school pupils of different ethnic back-
grounds.
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Introduction

An important goal of social network analysis is to find
structure in relations within groups. Usually, one social
network at a time is analyzed. This article deals with the
analysis of multilevel network data where multiple obser-
vations of the same binary relation in different groups are
available. In an educational setting, for example, networks
may be observed in multiple schools or school classes,
forming the higher-level units. Analyzing multiple net-
works simultaneously provides greater generalizability of
research results compared to analyses of single-network
data. For multilevel network data, an interesting question
is whether all social networks show a common structure.
If this turns out not to be the case, subsequent questions
are on which aspects the networks differ, and whether there
are network attributes to which these differences can be
ascribed. The multilevel p2 model has been designed to
answer these types of questions. So far, a statistical analysis
of multiple networks with the p2 model involved a two-
stage estimating procedure, where a meta-analysis was per-
formed on the parameters obtained in separate p2 analyses
of each network (Baerveldt, Van Duijn, Vermeij, & Van
Hemert, 2004). The multilevel p2 model estimates the pa-
rameters more efficiently and, moreover, quantifies the dif-
ferences between networks by modeling the variability of
parameters over networks. For continuous social network
data, the social relations model for multiple groups can be
used that can be estimated with standard multilevel soft-
ware (Snijders & Kenny, 1999).

The data under consideration consist of K networks.

Each single network is defined by a set of social actors and
a relation (e.g., friendship, collaboration) defined on this
set. Each relation is expressed by a collection of tie vari-
ables: Yij equals 1 if there is a tie from actor i to actor j,
and 0 otherwise (where the notation temporarily omits to
indicate which of the networks is being referred to). It is
assumed that the sets of actors for the K networks are dis-
joint (e.g., different school classes), and that the content,
or meaning, of the relation is the same in each network
(e.g., friendship). It should be noted that the actor sets are
not required to have the same size for every network.

In the p2 model (Van Duijn, Snijders, & Zijlstra, 2004),
the tie variables are regressed on explanatory variables,
while the dependence of ties from and to the same actor is
modeled using random effects. The multilevel p2 model
defines an identically specified p2 model with varying pa-
rameters for multiple independent social networks. One of
the Bayesian Markov Chain Monte Carlo (MCMC) algo-
rithms developed for the single-network p2 model by Zijl-
stra, Van Duijn, and Snijders (2005a) can be expanded for
the multilevel p2 model. This hybrid Metropolis-Hastings
algorithm will be briefly described in the third section, after
defining the multilevel p2 model in the next section. Soft-
ware for the multilevel p2 model is available in the p2 mod-
ule of StOCNET (Boer, Huisman, Snijders, & Zeggelink,
2003), an open software system for the statistical analysis
of social networks.

The multilevel p2 model is applied to network data col-
lected by Chris Baerveldt in 20 Dutch high schools (Baer-
veldt, 2000; Snijders & Baerveldt, 2003). The central ques-
tion dealt with in this article is whether these pupils tend
to report more practical support from other pupils with the
same ethnic background.
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The Multilevel p2 Model
The multilevel p2 model is an extension of the p2 model
(Van Duijn et al., 2004) that originates from the p1 model
proposed by Holland and Leinhardt (1981). These models
are defined by specifying the probability of observing one
of the four possible outcomes of the pair of two directed
ties between each pair of actors, which is called a dyad.
Let a dependent network with n actors be denoted by the
tie indicator variables Yij and let the actors i and j have
numbers 1, . . .,n. Then the p1 model for the probabilities
of the two observed ties between actors i and j is defined by

P(Y � y , Y � y ) � exp(y l � y y q)/c,ij 1 ji 2 1 ij 1 2

c � exp(y l � y l � y y q), (1)� 1 ij 2 ji 1 2
y y �{0,1},i�j1 2

l � l � � � b ,ij i j

where �i is a sender parameter for actor i, bj a receiver pa-
rameter for actor j, l the density parameter, and q the reci-
procity parameter.

In the p1 model, all ties coming from or directed toward
the same actor are mutually related through—or condition-
ally independent given—the 2n parameters �i and bi. The
number of parameters in the p1 model increases linearly with
the number of actors, an undesirable property for any model.
The p2 model extends the p1 model by including covariate
effects for �, b, l, and q, while the total number of param-
eters in this model is reduced by assuming random (instead
of fixed) sender and receiver effects Ai and Bi. The latter are
assumed to be independent, identically bivariate normally
distributed variables with zero means, and covariance matrix
R with diagonal elements r 2

A (sender variance), and r 2
B (re-

ceiver variance) and off-diagonal elements rAB (sender-re-
ceiver covariance). In the p2 model, the sender and receiver
parameters are regressed on (actor) covariates X1 and X2

with fixed regression parameters c1 and c2,

� � X c � A ,i 1i 1 i

b � X c � B .i 2i 2 i

The density and reciprocity parameters l and q are regressed
on Z1 and Z2 with fixed regression parameters d1 and d2,

l � l � Z d ,ij 1ij 1

q � q � Z d .ij 2ij 2

Note the added subscripts i and j for the density and rec-
iprocity parameters, which are now assumed to be dyad-
specific. The variables Z1 and Z2 specify dyadic covariates
depending on the ordered pair of actors (i, j), where Z2 is a
symmetric matrix, expressing the mutuality-by-definition of
reciprocity, qij�qji.

The multilevel p2 model specifies an identical p2 model
for K independent observations of a network relation. To
account for differences between the K networks, the multi-
level p2 model includes random coefficients for the fixed p2

regression parameters at the network level. The fixed re-
gression parameters become random coefficients by adding
random effects G1 and G2 to the regression parameters c1

and c2 for the sender and receiver effects. The density and
reciprocity parameters l and q obtain random effects M and

R, their regression parameters random effects D1 and D2.
The parameters in the p1 model (Equation 1) for the kth
network are thus substituted by

� � X (c � G ) � A ,ik 1ik 1 1k ik

b � X (c � G ) � B ,ik 2ik 2 2k ik (2)
l � l � M � Z (d � D ),ijk k 1ijk 1 1k

q � q � R � Z (d � D ).ijk k 2ijk 2 2k

The vector with random effects for each network k is
denoted by Tk� � (Mk, Rk, G1k�, G2k�, D1k�, G2k�), and is assumed
to be normally distributed with zero means and covariance
matrix X. A further assumption, common in multilevel mod-
eling, is that the random effects at the network level (k) are
independent from the random effects at the actor level (i).

The multilevel p2 model can be regarded as a three-level
random effects model where Level 1 is formed by the tie
observations, cross-nested in the actors (Level 2), who are
nested in the networks (Level 3). Just like the p2 model
allows for covariates at the actor level, the multilevel model
allows for explanatory variables at the network level, adding
a regression model to the network-specific parts of Equation
2. For instance, the term l�Mk can be replaced by
l�Mk�Wkg, where Wk denotes a vector of network-level
covariates such as network size and aggregated actor char-
acteristics.

Outline of the MCMC Estimation
Algorithm

For random effects models, maximum likelihood estimation
of the fixed effects and of the variances of the random effects
requires integration over the random parameters. In the case
of the multilevel p2 model, these are practically intractable
integrals, which is why an MCMC algorithm is applied.

In MCMC estimation methods, prior distributions need
to be specified for the model parameters, which, together
with the data, determine the posterior distributions for the
parameters, as follows from Bayes’s theorem. In these al-
gorithms, a Markov chain generates a sample of all param-
eters. If convergence of the chain can be postulated after an
initial burn-in period, then this is a sample from the posterior
distribution and Monte Carlo estimates can be calculated
from this sample. This section provides a succinct overview
of how the posterior distributions of the multilevel p2 model
parameters are obtained and how these are sampled from.

The multivariate distribution of the data and the fixed and
random parameters has a probability density that is propor-
tional to the joint density

P(Y, C, R, h, T, X), (3)

where Y�(Y1�, . . . ,YK�)� contains the observed data for all
networks, with Yk� the vector of all dyads (Yijk, Yjik) in net-
work k. C contains all pairs of random actor effects (Aik,
Bik), and R denotes their 2 � 2 covariance matrix. Vector
h�� (l, q, c1�, c2�, d1�, d2�) is the vector of fixed parameters,
and T�(T1�, . . . ,TK�)� is the vector of random effects of the
parameters in h with covariance matrix X.

A convenient way to obtain a sample from the multivar-
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iate distribution of all variables in Equation 3 is by means
of the Gibbs sampler, which involves drawing subsequent
random variables from each distribution formed by a sepa-
rate set of parameters, conditional on all other parameters
and Y (see, e.g., Chib and Greenberg, 1995).

For some of the parameters in Equation 3, the posterior
distributions are easy to sample from due to conditional in-
dependence and convenient conjugate priors. Assuming that
R, h and X are mutually independent, the multivariate den-
sity can be factorized as

P(Y, C, R, h, T, X) (4)
� P (Y|C, h, T )P (C|R)P (R)P (h)P (T|X)P (X).Y C R h T X

Here, PY(Y|C, h, T) is the conditional likelihood of the mul-
tilevel p2 model given the fixed parameters and random actor
and network parameters—that is, the probability of network
k according to Equation 1, with the substitutions defined in
Equation 2, multiplied over all networks. As can be seen
from Equation 4, the density of the random actor effects, C,
depends only on R, and the density of the random effects of
the fixed parameters, T, depends only on X.

Prior probability densities PR(R) and PX(X) are assumed
to have inverse Wishart(RR, mr) and inverse Wishart(Rx, mx)
distributions, respectively, the natural conjugate priors for
the covariance matrices of normally distributed random vari-
ables (see, e.g., Press, 1989, p. 141). The covariance matri-
ces of the Wishart prior distributions are chosen as Rr�I
and Rx�I, where I is the identity matrix. The degrees of
freedom, mr and mx, are chosen as the number of dimensions
plus one, representing little prior information. Consequently,
the posterior inverse Wishart distribution of R�1 has 3 �

degrees of freedom and covariance matrixK� nkk�1

(C�C�I)�1. The number of degrees of freedom for X�1 is
mx with covariance matrix (T�T�I)�1 (see, e.g., Box &
Tiao, 1973, p. 427).

A priori, the parameters in h are assumed to follow in-
dependent normal distributions with zero means and vari-
ances for l and q equal to 100. The variances of the re-
gression parameters c1, c2, d1 and d2 are set to 100 divided
by the observed variance of the corresponding covariate.
Thus, the variance of a parameter for a “standardized” co-
variate is equal to 100 as well. Since parameters in h are on
a logistic scale, a standard deviation of 10 implies that 33%
of the observations are larger than the absolute value of 10.
This prior for h may thus be regarded as very lightly infor-
mative and reflects the fact that almost any statistician will
be surprised when seeing log odds ratios larger than 10.

With all distributions in Equation 3 defined, the condi-
tional posterior distributions for each of the model param-
eters can be derived. By repeatedly sampling from these
distributions, eventually a sample from the multivariate pos-
terior distribution of all parameters is obtained. Draws from
the conditional distributions of the covariance matrices R
and X can be obtained directly from their inverse Wishart
distributions, whereas sampling of the random effects C and
T and the fixed parameters h requires using a Metropolis-
Hastings algorithm (Metropolis, Rosenbluth, Rosenbluth,
Teller & Teller, 1953). For this purpose, we used a similar
type of random walk algorithm as in Zijlstra et al. (2005a),
in which the variance of the proposals is based on its esti-

mate obtained from a normal approximation to the condi-
tional distributions.

A complication in the case of the p2 model, which is pro-
liferated in the multilevel p2 model, is that parameters are
not independent of each other. For instance, as can be seen
from its definition in Equations 1 and 2, the random actor
effects appear at the same place as the density parameter l
and the random network effects Mk. This parameter depen-
dence reduces the efficiency of the MCMC algorithm. For
a higher efficiency, the MCMC algorithm could be adjusted
using a different parameterization that partly controls for
these dependencies in the spirit of Gelfand, Sahu, and Carlin
(1995) and Hoff (2005).

Application: Reported Practical
Support Between Dutch High
School Pupils

In the Dutch Social Behavior Study (Baerveldt, 2000; Baer-
veldt et al., 2004; Snijders and Baerveldt, 2003), social net-
work data were collected among 16–18-year-old pupils be-
longing to the same year group. The data are from 20 urban
high schools with a total of 1,337 pupils. All high schools
were so-called MAVO schools, which educate children of
medium intellectual ability. One of the questions asked was
“Which pupils help you with practical problems, such as
doing homework, organizing a party or completing a diffi-
cult form?” and was intended to measure social support.
This type of question is typical for social network studies.

The pupils are from different ethnic backgrounds. Eth-
nicity is determined by the country of birth of both parents,
where for pupils from parents with different countries of
birth ethnicity is treated as a missing value. One of the re-
search questions of the study was whether more social sup-
port relations are found between pupils from the same ethnic
background. In this example, we consider this as our main
question, taking into account that emotional support rela-
tions have been found to be more prevalent among pupils
of the same gender (see Baerveldt et al., 2004; Zijlstra et al.,
2005b).

Some descriptive statistics for the data in the application
are given in Table 1. The data set on which the analyses are
performed is reduced to 1,232 after discarding those pupils
for whom either their gender or ethnic background was
missing. Sample sizes for the different schools are then be-
tween 38 and 96, with varying composition. The range of
percentages are 36–68% boys, 12–92% Dutch, 0–19% Mo-
roccan, 0–23% Turkish, and 0–28% Surinamese. Two
schools have no pupils from a Moroccan, Turkish, or Suri-
namese background. Seven schools have no Moroccan pu-
pils, four no Turkish, and four no Surinamese.

The mean degree reported in Table 1 indicates the average
number of ties per pupil (reporting having received support
or being reported by others to have helped) in the 20 net-
works. The mean reciprocal degree is the average number
of reciprocal ties per pupil. The variation of the mean degree
and the reciprocal degree between networks is small. This
is reflected by the results in Table 2, where quantiles and
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Table 1. Descriptive statistics for the 20 schools in the Dutch Social Behavior Study data.

School 1 2 3 4 5 6 7 8 9 10
Number of pupils 50 43 55 38 73 96 62 39 91 42
Mean degree 2.98 2.30 1.47 1.95 3.22 2.16 2.71 3.33 2.44 1.52
Mean reciprocal degree 1.56 1.12 0.62 0.89 1.70 0.96 0.90 1.54 1.10 0.67

School 11 12 13 14 15 16 17 18 19 20
Number of pupils 91 73 59 42 52 62 55 56 77 76
Mean degree 3.01 2.71 2.12 1.07 3.00 2.24 2.18 3.21 2.49 2.55
Mean reciprocal degree 1.60 1.23 1.12 0.52 1.77 0.97 1.56 1.75 1.43 1.08

Table 2. Parameter estimates of a multilevel p2 analysis of the Dutch Social Behavior Study data.

Estimates

Posterior Quantiles

Fixed Effect Covariate Parameter Mean SE 0.5 2.5 97.5 99.5

Sender Boy c11 �0.11 0.08 �0.32 �0.28 0.05 0.10
Receiver Boy c21 �0.12 0.07 �0.29 �0.25 0.01 0.05
Density l �3.58 0.11 �3.83 �3.77 �3.36 �3.28

Gender d11 1.26 0.06 1.09 1.14 1.40 1.44
Dutch d12 0.50 0.06 0.33 0.37 0.62 0.66
Moroccan d13 0.40 0.13 0.06 0.14 0.64 0.70
Turkish d14 0.53 0.12 0.23 0.30 0.77 0.85
Surinamese d15 0.30 0.04 0.10 0.10 0.52 0.60
Girl d16 �0.14 0.06 �0.29 �0.26 �0.02 0.02

Reciprocity q 4.19 0.18 3.71 3.84 4.54 4.64
Gender d21 �0.45 0.17 �0.89 �0.80 �0.11 0.02
Dutch d22 �0.33 0.15 �0.71 �0.62 �0.03 0.06
Moroccan d23 �0.32 0.30 �1.07 �0.89 0.27 0.48
Turkish d24 �0.03 0.31 �0.79 �0.60 0.66 0.83
Surinamese d25 0.02 0.24 �0.60 �0.47 0.48 0.63
Girl d26 0.16 0.14 �0.20 �0.12 0.43 0.50

Actor-level random effects

Sender variance r2
A 1.13 0.09 0.92 0.97 1.31 1.37

Receiver variance r2
B 0.44 0.05 0.33 0.36 0.54 0.57

Sender receiver covariance rAB �0.57 0.05 �0.71 �0.67 �0.47 �0.44

Network-level random effects of fixed parameters

Density variance X1,1 0.21 0.08 0.08 0.10 0.41 0.52
Reciprocity variance X2,2 0.24 0.11 0.08 0.10 0.52 0.68
Density-reciprocity covariance X1,2 �0.13 0.08 �0.45 �0.33 �0.02 0.00

Note. The covariate effects for density and reciprocity are similarity effects; burn-in length and sample size of the MCMC estimation
algorithm were 8,000 and 40,000 respectively.

estimates of the mean and standard error of the posterior
distributions of the parameters are reported. The variances
of the density and reciprocity parameters are rather low, es-
pecially compared to the sender variance. Next, the network-
level covariate “percentage of Dutch pupils” was included
in the model, but this turned out to be nonsignificant. More-
over, the quality of the MCMC sample deteriorated, prob-
ably because there was little information in the data about
the effect of the additional model parameter.

The reported results in Table 2 are based on a burn-in
sequence of 8,000 iterations and a sampling sequence of
40,000 iterations. By inspecting the trace plots, one can in-
vestigate how well the sampled parameters have converged

to a stable distribution. In Figure 1 the traces appear stable,
although some sudden jumps are noticeable, which dem-
onstrates the mutual dependence of the parameters discussed
above.

The model in Table 2 can be regarded as a so-called ran-
dom intercept model (cf. Goldstein, 2003) with random ef-
fects M and R for the intercepts l and q on the network
level. The parameter estimates show that reported practical
support relations are more prevalent between pupils with the
same gender. This is pointed out by the strong positive den-
sity effect of “similarity gender.” The interpretation of this
effect is moderated by the “similarity girl” effect, which
shows that the increased practical support within the same
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Figure 1. (a) Trace plot for q, d21, d16, d11, and l, from the top down. (b) Trace plot for d22, c21, and d12, from the top down.
(c) Trace plot for d13. (d) Trace plot for d14. (e) Trace plot for d15.

gender is stronger for boys than for girls. The negative sim-
ilarity gender effect for reciprocity shows that reported prac-
tical support relations within the same sex is not a doubled
density effect but slightly less, making reciprocal same-gen-
der dyads more likely than asymmetrical dyads. Further-
more, boys and girls do not differ strongly with respect to
sending and receiving tendencies.

From fellow pupils with the same ethnic background,
more practical support is received, following from the posi-
tive density effects for the covariates indicating similarity in
ethnic background. For Dutch pupils only a clear effect of
reciprocity was found, modifying the double density effect
for reciprocal dyads. The posterior distributions for the
greater reciprocity effects among pupils with the same ethnic
backgrounds are much wider for the other ethnic groups,
containing large positive as well as negative values, which
may be the result of the fact that for some of these groups
our sample contains only a small number of children.

Concluding Remarks

With the multilevel p2 model multiple parallel network ob-
servations can be analyzed. Such data are likely to be gath-
ered in, for instance, educational settings. Compared to the
two-stage meta-analytic approach used by Baerveldt et al.
(2004), the advantage is clear: All data can be analyzed in
a single model, resulting in an increase in power to detect
possible actor or dyadic covariate effects. Moreover, it is
possible to investigate whether these effects differ over net-
works and whether these differences can be explained by

network covariates. In the application, a small amount of
between-network variability was found. In general, how-
ever, one should be careful not to include too many random
effects for the fixed parameters at the network level. Includ-
ing t random effects implies estimating t(t�1)/2 parameters
in X. This means that the number of parameters soon be-
comes large compared to the number of networks. It also
implies that the multilevel p2 model is more easily applied
in data sets with a larger number of networks.

The results obtained in the example show that reported
practical support is more prevalent among pupils with the
same ethnic background. Further research is intended to
combine multiple types of relations with a multilevel data
structure in a single model. Then the current model can be
extended with, for example, the data on emotional support
that were analyzed in Baerveldt et al. (2004).

Software for the multilevel p2 model is available in
StOCNET (Boer et al., 2003).
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