
Journal of Machine Learning Research 3 (2002) 583-617 Submitted 4/02; Published 12/02

Cluster Ensembles – A Knowledge Reuse Framework for
Combining Multiple Partitions

Alexander Strehl alexander@strehl.com

Joydeep Ghosh ghosh@ece.utexas.edu

Department of Electrical and Computer Engineering
The University of Texas at Austin
Austin, TX 78712, USA

Editor: Claire Cardie

Abstract

This paper introduces the problem of combining multiple partitionings of a set of objects
into a single consolidated clustering without accessing the features or algorithms that deter-
mined these partitionings. We first identify several application scenarios for the resultant
‘knowledge reuse’ framework that we call cluster ensembles. The cluster ensemble prob-
lem is then formalized as a combinatorial optimization problem in terms of shared mutual
information. In addition to a direct maximization approach, we propose three effective
and efficient techniques for obtaining high-quality combiners (consensus functions). The
first combiner induces a similarity measure from the partitionings and then reclusters the
objects. The second combiner is based on hypergraph partitioning. The third one collapses
groups of clusters into meta-clusters which then compete for each object to determine the
combined clustering. Due to the low computational costs of our techniques, it is quite
feasible to use a supra-consensus function that evaluates all three approaches against the
objective function and picks the best solution for a given situation. We evaluate the ef-
fectiveness of cluster ensembles in three qualitatively different application scenarios: (i)
where the original clusters were formed based on non-identical sets of features, (ii) where
the original clustering algorithms worked on non-identical sets of objects, and (iii) where
a common data-set is used and the main purpose of combining multiple clusterings is to
improve the quality and robustness of the solution. Promising results are obtained in all
three situations for synthetic as well as real data-sets.

Keywords: cluster analysis, clustering, partitioning, unsupervised learning, multi-learner
systems, ensemble, mutual information, consensus functions, knowledge reuse

1. Introduction

The notion of integrating multiple data sources and/or learned models is found in sev-
eral disciplines, for example, the combining of estimators in econometrics (Granger, 1989),
evidences in rule-based systems (Barnett, 1981) and multi-sensor data fusion (Dasarathy,
1994). A simple but effective type of multi-learner system is an ensemble in which each
component learner (typically a regressor or classifier) tries to solve the same task. While
early studies on combining multiple rankings, such as the works by Borda and Condorcet,
pre-date the French Revolution (Ghosh, 2002a), this area noticeably came to life in the past

c©2002 Alexander Strehl and Joydeep Ghosh.

Strehl and Ghosh

decade, and now even boasts its own series of dedicated workshops (Kittler and Roli, 2002).
Until now the main goal of ensembles has been to improve the accuracy and robustness of
a given classification or regression task, and spectacular improvements have been obtained
for a wide variety of data sets (Sharkey, 1999).

Unlike classification or regression settings, there have been very few approaches proposed
for combining multiple clusterings.1 Notable exceptions include:

• strict consensus clustering for designing evolutionary trees, typically leading to a so-
lution at a much lower resolution than that of the individual solutions, and

• combining the results of several clusterings of a given data-set, where each solution
resides in a common, known feature space, for example, combining multiple sets of
cluster centers obtained by using k-means with different initializations (Bradley and
Fayyad, 1998).

In this paper, we introduce the problem of combining multiple partitionings of a set of objects
without accessing the original features. We call this the cluster ensemble problem, and will
motivate this new, constrained formulation shortly. Note that since the combiner can only
examine the cluster label but not the original features, this is a framework for knowledge
reuse (Bollacker and Ghosh, 1999). The cluster ensemble design problem is more difficult
than designing classifier ensembles since cluster labels are symbolic and so one must also
solve a correspondence problem. In addition, the number and shape of clusters provided by
the individual solutions may vary based on the clustering method as well as on the particular
view of the data available to that method. Moreover, the desired number of clusters is often
not known in advance. In fact, the ‘right’ number of clusters in a data-set often depends
on the scale at which the data is inspected, and sometimes equally valid (but substantially
different) answers can be obtained for the same data (Chakaravathy and Ghosh, 1996).

We call a particular clustering algorithm with a specific view of the data a clusterer.
Each clusterer outputs a clustering or labeling, comprising the group labels for some or
all objects. Some clusterers may provide additional information such as descriptions of
cluster means, but we shall not use such information in this paper. There are two primary
motivations for developing cluster ensembles as defined above: to exploit and reuse existing
knowledge implicit in legacy clusterings, and to enable clustering over distributed data-sets
in cases where the raw data cannot be shared or pooled together because of restrictions
due to ownership, privacy, storage, etc. Let us consider these two application domains in
greater detail.

Knowledge Reuse. In several applications, a variety of clusterings for the objects under
consideration may already exist, and one desires to either integrate these clusterings
into a single solution, or use this information to influence a new clustering (perhaps
based on a different set of features) of these objects. Our first encounter with this
application scenario was when clustering visitors to an e-tailing website based on
market basket analysis, in order to facilitate a direct marketing campaign (Strehl and
Ghosh, 2000). The company already had a variety of legacy customer segmentations
based on demographics, credit rating, geographical region and purchasing patterns in

1. See Section 5 on related work for details.

584

Cluster Ensembles

their retail stores, etc. They were obviously reluctant to throw out all this domain
knowledge, and instead wanted to reuse such pre-existing knowledge to create a single
consolidated clustering. Note that since the legacy clusterings were largely provided
by human experts or by other companies using proprietary methods, the information
in the legacy segmentations had to be used without going back to the original features
or the ‘algorithms’ that were used to obtain these clusterings. This experience was
instrumental in our formulation of the cluster ensemble problem. Another notable
aspect of this engagement was that the two sets of customers, purchasing from retail
outlets and from the website respectively, had significant overlap but were not iden-
tical. Thus the cluster ensemble problem has to allow for missing labels in individual
clusterings.

There are several other applications where legacy clusterings are available and a con-
strained use of such information is useful. For example, one may wish to combine or
reconcile a clustering or categorization of web pages based on text analysis with those
already available from Yahoo! or DMOZ (according to manually-crafted taxonomies),
from Internet service providers according to request patterns and frequencies, and
those indicated by a user’s personal bookmarks according to his or her preferences.
As a second example, clustering of mortgage loan applications based on the informa-
tion in the application forms can be supplemented by segmentations of the applicants
indicated by external sources such as the FICO scores provided by Fair Isaac.

Distributed Computing. The desire to perform distributed data mining is being increas-
ingly felt in both government and industry. Often, related information is acquired and
stored in geographically distributed locations due to organizational or operational con-
straints (Kargupta and Chan, 2000), and one needs to process data in situ as far as
possible. In contrast, machine learning algorithms invariably assume that data is
available in a single centralized location. One can argue that by transferring all the
data to a single location and performing a series of merges and joins, one can get a
single (albeit very large) flat file, and our favorite algorithms can then be used after
randomizing and subsampling this file. But in practice, such an approach may not be
feasible because of the computational, bandwidth and storage costs. In certain cases,
it may not even be possible due to variety of real-life constraints including security, pri-
vacy, the proprietary nature of data and the accompanying ownership issues, the need
for fault tolerant distribution of data and services, real-time processing requirements
or statutory constraints imposed by law (Prodromidis et al., 2000). Interestingly, the
severity of such constraints has become very evident of late as several government
agencies attempt to integrate their databases and analytical techniques.

A cluster ensemble can be employed in ‘privacy-preserving’ scenarios where it is not
possible to centrally collect all records for cluster analysis, but the distributed com-
puting entities can share smaller amounts of higher level information such as cluster
labels. The ensemble can be used for feature-distributed clustering in situations where
each processor/clusterer has access to only a limited number of features or attributes
of each object, i.e., it observes a particular aspect or view of the data. Aspects can
be completely disjoint features or have partial overlaps. In gene function prediction,
separate gene clusterings can be obtained from diverse sources such as gene sequence

585

Strehl and Ghosh

comparisons, combinations of DNA microarray data from many independent experi-
ments, and mining of the biological literature such as MEDLINE.

An orthogonal scenario is object-distributed clustering, wherein each processor/clusterer
has access to only a subset of all objects, and can thus only cluster the observed ob-
jects. For example, corporations tend to split their customers regionally for more
efficient management. Analysis such as clustering is often performed locally, and a
cluster ensemble provides a way of obtaining a holistic analysis without complete
integration of the local data warehouses.

One can also consider the use of cluster ensembles for the same reasons as classification
ensembles, namely to improve the quality and robustness of results. For classification or
regression problems, it has been analytically shown that the gains from using ensemble
methods involving strong learners are directly related to the amount of diversity among the
individual component models (Krogh and Vedelsby, 1995, Tumer and Ghosh, 1999). One
desires that each individual model be powerful, but at the same time, these models should
have different inductive biases and thus generalize in distinct ways (Dietterich, 2001). So it
is not surprising that ensembles are most popular for integrating relatively unstable models
such as decision trees and multi-layered perceptrons. If diversity is indeed found to be
beneficial in the clustering context, then it can be created in numerous ways, including:

• using different features to represent the objects. For example, images can be repre-
sented by their pixels, histograms, location and parameters of perceptual primitives
or 3D scene coordinates

• varying the number and/or location of initial cluster centers in iterative algorithms
such as k-means

• varying the order of data presentation in on-line methods such as BIRCH

• using a portfolio of very different clustering algorithms such as density based, k-means
or soft variants such as fuzzy c-means, graph partitioning based, statistical mechanics
based, etc.

It is well known that the comparative performance of different clustering methods can
vary significantly across data-sets. For example, the popular k-means algorithm performs
miserably in several situations where the data cannot be accurately characterized by a
mixture of k Gaussians with identical covariance matrices (Karypis et al., 1999). In fact,
for difficult data-sets, comparative studies across multiple clustering algorithms typically
show much more variability in results than studies comparing the results of strong learners
for classification (Richard and Lippmann, 1991). Thus there could be a potential for greater
gains when using an ensemble for the purpose of improving clustering quality. Note that,
in contrast to the knowledge reuse and distributed clustering scenarios, in this situation
the combination mechanism could have had access to the original features. Our restriction
that the consensus mechanism can only use cluster labels is in this case solely to simplify
the problem and limit the scope of the solution, just as combiners of multiple classifiers are
often based solely on the classifier outputs (for example, voting and averaging methods),
although a richer design space is available.

586

Cluster Ensembles

X

(1)λ

(2)λ

(r)λ

λ

(r)Φ

(2)Φ

(1)Φ

Γ

Figure 1: The Cluster Ensemble. A consensus function Γ combines clusterings λ(q) from a
variety of sources, without resorting to the original object features X or algorithms
Φ.

A final, related motivation for using a cluster ensemble is to build a robust clustering
portfolio that can perform well over a wide range of data-sets with little hand-tuning. For
example, by using an ensemble that includes approaches such as k-means, SOM (Kohonen,
1995) and DBSCAN (Ester et al., 1996), that typically work well in low-dimensional metric
spaces, as well as algorithms tailored for high-dimensional sparse spaces such as spherical k-
means (Dhillon and Modha, 2001) and Jaccard-based graph-partitioning (Strehl and Ghosh,
2000), one may perform very well in three dimensional as well as in 30000 dimensional
spaces without having to switch models. This characteristic is very attractive to the general
practitioner.

Notation. Let X = {x1, x2, . . . , xn} denote a set of objects/samples/points. A parti-
tioning of these n objects into k clusters can be represented as a set of k sets of objects
{C`|` = 1, . . . , k} or as a label vector λ ∈ N

n. A clusterer Φ is a function that delivers a
label vector given a tuple of objects. Figure 1 shows the basic setup of the cluster ensemble:
A set of r labelings λ(1,...,r) is combined into a single labeling λ (the consensus labeling)
using a consensus function Γ. Vector/matrix transposition is indicated with a superscript
†. A superscript in brackets denotes an index and not an exponent.

Organization. In the next section, we formally define the design of a cluster ensemble
as an optimization problem and propose an appropriate objective function. In Section 3,
we propose and compare three effective and efficient combining schemes, Γ, to tackle the
combinatorial complexity of the problem. In Section 4 we describe applications of cluster
ensembles for the scenarios described above, and show results on both real and artificial
data.

587

Strehl and Ghosh

2. The Cluster Ensemble Problem

In this section we illustrate the problem of combining multiple clusterings, propose a suitable
objective function for determining a single consensus clustering, and explore the feasibility
of directly optimizing this objective function using greedy approaches.

2.1 Illustrative Example

First, we will illustrate the combining of clusterings using a simple example. Let the fol-
lowing label vectors specify four clusterings of the same set of seven objects (see also Table
1):

λ(1) = (1, 1, 1, 2, 2, 3, 3)† λ(2) = (2, 2, 2, 3, 3, 1, 1)†

λ(3) = (1, 1, 2, 2, 3, 3, 3)† λ(4) = (1, 2, ?, 1, 2, ?, ?)†

Inspection of the label vectors reveals that clusterings λ(1) and λ(2) are logically identical.
Clustering λ(3) introduces some dispute about objects x3 and x5. Clustering λ(4) is quite
inconsistent with all the other ones, has two groupings instead of three, and also contains
missing data. Now let us look for a good combined clustering with three clusters. Intuitively,
a good combined clustering should share as much information as possible with the given four
labelings. Inspection suggests that a reasonable integrated clustering is (2, 2, 2, 3, 3, 1, 1)†

(or one of the six equivalent clusterings such as (1, 1, 1, 2, 2, 3, 3)†). In fact, after performing
an exhaustive search over all 301 unique clusterings of seven elements into three groups,
it can be shown that this clustering shares the maximum information with the given four
label vectors (in terms that are more formally introduced in the next subsection).

This simple example illustrates some of the challenges. We have already seen that
the label vector is not unique. In fact, for each unique clustering there are k! equivalent
representations as integer label vectors. However, only one representation satisfies the
following two constraints: (i) λ1 = 1; (ii) for all i = 1, . . . , n−1 : λi+1 ≤ maxj=1,...,i(λj)+1.
The first constraint enforces that the first object’s label is cluster 1. The second constraint
assures that the cluster label λi+1 of any successive object xi+1 either has a label that
occurred before or a label that is one greater than the highest label so far. By allowing
only representations that fulfill both constraints, the integer vector representation can be
forced to be unique. Transforming the labels into this ‘canonical form’ solves the combining
problem if all clusterings are actually the same. However, if there is any discrepancy among
labelings, one has to also deal with a complex correspondence problem. In general, the
number of clusters found as well as each cluster’s interpretation may vary tremendously
among models.

2.2 Objective Function for Cluster Ensembles

Given r groupings, with the q-th grouping λ(q) having k(q) clusters, a consensus function Γ
is defined as a function N

n×r → N
n mapping a set of clusterings to an integrated clustering:

Γ : {λ(q) | q ∈ {1, . . . , r}} → λ. (1)

Let the set of groupings {λ(q) | q ∈ {1, . . . , r}} be denoted by Λ. If there is no a priori
information about the relative importance of the individual groupings, then a reasonable
goal for the consensus answer is to seek a clustering that shares the most information with
the original clusterings.

588

Cluster Ensembles

Mutual information, which is a symmetric measure to quantify the statistical information
shared between two distributions (Cover and Thomas, 1991), provides a sound indication of
the shared information between a pair of clusterings. Let X and Y be the random variables
described by the cluster labeling λ(a) and λ(b), with k(a) and k(b) groups respectively. Let
I(X,Y) denote the mutual information between X and Y , and H(X) denote the entropy
of X. One can show that I(X,Y) is a metric. There is no upper bound for I(X,Y),
so for easier interpretation and comparisons, a normalized version of I(X,Y) that ranges
from 0 to 1 is desirable. Several normalizations are possible based on the observation that
I(X,Y) ≤ min(H(X),H(Y)). These include normalizing using the arithmetic or geometric
mean of H(X) and H(Y). Since H(X) = I(X,X), we prefer the geometric mean because of
the analogy with a normalized inner product in Hilbert space. Thus the normalized mutual
information (NMI)2 used is:

NMI (X,Y) =
I(X,Y)√

H(X)H(Y)
. (2)

One can see that NMI (X,X) = 1, as desired. Equation 2 needs to be estimated by the
sampled quantities provided by the clusterings. Let n

(a)
h be the number of objects in cluster

Ch according to λ(a), and n
(b)
` the number of objects in cluster C` according to λ(b). Let

nh,` denote the number of objects that are in cluster h according to λ(a) as well as in group
` according to λ(b). Then, from Equation 2, the normalized mutual information estimate
φ(NMI) is:

φ(NMI)(λ(a), λ(b)) =

∑k(a)

h=1

∑k(b)

`=1 nh,` log
(

n·nh,`

n
(a)
h n

(b)
`

)
√(∑k(a)

h=1 n
(a)
h log n

(a)
h
n

)(∑k(b)

`=1 n
(b)
` log n

(b)
`
n

) . (3)

Based on this pairwise measure of mutual information, we can now define a measure between
a set of r labelings, Λ, and a single labeling λ̂ as the average normalized mutual information
(ANMI):

φ(ANMI)(Λ, λ̂) =
1
r

r∑
q=1

φ(NMI)(λ̂, λ(q)). (4)

In this paper, we propose the optimal combined clustering λ(k−opt) to be the one that has
maximal average mutual information with all individual labelings λ(q) in Λ given that the
number of consensus clusters desired is k. In other words, φ(ANMI) is our objective function
and λ(k−opt) is defined as

λ(k−opt) = arg max
λ̂

r∑
q=1

φ(NMI)(λ̂, λ(q)), (5)

2. Our earlier work (Strehl and Ghosh, 2002a) used a slightly different normalization as only balanced
clusters were desired: NMI (X, Y) = 2 · I(X,Y)/(log k(a) + log k(b)), i.e., using arithmetic mean and
assuming maximum entropy caused by perfect balancing.

589

Strehl and Ghosh

where λ̂ goes through all possible k-partitions (Strehl and Ghosh, 2002a). Note that this
formulation treats each individual clustering equally. One can easily generalize this defini-
tion to a weighted average, which may be preferable if certain individual solutions are more
important than others.

There may be situations where not all labels are known for all objects, i.e., there is
missing data in the label vectors. For such cases, the consensus clustering objective from
Equation 5 can be generalized by computing a weighted average of the mutual information
with the known labels, with the weights proportional to the comprehensiveness of the la-
belings as measured by the fraction of known labels. Let L(q) be the set of object indices
with known labels for the q-th labeling. Then, the generalized objective function becomes:

λ(k−opt) = arg max
λ̂

r∑
q=1

|L(q)|φ(NMI)(λ̂L(q) , λ̂
(q)

L(q)). (6)

2.3 Direct and Greedy Optimization Approaches

The objective functions in Equations 5 and 6 represent difficult combinatorial optimization
problems. An exhaustive search through all possible clusterings with k labels for the one
with the maximum ANMI is formidable since for n objects and k partitions there are
1
k!

∑k
`=1

(
k
`

)
(−1)k−``n possible clusterings, or approximately kn/k! for n � k (Jain and

Dubes, 1988). For example, there are 171,798,901 ways to form four groups of 16 objects.
A variety of well known greedy search techniques, including simulated annealing and

genetic algorithms, can be tried to find a reasonable solution. We have not investigated such
approaches in detail since we expect the consensus ensemble problem to be mostly applied
large data-sets, so computationally expensive approaches become unattractive. However,
to get a feel for the quality-time tradeoffs involved, we devised and studied the following
greedy optimization scheme that operates through single label changes:

The most representative single labeling (indicated by highest ANMI with all r labelings)
is used as the initial labeling for the greedy algorithm. Then, for each object, the current
label is changed to each of the other k − 1 possible labels and the ANMI objective is re-
evaluated. If the ANMI increases, the object’s label is changed to the best new value and
the algorithm proceeds to the next object. When all objects have been checked for possible
improvements, a sweep is completed. If at least one label was changed in a sweep, we
initiate a new sweep. The algorithm terminates when a full sweep does not change any
labels, thereby indicating that a local optimum is reached. The algorithm can be readily
modified to probabilistically accept decreases in ANMI as well, as in a Boltzmann machine.

As with all local optimization procedures, there is a strong dependency on the initializa-
tion. Running this greedy search starting with a random labeling is often computationally
intractable, and tends to result in poor local optima. Even with an initialization that is
close to an optimum, computation can be extremely slow due to exponential time complex-
ity. Experiments with n = 400, k = 10, r = 8 typically averaged one hour per run on a
1 GHz PC using our implementation. Therefore results of the greedy approach are only
shown in Section 3.5.

590

Cluster Ensembles

The next section proposes three algorithms that are far more efficient than the greedy
approach and deliver a similar quality of results. These algorithms have been developed
from intuitive heuristics rather than from the vantage point of a direct maximization.

3. Efficient Consensus Functions

In this section, we introduce three efficient heuristics to solve the cluster ensemble problem.
All algorithms approach the problem by first transforming the set of clusterings into a
hypergraph representation.

Cluster-based Similarity Partitioning Algorithm (CSPA). A clustering signifies a
relationship between objects in the same cluster and can thus be used to establish
a measure of pairwise similarity. This induced similarity measure is then used to
recluster the objects, yielding a combined clustering.

HyperGraph Partitioning Algorithm (HGPA). In this algorithm, we approximate
the maximum mutual information objective with a constrained minimum cut ob-
jective. Essentially, the cluster ensemble problem is posed as a partitioning problem
of a suitably defined hypergraph where hyperedges represent clusters.

Meta-CLustering Algorithm (MCLA). Here, the objective of integration is viewed as
a cluster correspondence problem. Essentially, groups of clusters (meta-clusters) have
to be identified and consolidated.

The following four subsections describe the common hypergraph representation, CSPA,
HGPA, and MCLA. Section 3.5 discusses differences in the algorithms and evaluates their
performance in a controlled experiment.

3.1 Representing Sets of Clusterings as a Hypergraph

The first step for both of our proposed consensus functions is to transform the given cluster
label vectors into a suitable hypergraph representation. In this subsection, we describe how
any set of clusterings can be mapped to a hypergraph. A hypergraph consists of vertices
and hyperedges. An edge in a regular graph connects exactly two vertices. A hyperedge is
a generalization of an edge in that it can connect any set of vertices.

For each label vector λ(q) ∈ N
n, we construct the binary membership indicator matrix

H(q), with a column for each cluster (now represented as a hyperedge), as illustrated in
Table 1.3 All entries of a row in the binary membership indicator matrix H(q) add to 1, if
the row corresponds to an object with known label. Rows for objects with unknown label
are all zero.

The concatenated block matrix H = H(1,...,r) = (H(1) . . . H(r)) defines the adjacency
matrix of a hypergraph with n vertices and

∑r
q=1 k(q) hyperedges. Each column vector ha

specifies a hyperedge ha, where 1 indicates that the vertex corresponding to the row is part
of that hyperedge and 0 indicates that it is not. Thus, we have mapped each cluster to a
hyperedge and the set of clusterings to a hypergraph.

3. When generalizing our algorithms to soft clustering, H(q) simply contains the posterior probabilities of
cluster membership.

591

Strehl and Ghosh

λ(1) λ(2) λ(3) λ(4)

x1 1 2 1 1
x2 1 2 1 2
x3 1 2 2 ?
x4 2 3 2 1
x5 2 3 3 2
x6 3 1 3 ?
x7 3 1 3 ?

⇔

H(1) H(2) H(3) H(4)

h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11

v1 1 0 0 0 1 0 1 0 0 1 0
v2 1 0 0 0 1 0 1 0 0 0 1
v3 1 0 0 0 1 0 0 1 0 0 0
v4 0 1 0 0 0 1 0 1 0 1 0
v5 0 1 0 0 0 1 0 0 1 0 1
v6 0 0 1 1 0 0 0 0 1 0 0
v7 0 0 1 1 0 0 0 0 1 0 0

Table 1: Illustrative cluster ensemble problem with r = 4, k(1,...,3) = 3, and k(4) = 2:
Original label vectors (left) and equivalent hypergraph representation with 11 hy-
peredges (right). Each cluster is transformed into a hyperedge.

3.2 Cluster-based Similarity Partitioning Algorithm (CSPA)

Based on a coarse resolution viewpoint that two objects have a similarity of 1 if they are
in the same cluster and a similarity of 0 otherwise, a n× n binary similarity matrix can be
readily created for each clustering. The entry-wise average of r such matrices representing
the r sets of groupings yields an overall similarity matrix S with a finer resolution. The
entries of S denote the fraction of clusterings in which two objects are in the same cluster,
and can be computed in one sparse matrix multiplication S = 1

rHH†.4 Figure 2 illustrates
the generation of the cluster-based similarity matrix for the example given in Table 1.

Now, we can use the similarity matrix to recluster the objects using any reasonable
similarity-based clustering algorithm. We chose to partition the induced similarity graph
(vertex = object, edge weight = similarity) using METIS (Karypis and Kumar, 1998)
because of its robust and scalable properties.

CSPA is the simplest and most obvious heuristic, but its computational and storage
complexity are both quadratic in n, as opposed to the next two approaches that are near
linear in n.

3.3 HyperGraph-Partitioning Algorithm (HGPA)

The second algorithm is a direct approach to cluster ensembles that re-partitions the data
using the given clusters as indications of strong bonds. The cluster ensemble problem is
formulated as partitioning the hypergraph by cutting a minimal number of hyperedges.
We call this approach the hypergraph-partitioning algorithm (HGPA). All hyperedges are
considered to have the same weight. Also, all vertices are equally weighted. Note that this
includes n`-way relationship information, while CSPA only considers pairwise relationships.
Now, we look for a hyperedge separator that partitions the hypergraph (Figure 3) into k
unconnected components of approximately the same size. Note that obtaining comparable
sized partitions is a standard constraint in graph-partitioning based clustering approaches

4. This approach can be extended to soft clusterings by using the objects’ posterior probabilities of cluster
membership in H.

592

Cluster Ensembles

from λ(4)
1 2 3 4 5 6 7

1
2
3
4
5
6
7

from λ(1)
1 2 3 4 5 6 7

1
2
3
4
5
6
7

from λ(2)
1 2 3 4 5 6 7

1
2
3
4
5
6
7

from λ(3)
1 2 3 4 5 6 7

1
2
3
4
5
6
7

combined
1 2 3 4 5 6 7

1
2
3
4
5
6
7

Figure 2: Illustration of cluster-based similarity partitioning algorithm (CSPA) for the clus-
ter ensemble example problem given in Table 1. Each clustering contributes a
similarity matrix. Matrix entries are shown by darkness proportional to similarity.
Their average is then used to recluster the objects to yield consensus.

as it avoids trivial partitions (Karypis et al., 1999, Strehl and Ghosh, 2002b). On the other
hand this means that if the natural data clusters are highly imbalanced, a graph-partitioning
based approach is not appropriate. For the results of this paper, we maintain a vertex
imbalance of at most 5% by imposing the following constraint: k ·max`∈{1,...,k}

n`
n ≤ 1.05.

Hypergraph partitioning is a well-studied area (Kernighan and Lin, 1970, Alpert and
Kahng, 1995) and algorithm details are omitted here for brevity. We use the hypergraph
partitioning package HMETIS (Karypis et al., 1997). HMETIS gives high-quality parti-
tions and is very scalable. However, please note that hypergraph partitioning in general
has no provision for partially cut hyperedges. This means that there is no sensitivity
to how much of a hyperedge is left in the same group after the cut. This can be prob-
lematic for our applications. Let us consider the example from Table 1. For simplicity,
let us assume that only the three hyperedges from λ(1) are present. The two partition-
ings {{x1, x2, x7}, {x3, x4}, {x5, x6}} and {{x1, x7}, {x3, x4}, {x2, x5, x6}} both cut all three
hyperedges. The first is intuitively superior, because 2/3 of the hyperedge {x1, x2, x3} ‘re-
mains’ versus only 1/3 in the second. However, in standard hypergraph partitioning they
have equivalent quality since both cut the same number of hyperedges.

3.4 Meta-CLustering Algorithm (MCLA)

In this subsection, we introduce the third algorithm to solve the cluster ensemble problem.
The Meta-CLustering Algorithm (MCLA) is based on clustering clusters. It also yields
object-wise confidence estimates of cluster membership.

We represent each cluster by a hyperedge. The idea in MCLA is to group and collapse
related hyperedges and assign each object to the collapsed hyperedge in which it participates
most strongly. The hyperedges that are considered related for the purpose of collapsing
are determined by a graph-based clustering of hyperedges. We refer to each cluster of
hyperedges as a meta-cluster C(M). Collapsing reduces the number of hyperedges from∑r

q=1 k(q) to k. The detailed steps are:

Construct Meta-graph. Let us view all the
∑r

q=1 k(q) indicator vectors h (the hyperedges
of H) as vertices of another regular undirected graph, the meta-graph. The edge

593

Strehl and Ghosh

1x

2x

3x

4x

5x

6x 7x

Figure 3: Illustration of hypergraph partitioning algorithm (HGPA) for the cluster en-
semble example problem given in Table 1. Each hyperedge is represented by
a closed curve enclosing the vertices it connects. The combined clustering
{{x1, x2, x3}, {x4, x5}, {x6, x7}} has the minimal hyperedge cut of 4 and is as
balanced as possible for three clusters of seven objects.

weights are proportional to the similarity between vertices. A suitable similarity
measure here is the binary Jaccard measure, since it is the ratio of the intersection
to the union of the sets of objects corresponding to the two hyperedges. Formally,
the edge weight wa,b between two vertices ha and hb as defined by the binary Jaccard

measure of the corresponding indicator vectors ha and hb is: wa,b = h†
ahb

‖ha‖22+‖hb‖22−h†
ahb

.

Since the clusters are non-overlapping (hard), there are no edges among vertices of
the same clustering H(q) and, thus, the meta-graph is r-partite, as shown in Figure 4.

Cluster Hyperedges. Find matching labels by partitioning the meta-graph into k bal-
anced meta-clusters. We use the graph partitioning package METIS in this step.
This results in a clustering of the h vectors. Each meta-cluster has approximately
r vertices. Since each vertex in the meta-graph represents a distinct cluster label, a
meta-cluster represents a group of corresponding labels.

Collapse Meta-clusters. For each of the k meta-clusters, we collapse the hyperedges into
a single meta-hyperedge. Each meta-hyperedge has an association vector which con-
tains an entry for each object describing its level of association with the corresponding
meta-cluster. The level is computed by averaging all indicator vectors h of a partic-
ular meta-cluster.5 An entry of 0 or 1 indicates the weakest or strongest association,
respectively.

Compete for Objects. In this step, each object is assigned to its most associated meta-
cluster: Specifically, an object is assigned to the meta-cluster with the highest entry in
the association vector. Ties are broken randomly. The confidence of an assignment is
reflected by the winner’s share of association (ratio of the winner’s association to the
sum of all other associations). Note that not every meta-cluster can be guaranteed
to win at least one object. Thus, there are at most k labels in the final combined
clustering λ.

5. A weighted average can be used if the initial clusterings have associated confidences as in soft clustering.

594

Cluster Ensembles

Figure 4 illustrates meta-clustering for the example given in Table 1 where r = 4, k =
3, k(1,...,3) = 3, and k(4) = 2. Figure 4 shows the original 4-partite meta-graph. The
three meta-clusters are indicated by symbols ◦, ×, and +. Consider the first meta-cluster,
C(M)

1 = {h3, h4, h9} (the ◦ markers in Figure 4). Collapsing the hyperedges yields the object-
weighted meta-hyperedge h

(M)
1 = {v5, v6, v7} with association vector (0, 0, 0, 0, 1/3, 1, 1)† .

Subsequently, meta-cluster C(M)
1 will win the competition for vertices/objects v6 and v7,

and thus represent the cluster C1 = {x6, x7} in the resulting integrated clustering. Our
proposed meta-clustering algorithm robustly outputs (2, 2, 2, 3, 3, 1, 1)† , one of the 6 optimal
clusterings which is equivalent to clusterings λ(1) and λ(2). The uncertainty about some
objects is reflected in the confidences 3/4, 1, 2/3, 1, 1/2, 1, and 1 for objects 1 through 7,
respectively.

1 2 3 4

1

2

3

q ∈ {1,…,r}

1,
…

,k
(q

)

Figure 4: Illustration of Meta-CLustering Algorithm (MCLA) for the cluster ensemble ex-
ample problem given in Table 1. The 4-partite meta-graph is shown. Edge
darkness increases with edge weight. The vertex positions are slightly perturbed
to expose otherwise occluded edges. The three meta-clusters are indicated by
symbols ◦, ×, and +.

3.5 Discussion and Comparison

Let us first take a look at the worst-case time complexity of the proposed algorithms.
Assuming quasi-linear (hyper-)graph partitioners such as (H)METIS, CSPA is O(n2kr),
HGPA is O(nkr), and MCLA is O(nk2r2). The fastest is HGPA, closely followed by MCLA
since k tends to be small. CSPA is slower and can be impractical for large n. The greedy

595

Strehl and Ghosh

approach described in the previous section is the slowest and often is intractable for large
n.

We performed a controlled experiment that allows us to compare the properties of the
three proposed consensus functions. First, we partition n = 400 objects into k = 10 groups
at random to obtain the original clustering κ.6 We duplicate this clustering r = 8 times.
Now in each of the 8 labelings, a fraction of the labels is replaced with random labels from
a uniform distribution from 1 to k. Then, we feed the noisy labelings to the proposed
consensus functions. The resulting combined labeling is evaluated in two ways. First, we
measure the normalized objective function φ(ANMI)(Λ, λ) of the ensemble output λ with
all the individual labels in Λ. Second, we measure the normalized mutual information of
each consensus labeling with the original undistorted labeling using φ(NMI)(κ, λ). For better
comparison, we added a random label generator as a baseline method. Also, performance
measures of a hypothetical consensus function that returns the original labels are included
to illustrate maximum performance for low noise settings.7

Figure 5 shows the results. As noise increases, labelings share less information and
thus the maximum obtainable φ(ANMI)(Λ, λ) decreases, and so does φ(ANMI)(Λ, λ) for all
techniques (Figure 5,top). HGPA performs the worst in this experiment, which we believe
is due to its current inability to cater to partially cut edges. In low noise, both, MCLA and
CSPA recover the original labelings. MCLA retains more φ(ANMI)(Λ, λ) than CSPA in the
presence of medium to high noise. Interestingly, in very high noise settings CSPA exceeds
MCLA’s performance. Note also that for such high noise settings the original labels have
a lower average normalized mutual information φ(ANMI)(Λ, λ). This is because the set of
labels is almost completely random and the consensus algorithms recover whatever little
common information is present, whereas the original labeling is now almost fully unrelated.
Realistically, noise should not exceed 50% and MCLA seems to perform best in this simple
controlled experiment. Figure 5 also illustrates how well the algorithms can recover the true
labeling in the presence of noise for robust clustering. As noise increases labelings share
less information with the true labeling and thus the ensemble’s φ(NMI)(κ, λ) decreases. The
ranking of the algorithms is the same using this measure, with MCLA best, followed by
CSPA, and HGPA worst. In fact, MCLA recovers the original labeling at up to 25% noise
in this scenario! For less than 50% noise, the algorithms essentially have the same ranking
regardless of whether φ(ANMI)(Λ, λ) or φ(NMI)(κ, λ) is used. This indicates that our proposed
objective function φ(ANMI)(Λ, λ) is a suitable choice in real applications where κ and hence
φ(NMI)(κ, λ) is not available.

The direct greedy optimization approach performs similar to CSPA in terms of φ(NMI)(κ, λ)
but scores lower than MCLA in most cases. In terms of φ(ANMI)(Λ, λ) the greedy approach
returns a higher score than CSPA, HGPA, and MCLA only for unrealistically high (>75%)
noise levels. More importantly, the greedy approach is tractable only when there are very
few datapoints, dimensions, and clusters, due to its high computational complexity.

This experiment indicates that MCLA should be best suited in terms of time complexity
as well as quality. In the applications and experiments described in the following sections,
we observe that each combining method can result in a higher ANMI than the others

6. Labels are obtained by a random permutation. Groups are balanced.
7. In low noise settings, the original labels are the global maximum, since they share the most mutual

information with the distorted labelings.

596

Cluster Ensembles

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

noise fraction induced in set of labelings

av
er

ag
e

m
ut

ua
l i

nf
or

m
at

io
n

of
 e

ns
em

bl
e

ou
tp

ut
 w

ith
 s

et
 o

f n
oi

sy
 la

be
lin

gs

random labels
greedy
CSPA
HGPA
MCLA
original labels

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

noise fraction induced in set of labelings

m
ut

ua
l i

nf
or

m
at

io
n

of
 e

ns
em

bl
e

ou
tp

ut
 w

ith
 o

rig
in

al
 la

be
ls

random labels
greedy
CSPA
HGPA
MCLA
original labels

Figure 5: Comparison of consensus functions in terms of the objective function
φ(ANMI)(Λ, λ) (top) and in terms of their normalized mutual information with
original labels φ(NMI)(κ, λ) (bottom) for various noise levels. A fitted sigmoid
(least squared error) is shown for all algorithms to show the trend.

597

Strehl and Ghosh

for particular setups. In fact, we found that MCLA tends to be best in low noise/diversity
settings and HGPA/CSPA tend to be better in high noise/diversity settings. This is because
MCLA assumes that there are meaningful cluster correspondences, which is more likely to
be true when there is little noise and less diversity. Thus, it is useful to have all three
methods.

Our objective function has the added advantage that it allows one to add a stage that
selects the best consensus function without any supervisory information, by simply selecting
the one with the highest ANMI. So, for the experiments in this paper, we first report the
results of this ‘supra’-consensus function Γ, obtained by running all three algorithms, CSPA,
HGPA and MCLA, and selecting the one with the greatest ANMI. Then, if significant
differences or notable trends are observed among the three algorithms, this further level of
detail is described. Note that the supra-consensus function is completely unsupervised and
avoids the problem of selecting the best combiner for a data-set beforehand.

4. Consensus Clustering Applications and Experiments

Consensus functions enable a variety of new approaches to several problems. After intro-
ducing the data-sets used and the evaluation methodology, we discuss in Section 4.3 how
distributed clustering can be performed when each entity has access only to a very limited
subset of features. Section 4.4 shows how one can operate on several very limited subsets
of objects and combine them afterwards, thereby enabling distributed clustering. Finally,
in Section 4.5 we illustrate how the robustness of clustering can be increased through com-
bining a set of clusterings.

4.1 Data-Sets

We illustrate the cluster ensemble applications on two real and two artificial data-sets. Table
2 summarizes some basic properties of the data-sets (left) and parameter choices (right).
The first data-set (2D2K) was artificially generated and contains 500 points each of two
2-dimensional (2D) Gaussian clusters with means (−0.227, 0.077)† and (0.095, 0.323)† and
diagonal covariance matrices with 0.1 for all diagonal elements. The second data-set (8D5K)
contains 1000 points from five multivariate Gaussian distributions (200 points each) in 8D
space. Again, clusters all have the same variance (0.1), but different means. Means were
drawn from a uniform distribution within the unit hypercube. Both artificial data-sets are
available for download at http://strehl.com/.

The third data-set (PENDIG) is for pen-based recognition of handwritten digits. It is
publicly available from the UCI Machine Learning Repository and was contributed by Al-
paydin and Alimoglu. It contains 16 spatial features for each of the 7494 training and 3498
test cases (objects). There are ten classes of roughly equal size (balanced clusters) in the
data corresponding to the digits 0 to 9.

The fourth data-set is for text clustering. The 20 original Yahoo! news categories in
the data are Business, Entertainment (no sub-category, art, cable, culture, film,
industry, media, multimedia, music, online, people, review, stage, television,
variety), Health, Politics, Sports and Technology. The data is publicly available from
ftp://ftp.cs.umn.edu/dept/users/boley/ (K1 series) and was used in Boley et al. (1999)
and Strehl et al. (2000). The raw 21839 × 2340 word-document matrix consists of the

598

Cluster Ensembles

name features #features #categories balance similarity #clusters
2D2K real 2 2 1.00 Euclidean 2
8D5K real 8 5 1.00 Euclidean 5

PENDIG real 16 10 0.87 Euclidean 10
YAHOO ordinal 2903 20 0.24 Cosine 40

Table 2: Overview of data-sets for cluster ensemble experiments. Balance is defined as the
ratio of the average category size to the largest category size.

non-normalized occurrence frequencies of stemmed words, using Porter’s suffix stripping
algorithm (Frakes, 1992). Pruning all words that occur less than 0.01 or more than 0.10
times on average because they are insignificant (for example, haruspex) or too generic (for
example, new), results in d = 2903. We call this data-set YAHOO.

For 2D2K, 8D5K, and PENDIG we use k = 2, 5, and 10, respectively. When clustering
YAHOO, we use k = 40 clusters unless noted otherwise. We chose two times the number
of categories, since this seemed to be the more natural number of clusters as indicated by
preliminary runs and visualization.8 For 2D2K, 8D5K, and PENDIG we use Euclidean-based
similarity. For YAHOO we use cosine-based similarity.

4.2 Evaluation Criteria

Evaluating the quality of a clustering is a non-trivial and often ill-posed task. In fact, many
definitions of objective functions for clusterings exist (Jain and Dubes, 1988). Internal
criteria formulate quality as a function of the given data and/or similarities. For example,
the mean squared error criterion (for k-means) and other measures of compactness are
popular evaluation criteria. Measures can also be based on isolation, such as the min-
cut criterion, which uses the sum of edge weights across clusters (for graph partitioning).
When using internal criteria, clustering becomes an optimization problem, and a clusterer
can evaluate its own performance and tune its results accordingly.

External criteria, on the other hand, impose quality by additional, external informa-
tion not given to the clusterer, such as category labels. This approach is sometimes more
appropriate since groupings are ultimately evaluated externally by humans. For example,
when objects have already been categorized by an external source, i.e., when class labels
are available, we can use information theoretic measures to quantify the match between the
categorization and the clustering. Previously, average purity and entropy-based measures
to assess clustering quality from 0 (worst) to 1 (best) have been used (Boley et al., 1999).
While average purity is intuitive to understand, it favors small clusters, and singletons score
the highest. Also, a monolithic clustering (one single cluster for all objects) receives a score
as high as the fraction of objects in the biggest category. In unstratified data-sets, this
number might be close to the maximum quality 1, while the intuitive quality is very low.
An entropy-based measure is better than purity, but still favors smaller clusters.

Normalized mutual information provides a measure that is impartial with respect to k
as compared to purity and entropy. It reaches its maximum value of 1 only when the two

8. Using a greater number of clusters than categories allows modeling of multi-modal categories.

599

Strehl and Ghosh

sets of labels have a perfect one-to-one correspondence. We shall use the categorization
labels κ to evaluate the cluster quality by computing φ(NMI)(κ, λ), as defined in Equation 3.

4.3 Feature-Distributed Clustering (FDC)

In Feature-Distributed Clustering (FDC), we show how cluster ensembles can be used to
boost the quality of results by combining a set of clusterings obtained from partial views of
the data. As mentioned in the introduction, distributed databases that cannot be integrated
at a single centralized location because of proprietary data aspects, privacy concerns, per-
formance issues, etc., result in such scenarios. In such situations, it is more realistic to have
one clusterer for each database, and transmit only the cluster labels (but not the attributes
of each record) to a central location where they can be combined using the supra-consensus
function.

For our experiments, we simulate such a scenario by running several clusterers, each
having access to only a restricted, small subset of features (subspace). Each clusterer has a
partial view of the data. Note that in our experiments, these views have been created from
a common, full feature space of public-domain data-sets, while in a real-life scenario the
different views would be determined a priori in an application-specific way. Each clusterer
has access to all objects. The clusterers find groups in their views/subspaces using the same
clustering technique. In the combining stage, individual cluster labels are integrated using
our supra-consensus function.

First, let us discuss experimental results for the 8D5K data, since they lend themselves
well to illustration. We create five random 2D views (through selection of a pair of features)
of the 8D data, and use Euclidean-based graph-partitioning with k = 5 in each view to
obtain five individual clusterings. The five individual clusterings are then combined using
our supra-consensus function proposed in the previous section. The clusters are linearly
separable in the full 8D space. Clustering in the 8D space yields the original generative
labels and is referred to as the reference clustering. In Figure 6a, the reference clustering is
illustrated by coloring the data points in the space spanned by the first and second principal
components (PCs). Figure 6b shows the final FDC result after combining five subspace
clusterings. Each clustering has been computed from randomly selected feature pairs. These
subspaces are shown in Figure 7. Each of the rows corresponds to a random selection of two
out of eight feature dimensions. For each of the five chosen feature pairs, a row shows the 2D
clustering (left, feature pair shown on axis) and the same 2D clustering labels used on the
data projected onto the global two principal components (right). For consistent appearance
of clusters across rows, the dot colors/shapes have been matched using meta-clusters. All
points in clusters of the same meta-cluster share the same color/shape among all plots. In
any subspace, the clusters can not be segregated well due to overlaps. The supra-consensus
function can combine the partial knowledge of the 5 clusterings into a very good clustering.
FDC results (Figure 6b) are clearly superior to any of the five individual results (Figure
7(right)) and are almost flawless compared to the reference clustering (Figure 6a). The
best individual result has 120 ‘mislabeled’ points while the consensus only has three points
‘mislabeled’.

We also conducted FDC experiments on the other three data-sets. Table 3 summarizes
the results and several comparison benchmarks. The choice of the number of random

600

Cluster Ensembles

PC 1

P
C

 2

PC 1

P
C

 2

(a) (b)

Figure 6: Reference clustering (a) and FDC consensus clustering (b) of 8D5K data. Data
points are projected along the first two principal components of the 8D data. The
reference clustering is obtained by graph partitioning using Euclidean similarity
in original 8D space and is identical to the generating distribution assignment.
The consensus clustering is derived from the combination of five clusterings, each
obtained in 2D (from random feature pairs, see Figure 7). The consensus cluster-
ing (b) is clearly superior compared to any of the five individual results (Figure
7(right)) and is almost flawless compared to the reference clustering (a).

subspaces r and their dimensionality is currently driven by the user. For example, in the
YAHOO case, 20 clusterings were performed in 128 dimensions (occurrence frequencies of
128 random words) each. The average quality among the results was 0.16 and the best
quality was 0.20. Using the supra-consensus function to combine all 20 labelings yields a
quality of 0.31, or 156% more mutual information than the average individual clustering.
In all scenarios, the consensus clustering is as good as or better than the best individual
input clustering, and always better than the average quality of individual clusterings. When
processing on all features is not possible and only limited views exist, a cluster ensemble can
boost results significantly compared to individual clusterings. However, since the combiner
has no feature information, the consensus clustering tends to be poorer than the clustering
on all features. As discussed in the introduction, in knowledge-reuse application scenarios,
the original features are unavailable, so a comparison to an all-feature clustering is only
done as a reference.

The supra-consensus function chooses either MCLA and CSPA results, but the difference
is not statistically significant. As noted before MCLA is much faster and should be the
method of choice if only one is needed. HGPA delivers poor ANMI for 2D2K and 8D5K
but improves with more complex data in PENDIG and YAHOO. However, MCLA and CSPA
performed significantly better than HGPA for all four data-sets.

4.4 Object-Distributed Clustering (ODC)

A dual of the application described in the previous section, is object-distributed cluster-
ing (ODC). In this scenario, individual clusterers have a limited selection of the object
population but have access to all of the features of the objects they are provided with.

601

Strehl and Ghosh

1

2

PC 1

P
C

 2

7

3

PC 1

P
C

 2

8

7

PC 1

P
C

 2

5

6

PC 1

P
C

 2

4

8

PC 1

P
C

 2

Figure 7: Illustration of feature-distributed clustering (FDC) on 8D5K data. Each row cor-
responds to a random selection of two out of eight feature dimensions. For each
of the five chosen feature pairs, a row shows the clustering (colored) obtained
on the 2D subspace spanned by the selected feature pair (left) and visualizes
these clusters on the plane of the global two principal components (right). In
any subspace, the clusters can not be segregated well due to strong overlaps. The
supra-consensus function can combine the partial knowledge of the five clusterings
into a far superior clustering (Figure 6b).

602

Cluster Ensembles

input and parameters quality
data sub- # all features consensus max subspace average subspace min subspace

space models φ(NMI)(κ, λ(all)) φ(NMI)(κ, λ) maxq avgq minq

#dims r φ(NMI)(κ, λ(q)) φ(NMI)(κ, λ(q)) φ(NMI)(κ, λ(q))
2D2K 1 3 0.84747 0.68864 0.68864 0.64145 0.54706
8D5K 2 5 1.00000 0.98913 0.76615 0.69823 0.62134
PENDIG 4 10 0.67805 0.63918 0.47865 0.41951 0.32641
YAHOO 128 20 0.48877 0.41008 0.20183 0.16033 0.11143

Table 3: FDC results. The consensus clustering is as good as or better than the best
individual subspace clustering.

This is somewhat more difficult than FDC, since the labelings are partial. Because there
is no access to the original features, the combiner Γ needs some overlap between labelings
to establish a meaningful consensus9.

Object distribution can naturally result from operational constraints in many application
scenarios. For example, datamarts of individual stores of a retail company may only have
records of visitors to that store, but there are enough people who visit more than one store
of that company to result in the desired overlap. On the other hand, even if all of the
data is centralized, one may artificially ‘distribute’ them in the sense of running clustering
algorithms on different but overlapping samples (record-wise partitions) of the data, and
then combine the results as this can provide a computational speedup when the individual
clusterers have super-linear time complexity.

In this subsection, we will discuss how one can use consensus functions on overlapping
sub-samples. We propose a wrapper to any clustering algorithm that simulates a scenario
with distributed objects and a combiner that does not have access to the original features. In
ODC, we introduce an object partitioning and a corresponding clustering merging step. The
actual clustering is referred to as the inner loop clustering. In the pre-clustering partitioning
step Π, the entire set of objects X is decomposed into p overlapping partitions π:

X Π→ {π(q) | q ∈ {1, . . . , p}} (7)

Two partitions π(a) and π(b) are overlapping if and only if |π(a) ∩ π(b)| > 0. Also, a set of
partitions provides full coverage if and only if X =

⋃p
q=1 π(q).

The ODC framework is parameterized by p, the number of partitions, and v, the rep-
etition factor. The repetition factor v > 1 defines the total number of points processed in
all p partitions combined to be (approximately) vn.

Let us assume that the data is not ordered, so any contiguous indexed subsample is
equivalent to a random subsample. For this simulation, we decided to give every partition
the same number of objects to maximize speedup. Thus, in any partition π there are
|π| ≈ nv

p objects. Now that we have the number of objects |π| in each partition, let us
propose a simple coordinated sampling strategy: For each partition there are n

p objects
deterministically picked so that the union of all p partitions provides full coverage of all n
objects. The remaining objects for a particular partition are then picked randomly without

9. If features are available, one can merge partitions based on their locations in feature space to reach
consensus.

603

Strehl and Ghosh

replacement from the objects not yet in that partition. There are many other ways of
coordinated sampling. In this paper we will limit our discussion to this one strategy for
brevity.

Each partition is processed by independent, identical clusterers (chosen appropriately
for the application domain). For simplicity, we use the same number of clusters k in the
sub-partitions. The post-clustering merging step is done using our supra-consensus function
Γ.

{λ(q) | q ∈ {1, . . . , p}} Γ→ λ (8)

Since every partition only looks at a fraction of the data, there are missing labels in the
λ(q)’s. Given sufficient overlap, the supra-consensus function Γ ties the individual clusters
together and delivers a consensus clustering.

We performed the following experiment to demonstrate how the ODC framework can be
used to perform clustering on partially overlapping samples without access to the original
features. We use graph partitioning as the clusterer in each processor. Figure 8 shows our
results for the four data-sets. Each plot in Figure 8 shows the relative mutual information
(fraction of mutual information retained as compared to the reference clustering on all
objects and features) as a function of the number of partitions. We fix the sum of the
number of objects in all partitions to be double the number of objects (repetition factor
v = 2). Within each plot, p ranges from 2 to 72 and each ODC result is marked with a ◦.
For each of the plots, we fitted a sigmoid function to summarize the behavior of ODC for
that scenario.

Clearly, there is a tradeoff in the number of partitions versus quality. As p approaches
vn, each clusterer only receives a single point and can make no reasonable grouping. For
example, in the YAHOO case, for v = 2 processing on 16 partitions still retains around 80% of
the full quality. For less complex data-sets, such as 2D2K, combining 16 partial partitionings
(v = 2) still yields 90% of the quality. In fact, 2D2K can be clustered in 72 partitions at
80% quality. Also, we observed that for easier data-sets there is a smaller absolute loss in
quality for more partitions p.

Regarding our proposed techniques, all three consensus algorithms achieved similar
ANMI scores without significant differences for 8D5K, PENDIG, and YAHOO. HGPA had some
instabilities for the 2D2K data-set, delivering inferior consensus clusterings compared to
MCLA and HGPA.

In general, we believe the loss in quality with p has two main causes. First, through the
reduction of considered pairwise relations, the problem is simplified as speedup increases.
At some point too much relationship information is lost to reconstruct the original clusters.
The second factor is related to the balancing constraints used by the graph partitioner in
the inner loop: the sampling strategies cannot maintain the balance, so enforcing them in
clustering hurts quality. A relaxed inner loop clusterer might improve results.

Distributed clustering using a cluster ensemble is particularly useful when the inner
loop clustering algorithm has superlinear complexity (> O(n)) and a fast consensus func-
tion (such as MCLA and HGPA) is used. In this case, additional speedups can be obtained
through distribution of objects. Let us assume that the inner loop clusterer has a complex-
ity of O(n2) (for example, similarity-based approaches or efficient agglomerative clustering)

604

Cluster Ensembles

10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p

m
ut

ua
l i

nf
or

m
at

io
n

re
la

tiv
e

to
 fu

ll

10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
m

ut
ua

l i
nf

or
m

at
io

n
re

la
tiv

e
to

 fu
ll

(a) (b)

10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p

m
ut

ua
l i

nf
or

m
at

io
n

re
la

tiv
e

to
 fu

ll

10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p

m
ut

ua
l i

nf
or

m
at

io
n

re
la

tiv
e

to
 fu

ll

(c) (d)

Figure 8: ODC Results. Clustering quality (measured by relative mutual information) as a
function of the number of partitions, p, on various data-sets: (a) 2D2K; (b) 8D5K;
(c) PENDIG; (d) YAHOO. The sum of the number of samples over all partitions is
fixed at 2n. Each plot contains experimental results using graph partitioning in
the inner loop for p = [2, . . . , 72] and a fitted sigmoid. Processing time can be
reduced by a factor of 4 for the YAHOO data while preserving 80% of the quality
(p = 16).

605

Strehl and Ghosh

and one uses only MCLA and HGPA in the supra-consensus function.10 We define speedup
as the computation time for the full clustering divided by the time when using the ODC
approach. The overhead for the MCLA and HGPA consensus functions grows linearly in
n and is negligible compared to the O(n2) clustering. Hence the asymptotic sequential
speedup is approximately s(ODC−SEQ) ≈ p

v2 . Each partition can be clustered without any
communication on a separate processor. At integration time only the n-dimensional label
vector (instead of the entire n × n similarity matrix) has to be transmitted to the com-
biner. Hence, ODC does not only save computation time, but also enables trivial p-fold
parallelization. Consequently, if a p-processor computer is utilized, an asymptotic speedup
of s(ODC−PAR) ≈ p2

v2 is obtained. For example, when p = 4 and v = 2 the computing time is
approximately the same because each partition is half the original size n/2 and consequently
processed in a quarter of the time. Since there are four partitions, ODC takes the same
time as the original processing. In our experiments, using partitions from 2 to 72 yields
correspondingly approximate sequential (parallel) speedups from 0.5 (1) to 18 (1296). For
example, 2D2K (YAHOO) can be sped up 64-fold using 16 processors at 90% (80%) of the full
length quality. In fact, 2D2K can be clustered in less that 1/1000 of the original time at 80%
quality.

4.5 Robust Centralized Clustering (RCC)

A consensus function can introduce redundancy and foster robustness when, instead of
choosing or fine-tuning a single clusterer, an ensemble of clusterers is employed and their
results are combined. This is particularly useful when clustering has to be performed in a
closed loop without human interaction. The goal of robust centralized clustering (RCC) is
to perform well for a wide variety of data distributions with a fixed ensemble of clusterers.

In RCC, each clusterer has access to all features and to all objects. However, each
clusterer might take a different approach. In fact, approaches should be very diverse for
best results. They can use different distance/similarity measures (Euclidean, cosine, etc.),
or techniques (graph-based, agglomerative, k-means) (Strehl et al., 2000). The ensemble’s
clusterings are then integrated using the consensus function Γ without access to the original
features.

To show that RCC can yield robust results in low-dimensional metric spaces as well as
in high-dimensional sparse spaces without any modifications, the following experiment was
set up. First, 10 diverse clustering algorithms were implemented: (1) self-organizing map;
(2) hypergraph partitioning; k-means with distance based on (3) Euclidean, (4) cosine, (5)
correlation, and (6) extended Jaccard; and graph partitioning with similarity based on (7)
Euclidean, (8) cosine, (9) correlation, and (10) extended Jaccard. Implementation details
of the individual algorithms can be found in Strehl et al. (2000).

RCC was performed 10 times each on sample sizes of 50, 100, 200, 400, and 800, for
the 2DGA, 8DGA, and PEND data-sets. In case of the YAHOO data, only sample sizes of 200,
400, and 800 were used because fewer samples are not sufficient to meaningfully partition
into 40 clusters. Different sample sizes provide insight into how cluster quality improves
as more data becomes available. Quality improvement depends on the clusterer as well
as the data. For example, more complex data-sets require more data until quality reaches

10. CSPA is O(n2) and would reduce speedups obtained by distribution.

606

Cluster Ensembles

a maximum. We also computed a random clustering for each experiment to establish a
baseline performance. The random clustering consists of labels drawn from a uniform
distribution from 1 to k. The quality in terms of difference in mutual information as
compared to the random clustering algorithm for all 11 approaches (10 + consensus) is
shown in Figure 9. Figure 10 shows learning curves for the average quality of the 10
algorithms versus RCC.

In Figure 9 (top row) the results for the 2D2K data using k = 2 are shown. From an
external viewpoint, the consensus function was given seven good clusterings (Euclidean, co-
sine, and extended Jaccard based k-means as well as graph partitioning, and self-organizing
feature-map) and three poor clusterings (hypergraph partitioning, correlation based k-
means, and correlation based graph partitioning). At sample size of n = 800, the RCC
results are better than those for each individual algorithm quality evaluations. There
is no noticeable deterioration caused by the poor clusterings. The average RCC mutual
information-based quality φ(NMI) of 0.85 is 48% higher than the average quality of all indi-
vidual algorithms (excluding random) of 0.57.

In the case of the YAHOO data (Figure 9, bottom row) the consensus function received
three poor clusterings (Euclidean based k-means as well as graph partitioning; and self-
organizing feature-map, four good clusterings (hypergraph partitioning, cosine, correlation,
and extended Jaccard based k-means) and three excellent clusterings (cosine, correlation,
and extended Jaccard based graph partitioning). The RCC results are almost as good as
the average of the excellent clusterers despite the presence of distractive clusterings. In fact,
at the n = 800 level, RCC’s average quality of 0.38 is 15% better than the average qualities
of all the other algorithms (excluding random) at 0.33. This shows that for this scenario,
too, cluster ensembles work well and also are robust!

Similar results are obtained for 8D5K and PENDIG. In these two cases, all individual
approaches work comparably well except for hypergraph-partitioning. The supra-consensus
function learns to ignore hypergraph-partitioning results and yields a consensus clustering
of good quality.

Figure 10 shows how RCC is consistently better in all four scenarios than picking a
random/average single technique. Looking at the three consensus techniques, the need for
all of them becomes apparent since there is no clear winner. In 2D2K, 8D5K, and PENDIG,
MCLA generally had the highest ANMI, followed by CSPA, while HGPA performed poorly.
In YAHOO, both CSPA and HGPA, had the highest ANMI approximately equally often,
while MCLA performed poorly. We believe this is due to the fact that there was more
diversity in YAHOO clusterings. CSPA and HGPA are better suited for that because no
cluster correspondence is assumed.

The experimental results clearly show that cluster ensembles can be used to increase
robustness in risk-intolerant settings. Since it is generally hard to evaluate clusters in
high-dimensional problems, a cluster ensemble can be used to ‘throw’ many models at
a problem and then integrate them using an consensus function to yield stable results.
Thereby the user does not have to have category labels to pick a single best model. Rather,
the ensemble automatically ‘focuses’ on whatever is most appropriate for the given data. In
our experiments, there is diversity as well as some poorly performing clusterers. If there are
diverse but comparably performing clusterers, the quality actually significantly outperforms
the best individual clusterer, as seen in subsection 4.3.

607

Strehl and Ghosh

SOM HGP RCC

0

0.2

0.4

0.6

0.8

1

KM E
∆

φ(N
M

I)
KM C KM P KM J GP E GP C GP P GP J

SOM HGP RCC

0

0.2

0.4

0.6

0.8

1

KM E

∆
φ(N

M
I)

KM C KM P KM J GP E GP C GP P GP J

SOM HGP RCC

0

0.2

0.4

0.6

KM E

∆
φ(N

M
I)

KM C KM P KM J GP E GP C GP P GP J

SOM HGP RCC

0

0.2

0.4
KM E

∆
φ(N

M
I)

KM C KM P KM J GP E GP C GP P GP J

Figure 9: Detailed RCC results. Learning curves for 2D2K (top row), 8D5K (second row),
PENDIG (third row), and YAHOO (bottom row) data. Each learning curve shows
the difference in mutual information-based quality φ(NMI) compared to random
for five sample sizes at 50, 100, 200, 400, and 800. The bars for each data-point
indicate ±1 standard deviations over 10 experiments. Each column corresponds
to a particular clustering algorithm. The rightmost column gives RCC quality
for combining results of all 10 other algorithms. RCC yields robust results in all
four scenarios.

5. Related Work

As mentioned in the introduction, there is an extensive body of work on combining multiple
classifiers or regression models (Sharkey, 1996, Ghosh, 2002b), but relatively little to date on
combining multiple clusterings in the machine learning literature. However, in traditional
pattern recognition, there is a substantial body of largely theoretical work on consensus
classification from the mid-80’s and earlier (Neumann and Norton, 1986a,b, Barthelemy
et al., 1986). These studies used the term ‘classification’ in a very general sense, encom-
passing partitions, dendrograms and n-trees as well. Today, such operations are typically
referred to as clusterings. In consensus classification, a profile is a set of classifications

608

Cluster Ensembles

100 200 300 400 500 600 700 800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n

m
ut

ua
l i

nf
or

m
at

io
n

re
la

tiv
e

to
 r

an
do

m

100 200 300 400 500 600 700 800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n
m

ut
ua

l i
nf

or
m

at
io

n
re

la
tiv

e
to

 r
an

do
m

(a) (b)

100 200 300 400 500 600 700 800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n

m
ut

ua
l i

nf
or

m
at

io
n

re
la

tiv
e

to
 r

an
do

m

100 200 300 400 500 600 700 800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n

m
ut

ua
l i

nf
or

m
at

io
n

re
la

tiv
e

to
 r

an
do

m

(c) (d)

Figure 10: Summary of RCC results. Average learning curves and RCC learning curves for
2D2K (a), 8D5K (b), PENDIG (c), and YAHOO (d) data. Each learning curve shows
the difference in mutual information-based quality φ(NMI) compared to random
for five sample sizes (at 50, 100, 200, 400, and 800). The bars for each data-
point indicate ±1 standard deviations over 10 experiments. The upper curve
gives RCC quality for combining results of all other 10 algorithms. The lower
curve is the average performance of the 10 algorithms. RCC yields robust results
in any scenario.

609

Strehl and Ghosh

which is sought to be integrated into a single consensus classification. They were largely
interested in obtaining a strict consensus, which identifies the supremum and the infimum
of all given pairs of clusterings, using the relation ‘sub-cluster’ to define the partial ordering.
Note that, unlike our approach, strict consensus results are not at the same level of scale
or resolution as the original clusterings. In fact, in the presence of strong noise the results
would often be trivial, that is, the supremum would be a single cluster of all objects, and
the infimum returned the set of n singletons. Also, the techniques were computationally
expensive and meant for smaller data-sets.

The most prominent application of strict consensus is by the computational biology
community to obtain phylogenetic trees (Kim and Warnow, 1999, Kannan et al., 1995).
A set of DNA sequences can be used to generate evolutionary trees using criteria such
as maximum parsimony, but often one obtains several hundred trees with the same score
function. In such cases, biologists look for the strict consensus tree, the supremum, which
has lower resolution but is compatible with all the individual trees. Note that such systems
are different from cluster ensembles in that (i) they are hierarchical clusterings, typically
using unrooted trees, (ii) they have domain specific distance metrics (for example, Robinson-
Foulds distance) and evaluation criteria such as parsimony, specificity and density, and (iii)
they require strict consensus.

A recent interesting application of consensus clustering to help in supervised learning
was to generate a single decision tree from N -fold cross-validated C4.5 results (Kavs̆ek et al.,
2001). Objects are first clustered according to their positions or paths in the N decision
trees. Then, only objects of the majority class in each cluster are selected to form a new
training set that generates the consensus decision tree. The goal here is to obtain a single,
simplified decision tree without compromising much on classification accuracy.

There are several techniques where multiple clusterings are created and evaluated as in-
termediate steps in the process of attaining a single, higher quality clustering. For example,
Fisher examined methods for iteratively improving an initial set of hierarchical clustering
solutions (Fisher, 1996). Fayyad et al. (1998) presented a way of obtaining multiple approx-
imate k-means solutions in main memory after making a single pass through a database,
and then combining these means to get a final set of cluster centers. In all of these works,
a summary representation of each cluster in terms of the base features is available to the
integration mechanism, as opposed to our knowledge reuse framework, wherein only clus-
ter labels are available. More recently, an ‘evidence accumulation’ framework was proposed
wherein multiple k-means, using a much higher value of k than the final anticipated answer,
were run on a common data-set (Fred and Jain, 2002). The results were used to form a
co-occurrence or similarity matrix that records the fraction of solutions for which a given
pair of points fell in the same cluster. Thus the effect of the multiple, fine-level clusterings
is essentially to come up with a more robust similarity indicator having the flavor of the
classical shared nearest-neighbors measure (Jarvis and Patrick, 1973). A single-link cluster-
ing is then used based on this similarity matrix. The co-occurrence matrix is analogous to
the one used for CSPA, except, of course, that the clusterings generated in Fred and Jain
(2002) are not legacy and are at a finer level of resolution.

One use of cluster ensembles is to exploit multiple existing groupings of the data. Several
analogous approaches exist in supervised learning scenarios where class labels are known,
under categories such as ‘life-long learning’ (Thrun, 1996), ‘learning to learn’ (Thrun and

610

Cluster Ensembles

Pratt, 1997) and ‘knowledge reuse’ (Bollacker and Ghosh, 1998, 1999). Several researchers
have attempted to directly reuse the internal state information from classifiers under the
belief that related classification tasks may benefit from common internal features. One
approach to this idea is to use the weights of hidden layers in a multi-layer perceptron
(MLP) classifier architecture to represent the knowledge to be shared among the multiple
tasks being trained on simultaneously (Caruana, 1995). Pratt (1994) uses some of the
trained weights from one MLP network to initialize weights in another MLP to be trained
for a later, related task. In a related work, Silver and Mercer (1996) have developed a
system consisting of task networks and an experience network. The experience network
tries to learn the converged weights of related task networks in order to initialize weights
of target task networks. Both of these weight initialization techniques resulted in improved
learning speed. Besides weight reuse in MLP-type classifiers, other state reuse methods
have been developed. One approach, developed by Thrun and O’Sullivan (1996), is based
on a nearest neighbor classifier in which each of the dimensions of the input space is scaled
to bring examples within a class closer together while pushing examples between different
classes apart. The scaling vector derived for one classification task is then used in another,
related task. We have previously proposed a knowledge reuse framework wherein the labels
produced by old classifiers are used to improve the generalization performance of a new
classifier for a different but related task (Bollacker and Ghosh, 1998). This improvement is
facilitated by a supra-classifier that accesses only the outputs of the old and new classifiers,
and does not need the training data that was used to create the old classifiers. Substantial
gains are achieved when the training set size for the new problem is small, but can be
compensated for by the extraction of information from the existing related solutions.

Another application of cluster ensembles is to combine multiple clusterings that were
obtained based on only partial sets of features. This problem has been approached recently
as a case of collective data mining (Kargupta et al., 1999). In Johnson and Kargupta (1999)
a feasible approach to combining distributed agglomerative clusterings is introduced. First,
each local site generates a dendrogram. The dendrograms are collected and pairwise simi-
larities for all objects are created from them. The combined clustering is then derived from
the similarities. In Kargupta et al. (2001), a distributed method of principal components
analysis is introduced for clustering.

The usefulness of having multiple views of data for better clustering has been recognized
by others as well. In multi-aspect clustering (Modha and Spangler, 2000), several similarity
matrices are computed separately and then integrated using a weighting scheme. Also,
Mehrotra (1999) has proposed a multi-viewpoint clustering, where several clusterings are
used to semi-automatically structure rules in a knowledge base. The usefulness of having
multiple clusterings of objects that capture relatively independent aspects of the information
these objects convey about a target set of variables, was one of the motivations behind the
multivariate extension of the information bottleneck principle (Friedman et al., 2001).

Much interest has also emerged in semi-supervised methods that form a bridge between
classification and clustering by augmenting a limited training set of labeled data by a larger
amount of unlabelled data. One powerful idea is to use co-training (Blum and Mitchell,
1998), whose success hinges on the presence of multiple ‘redundantly sufficient’ views of the
data. For example, Muslea et al. (2001) introduced a multi-view algorithm including active

611

Strehl and Ghosh

sampling based on co-training. Nigam and Ghani (2000) investigated the effectiveness of
co-training in semi-supervised settings.

Our proposed algorithms use hypergraph representations which have been extensively
studied (Garey and Johnson, 1979). Hypergraphs have been previously used for (a single)
high-dimensional clustering (Han et al., 1997, Strehl et al., 2000), but not for combining
multiple groupings. Mutual information (Cover and Thomas, 1991) is a useful measure
in a variety of contexts. For example, the information bottleneck method (Slonim and
Tishby, 2000) uses mutual information to reduce dimensionality while preserving as much
information as possible about the class labels. Mutual information has also been used to
evaluate clusterings by comparing cluster labels with class labels (Strehl et al., 2000), but
not to integrate multiple clusterings.

Finally, at a conceptual level, the consensus functions operate on the similarities between
pairs of objects, as indicated by their cluster labels. The attractiveness of considering objects
embedded in a derived (dis)similarity space, as opposed to the original feature space, has
been recently shown in several classification applications (Pekalska et al., 2002, Strehl and
Ghosh, 2002b).

6. Concluding Remarks

In this paper we introduced the cluster ensemble problem and provided three effective and
efficient algorithms to solve it. We defined a mutual information-based objective function
that enables us to automatically select the best solution from several algorithms and to
build a supra-consensus function as well. We conducted experiments to show how cluster
ensembles can be used to introduce robustness, speedup superlinear clustering algorithms,
and dramatically improve ‘sets of subspace clusterings’ for several quite different domains.
In document clustering of Yahoo! web pages, we showed that combining, for example, 20
clusterings, each obtained from only 128 random words, can more than double quality
compared to the best single result. Some of the algorithms and data-sets are available for
download at http://strehl.com/.

The cluster ensemble is a very general framework that enables a wide range of applica-
tions. The purpose of this paper was to present the basic problem formulation and explore
some application scenarios. There are several issues and aspects, both theoretical and prac-
tical, that are worthy of further investigation. For example, while the formulation allows
different clusterers to provide varying numbers of clusters (k), in most of the experiments,
k was the same for each clusterer. In reality, when clusterings are done in a distributed
fashion, perhaps by different organizations with different data-views or goals, it is quite
likely that k will vary from site to site. Is our consensus clustering fairly robust to such
variations? Our preliminary results on this issue are reported in Ghosh et al. (2002). They
indicate that cluster ensembles are indeed very helpful in determining a reasonable value
of k for the consensus solution since the ANMI value peaks around the desirable range.
Moreover, it typically gives better results than the best individual solution even when the
ensemble members cluster the data at highly varying resolutions. This paper also provides
further evidence of the suitability of the ANMI criterion as an indicator of NMI with the
“true labels”, since a plot of ANMI vs. NMI over a large number of experiments shows a
correlation coefficient of about 0.93.

612

Cluster Ensembles

Other worthwhile future work includes a thorough theoretical analysis of the average
normalized mutual information (ANMI) objective, including how it can be applied to soft
clusterings. We also plan to explore possible greedy optimization schemes in more detail.
The greedy scheme introduced in Section 2.3 is not very practical by itself. However, it
can be used as a post-processing step to refine good solutions when n is not too large. For
example, one can use the supra-consensus labeling as the initialization instead of the best
single input clustering. Preliminary experiments indicate that this post-processing affects
between 0% - 5% of the labels and yields slightly improved results. Another direction of
future work is to better understand the biases of the three proposed consensus functions.
We would also like to extend our application scenarios. In real applications, a variety of
hybrids of the investigated FDC, ODC and RCC scenarios can be encountered. Cluster
ensembles could enable federated data mining systems to work on top of distributed and
heterogeneous databases.

Acknowledgments

We would like to acknowledge support from the NSF under Grant ECS-9900353, from a
Faculty Partnership Award from IBM/Tivoli and IBM ACAS, and from Intel. We thank
Claire Cardie for careful and prompt editing of this paper, and the anonymous referees for
helpful comments.

References

C. J. Alpert and A. B. Kahng. Recent directions in netlist partitioning: A survey. Integra-
tion: The VLSI Journal, 19:1–18, 1995.

J.A. Barnett. Computational methods for a mathematical theory of evidence. In Proc. of
IJCAI, pages 868–875, 1981.

J. P. Barthelemy, B. Laclerc, and B. Monjardet. On the use of ordered sets in problems of
comparison and consensus of classifications. Journal of Classification, 3:225–256, 1986.

A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-training. In
Proceedings of the 11th Annual Conference on Computational Learning Theory (COLT-
98), pages 92–100, 1998.

D. Boley, M. Gini, R. Gross, E. Han, K. Hastings, G. Karypis, V. Kumar, B. Mobasher,
and J. Moore. Partitioning-based clustering for web document categorization. Decision
Support Systems, 27:329–341, 1999.

Kurt D. Bollacker and Joydeep Ghosh. A supra-classifier architecture for scalable knowledge
reuse. In Proc. Int’l Conf. on Machine Learning (ICML-98), pages 64–72, July 1998.

Kurt D. Bollacker and Joydeep Ghosh. Effective supra-classifiers for knowledge base con-
struction. Pattern Recognition Letters, 20(11-13):1347–52, November 1999.

P.S. Bradley and U. M. Fayyad. Refining initial points for K--means clustering. In Proc.
Int’l Conf. on Machine Learning (ICML-98), pages 91–99, July 1998.

613

Strehl and Ghosh

Rich Caruana. Learning many related tasks at the same time with backpropagation. In
Advances in Neural Information Processing Systems 7, pages 657–664, 1995.

S. V. Chakaravathy and J. Ghosh. Scale based clustering using a radial basis function
network. IEEE Transactions on Neural Networks, 2(5):1250–61, Sept 1996.

Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley, 1991.

B. Dasarathy. Decision Fusion. IEEE CS Press, Los Alamitos, CA, 1994.

I. S. Dhillon and D. S. Modha. Concept decompositions for large sparse text data using
clustering. Machine Learning, 42(1):143–175, January 2001.

T. G. Dietterich. Ensemble methods in machine learning. In J. Kittler and F. Roli, editors,
Multiple Classifier Systems, pages 1–15. LNCS Vol. 1857, Springer, 2001.

M. Ester, H. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering clus-
ters in large spatial databases with noise. In Proceedings of 2nd International Conference
on KDD, pages 226–231, 1996.

U. M. Fayyad, C. Reina, and P. S. Bradley. Initialization of iterative refinement clustering
algorithms. In Proc. 14th Intl. Conf. on Machine Learning (ICML), pages 194–198, 1998.

Doug Fisher. Iterative optimization and simplification of hierarchical clusterings. Journal
of Artificial Intelligence Research, 4:147–180, 1996.

W. Frakes. Stemming algorithms. In W. Frakes and R. Baeza-Yates, editors, Information
Retrieval: Data Structures and Algorithms, pages 131–160. Prentice Hall, New Jersey,
1992.

A. L. N. Fred and A. K. Jain. Data clustering using evidence accumulation. In Proc. ICPR,
page to appear, 2002.

N. Friedman, O. Mosenzon, N. Slonim, and N. Tishby. Multivariate information bottleneck.
In Proc. of the Seventeenth Conf. on Uncertainty in Artificial Intelligence (UAI). AAAI
Press, 2001.

Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-completeness. W. H. Freeman, San Francisco, CA, 1979.

J. Ghosh. Multiclassifier systems: Back to the future. Keynote Talk, 3rd Int’l Work-
shop on Multiple Classifier Systems, Cagliari, June, 2002a. Downloadable from
http://www.lans.ece.utexas.edu/publications.html.

J. Ghosh. Multiclassifier systems: Back to the future (invited paper). In F. Roli and
J. Kittler, editors, Multiple Classifier Systems, pages 1–15. LNCS Vol. 2364, Springer,
2002b.

J. Ghosh, A. Strehl, and S. Merugu. A consensus framework for integrating distributed
clusterings under limited knowledge sharing. In Proc. NSF Workshop on Next Generation
Data Mining, Baltimore, pages 99–108, Nov 2002.

614

Cluster Ensembles

C. W. J. Granger. Combining forecasts–twenty years later. Journal of Forecasting, 8(3):
167–173, 1989.

E. Han, G. Karypis, V. Kumar, and B. Mobasher. Clustering in a highdimensional space
using hypergraph models. Technical Report 97-019, University of Minnesota, Department
of Computer Science, 1997.

A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice Hall, New Jersey,
1988.

R. A. Jarvis and E. A. Patrick. Clustering using a similarity measure based on shared
nearest neighbors. IEEE Transactions on Computers, C-22, No. 11:1025–1034, 1973.

E. Johnson and H. Kargupta. Collective, hierarchical clustering from distributed, hetero-
geneous data. In M. Zaki and C. Ho, editors, Large-Scale Parallel KDD Systems, volume
1759 of Lecture Notes in Computer Science, pages 221–244. Springer-Verlag, 1999.

S. Kannan, T. Warnow, and S. Yooseph. Computing the local consensus of trees. In
Association for Computing Machinery and the Society of Industrial Applied Mathematics,
Proceedings, ACM/SIAM Symposium on Discrete Algorithms, pages 68–77, 1995.

H. Kargupta and P. Chan, editors. Advances in Distributed and Parallel Knowledge Dis-
covery. AAAI/MIT Press, Cambridge, MA, 2000.

H. Kargupta, W. Huang, Krishnamoorthy, and E. Johnson. Distributed clustering using
collective principal component analysis. Knowledge and Information Systems Journal
Special Issue on Distributed and Parallel Knowledge Discovery, 3:422–448, 2001.

H. Kargupta, B. Park, D. Hershberger, and E. Johnson. Collective data mining: A new
perspective toward distributed data mining. In Hillol Kargupta and Philip Chan, editors,
Advances in Distributed and Parallel Knowledge Discovery. MIT/AAAI Press, 1999.

G. Karypis, E.-H. Han, and V. Kumar. Chameleon: Hierarchical clustering using dynamic
modeling. IEEE Computer, 32(8):68–75, August 1999.

G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM Journal on Scientific Computing, 20(1):359–392, 1998.

George Karypis, Rajat Aggarwal, Vipin Kumar, and Shashi Shekhar. Multilevel hypergraph
partitioning: Applications in VLSI domain. In Proceedings of the Design and Automation
Conference, 1997.

Branko Kavs̆ek, Nada Lavrac̆, and Anus̆ka Ferligoj. Consensus decision trees: Using con-
sensus hierarchical clustering for data relabelling and reduction. In Proceedings of ECML
2001, volume 2167 of LNAI, pages 251–262. Springer, 2001.

B. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs. Bell
Systems Technical Journal, 49:291–307, 1970.

J. Kim and T. Warnow. Tutorial on phylogenetic tree estimation. In Intelligent Systems
for Molecular Biology, Heidelberg, 1999.

615

Strehl and Ghosh

J. Kittler and F. Roli, editors. Multiple Classifier Systems. LNCS Vol. 2634, Springer, 2002.

Teuvo Kohonen. Self-Organizing Maps. Springer, Berlin, Heidelberg, 1995. (Second Ex-
tended Edition 1997).

A. Krogh and J. Vedelsby. Neural network ensembles, cross validation and active learning.
In D.S. Touretzky G. Tesauro and T.K. Leen, editors, Advances in Neural Information
Processing Systems-7, pages 231–238, 1995.

Mala Mehrotra. Multi-viewpoint clustering analysis (mvp-ca) technology for mission rule
set development and case-based retrieval. Technical Report AFRL-VS-TR-1999-1029, Air
Force Research Laboratory, 1999.

Dharmendra S. Modha and W. Scott Spangler. Clustering hypertext with applications to
web searching. In Proceedings of the ACM Hypertext 2000 Conference, San Antonio, TX,
May 30-June 3, 2000.

Ion Muslea, Steve Minton, and Craig Knoblock. Selective sampling + semi-supervised
learning = robust multi-view learning. In IJCAI-2001 Workshop on Text Learning Beyond
Supervision, 2001.

D. A. Neumann and V. T. Norton. Clustering and isolation in the consensus problem for
partitions. Journal of Classification, 3:281–298, 1986a.

D. A. Neumann and V. T. Norton. On lattice consensus methods. Journal of Classification,
3:225–256, 1986b.

K. Nigam and R. Ghani. Analyzing the applicability and effectiveness of co-training. In Pro-
ceedings of CIKM-00, 9th ACM International Conference on Information and Knowledge
Management, pages 86–93. ACM, 2000.

E. Pekalska, P. Paclik, and R.P.W. Duin. A generalized kernel approach to dissimilarity-
based classification. Journal of Machine Learning Research, Special Issue on Kernel
Methods, 2(2):175–211, 2002.

Lorien Y. Pratt. Experiments on the transfer of knowledge between neural networks. In
S. Hanson, G. Drastal, and R. Rivest, editors, Computational Learning Theory and Natu-
ral Learning Systems, Constraints and Prospects, chapter 19, pages 523–560. MIT Press,
1994.

A. Prodromidis, P. Chan, and S. Stolfo. Meta-learning in distributed data mining systems:
Issues and approaches. In H. Kargupta and P. Chan, editors, Advances in Distributed
and Parallel Knowledge Discovery. AAAI/MIT Press, Cambridge, MA, 2000.

M.D. Richard and R.P. Lippmann. Neural network classifiers estimate bayesian a posteriori
probabilities. Neural Computation, 3(4):461–483, 1991.

A. Sharkey. On combining artificial neural networks. Connection Science, 8(3/4):299–314,
1996.

616

Cluster Ensembles

A. Sharkey. Combining Artificial Neural Nets. Springer-Verlag, 1999.

D. Silver and R. Mercer. The parallel transfer of task knowledge using dynamic learning
rates based on a measure of relatedness. Connection Science Special Issue: Transfer in
Inductive Systems, 1996.

N. Slonim and N. Tishby. Agglomerative information bottleneck. In Proc. of NIPS-12,
pages 617–623. MIT Press, 2000.

A. Strehl and J. Ghosh. Cluster ensembles – a knowledge reuse framework for combining
partitionings. In Proceedings of AAAI 2002, Edmonton, Canada, pages 93–98. AAAI,
July 2002a.

Alexander Strehl and Joydeep Ghosh. A scalable approach to balanced, high-dimensional
clustering of market-baskets. In Proc. HiPC 2000, Bangalore, volume 1970 of LNCS,
pages 525–536. Springer, December 2000.

Alexander Strehl and Joydeep Ghosh. Relationship-based clustering and visualization for
high-dimensional data mining. INFORMS Journal on Computing, 2002b. in press.

Alexander Strehl, Joydeep Ghosh, and Raymond Mooney. Impact of similarity measures
on web-page clustering. In Proc. AAAI Workshop on AI for Web Search (AAAI 2000),
Austin, pages 58–64. AAAI, July 2000.

S. Thrun. Is learning the n-th thing any easier than learning the first? In M.C. Mozer
D.S. Touretzky and M. E. Hasselmo, editors, Advances in Neural Information Processing
Systems-8, pages 640–646. MIT Press, Cambridge, MA, 1996.

S. Thrun and L.Y. Pratt. Learning To Learn. Kluwer Academic, Norwell, MA, 1997.

Sebastian Thrun and Joseph O’Sullivan. Discovering structure in multiple learning tasks:
The TC alogorithm. In The 13th International Conference on Machine Learning, pages
489–497, 1996.

K. Tumer and J. Ghosh. Linear and order statistics combiners for pattern classification.
In A. Sharkey, editor, Combining Artificial Neural Nets, pages 127–162. Springer-Verlag,
1999.

617

