36-780: Social Network Modeling

Introduction Brian Junker 132E Baker Hall

brian@stat.cmu.edu

Class Materials

- In Class
 - These notes
- On web (http://www.stat.cmu.edu/~brian/780)
 - Class notes, handouts, links, etc.
 - Homework
 - Reading
 - Computing
- On Blackboard (<u>blackboard.andrew.cmu.edu</u>)
 - Discussion Board
 - Turn in written assignments (pdf!) when needed

Outline

- Introduction & office hours
- Syllabus Stuff
- Social Networks...
 - Descriptive analysis in R
 - Erdos-Renyi-Gilbert model
 - □ P₁ model
 - □ P₂ model
- Directions from here...
- HW01 is posted online (two due dates this week!)

Introduction – about us

- Instructor
 Brian Junker
 132E Baker Hall
 (412) 268-8874
 brian@stat.cmu.edu
- TA
 Mauricio Sadinle
 Wean 8115
 (412) 268-5610
 msadinle@stat.cmu.edu

- Office Hours
 - □ 132E Baker
 - Tues at Noon
 - □ Thurs at 1:30pm
- Office Hours

 - **_**____

Syllabus Stuff – course materials

- No textbook
 - Just class notes, web materials, journal articles
- If you are interested, these two books summarize traditional material well
 - de Nooy, W., Mrvar, A., & Batagelj, V. (Eds.). (2005). Exploratory social network analysis with Pajek (Vol. 27). Cambridge University Press.
 - □ Kolaczyk, E. D. (2009). Statistical analysis of network data. Springer
- This long article surveys much of the current state of affairs
 - Goldenberg, A., Zheng, A. X., Fienberg, S. E., & Airoldi, E. M. (2010). A survey of statistical network models. Foundations and Trends in Machine Learning, 2(2), 129–233.
- And some of the newest stuff we'll be discussing is here
 - http://hnm.stat.cmu.edu

My goals for the course

- Passing understanding of descriptive analysis of social network data.
- Understand how a generative model entails a statistical model, and how statistical models offer avenues for
 - combining analyses across ensembles of networks,
 - extending analyses from smaller samples to larger ones, etc.
- Engage some current research questions in social network analysis.
- Apply what you have learned to a small project.

Main Computing Tools

- R
 - Great "breadboarding" system
 - Can do moderately large problems
 - Big open source community
 - Mostly not set up for big data
- A little "meatball programming" experience also helpful
- If you want to use something else, you may, but please document what you are doing

What you will do in the course

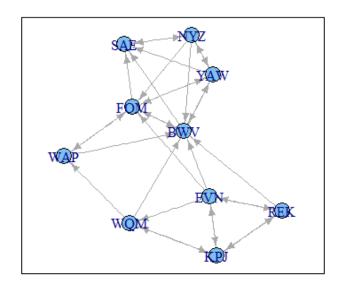
- Throughout the mini:
 - Post questions and answers on Blackboard
 - Participate in class
- First ca. 2/3 of mini:
 - Computer labs
 - Read papers, discuss in class
- Last ca. 1/3 of mini:
 - Everyone presents 1-2 papers, or presents a small project

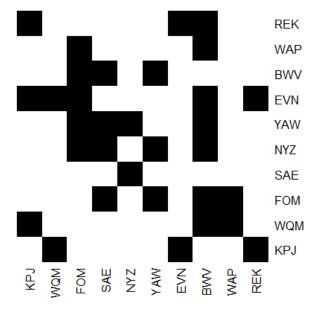
Paper presentation or project?

- If you have a project on social network modeling that is a part of your research, I encourage you to make that be your project for the mini.
- If you do not have a network data analysis or modeling project, then you should select one or more research papers to present to the class.
- In either case (paper(s) or project), you will
 - Lead a class discussion on your paper(s) or project,
 using projected slides or other tools as appropriate.
 - Write a short "conference paper" on your work.

Social Networks

- Nodes, vertices
- Edges, links, ties
- Egos vs alters
- Directed vs Undirected
- Node attributes
- Edge attributes
- Graph, sociogram
- Adjaceny matrix, weight matrix, sociomatrix





Descriptive analysis often emphasizes topological features, e.g.:

Node Centrality

- Degree centrality (in-degree, out-degree)
- Closeness
 - average geodesic distance to get from/to this node, to/from any connected node
- Betweenness
 - Fraction of geodesic paths passing through this node
- Edge Centrality similar (esp. betweenness)
- Block or community structure
- Other topological features (triads, stars, cliques...)
- When there are other covariates, homophily and similar concepts come into play as well

Digression to R...

Some basic notation & models¹

- G = a graph or network;
 - \neg V(G) = its vertices (nodes),
 - \Box E(G) = its edges (ties),
 - \square and for now N(G) = #V(G), K(G)=#E(G).
- For i, $j \in V(G)$, let y_{ij} be the indicator

$$y_{ij} = \begin{cases} 1 & \text{if } (i,j) \in E(G) \\ 0 & \text{else} \end{cases}$$

- The adjacency matrix is y=A(G).
- If the edges have weights, then y_{ij} will have weights as values instead

The Erdos-Renyi-Gilbert Model

 G(N,p) specifies a model for a directed graph G on N nodes, with iid probability p of an edge y_{ij} between any two nodes i and j.

Then
$$\#E(G) = K \sim Binomial\left(\binom{N}{2}, p\right)$$

■ G(N,K) is the equivalent "hypergeometric-like" model, that conditions on the number of edges K, with $p = K/\binom{N}{2}$.

Changepoint properties of the E-R-G model, depending on λ =Np

- If λ <1, then a graph generated from G(N,p) will have no connected components larger than O(log N), a.s., as N \rightarrow ∞.
- If λ =1, then a G(N,p) graph will have a largest compnent of size O(N^{2/3}), a.s., as N $\rightarrow \infty$.
- If $\lambda \rightarrow$ c>1 as N $\rightarrow \infty$, then a G(N,p) graph will have a unique "giant" component containing a positive fraction of nodes, and no other component will be larger than O(log N).

The beta model for social networks

■ The E-R-G model assumes Y_{ij} iid with

$$\log \frac{P(Y_{ij})}{1 - P(Y_{ij})} \equiv \theta$$

■ The beta model assumes Y_{ij} indepenent with

$$\log \frac{P(Y_{ij})}{1 - P(Y_{ij})} = \beta_i + \beta_j$$

This allows for very simple variation in degree across nodes

The p₁ model (Holland & Leinhardt 1981)

Easiest to state in terms of the joint likelihood for the whole adjacency matrix Y:

$$\log P(Y=y) \propto \theta y_{++} + \sum_{i} \alpha_i y_{i+} + \sum_{j} \beta_j y_{+j} + \rho \sum_{ij} y_{ij} y_{ji}$$

- □ A subscript + means "sum over that index"
- □ The sufficient statistics are the out-degrees y_{i+} and indegrees y_{+j} for each node, and the number of "reciprocal dyads" $\sum_{ij} y_{ij} y_{ji}$
- \Box θ is an overall tie propensity
- $f lpha_i$ is node i's "gregariousness" or "expansiveness"
- $oldsymbol{\square} \quad eta_j$ is node j's "attractiveness" or "popularity"
- ho is the tendency to reciprocate ties in the graph.

The p₂ model (Snijders et al, 2000's)

■ The principal addition of p_2 over p_1 is to allow covariates X_1 , X_2 , ... and random effects A, B... in modeling the α 's and β 's, e.g.

$$\vec{\alpha} = \mathbf{X}_1 \vec{\gamma}_1 + \vec{A}$$
 $\vec{\beta} = \mathbf{X}_2 \vec{\gamma}_2 + \vec{B}$

where the arrows denote vectors of parameters or random effects, and X_1 and X_2 are covariate matrices.

 This can be extended to other parameters, and can be extended to model multiple social networks.

Directions from here...

- A variation on the E-R-G model called the Exchangeable Random Graph Model is a simple way to probabilistically model block/community structure
- The p₁ model is also a natural precursor to the general p* models, also known as Exponential Random Graph Models (ERGMs). We will discuss them in the next lecture or two...
- p_1 is also a precursor to *conditionally independent* dyad (CID) models.
- The p₂ model and its generalization by Zijlstra is a precursor to Hierarchical Network Models (HNMs).

Summary

- Introduction & office hours
- Syllabus Stuff
- Social Networks...
 - Descriptive analysis in R
 - Erdos-Renyi-Gilbert model
 - □ P₁ model
 - P₂ model
- Directions from here...
- HW01 is posted online (two due dates this week!)