36-780: Social Network Modeling

ERGMs as models

Brian Junker

132E Baker Hall

brian@stat.cmu.edu

Outline

- Special cases of ERGMs
 - Erdos-Renyi-Gilbert model
 - Beta model
 - □ p₁ model
- Exponential Random Graph Models (ERGMs)
 - Computational explosion
 - Independent-dyads approximation
 - MCMC-MLE
- ERGMs: The Good, The Bad, The R Example
- HW02, for Tuesday, is on line

The Erdos-Renyi-Gilbert Model

 G(N,p) specifies a model for a directed graph G on N nodes, with iid probability p of an edge y_{ij} between any two nodes i and j.

Then
$$\#E(G) = K \sim Binomial\left(\binom{N}{2}, p\right)$$

■ G(N,K) is the equivalent "hypergeometric-like" model, that conditions on the number of edges K, with p = $K/\binom{N}{2}$.

The beta model for social networks

■ The E-R-G model assumes Y_{ij} iid with

$$\log \frac{P(Y_{ij})}{1 - P(Y_{ij})} \equiv \theta$$

■ The beta model assumes Y_{ij} indepenent with

$$\log \frac{P(Y_{ij})}{1 - P(Y_{ij})} = \beta_i + \beta_j$$

This allows for very simple variation in degree across nodes

The p₁ model (Holland & Leinhardt 1981)

Easiest to state in terms of the joint likelihood for the whole adjacency matrix Y:

$$\log P(Y=y) \propto \theta y_{++} + \sum_{i} \alpha_i y_{i+} + \sum_{j} \beta_j y_{+j} + \rho \sum_{ij} y_{ij} y_{ji}$$

- □ A subscript + means "sum over that index"
- □ The sufficient statistics are the out-degrees y_{i+} and indegrees y_{+j} for each node, and the number of "reciprocal dyads" $\sum_{ij} y_{ij} y_{ji}$
- \Box θ is an overall tie propensity
- $f lpha_i$ is node i's "gregariousness" or "expansiveness"
- $oxdot eta_j$ is node j's "attractiveness" or "popularity"
- \square ρ is the tendency to reciprocate ties in the graph.

Exponential Random Graph Models (p* models¹); Frank & Strauss (1986)

■ In the p₁ model, the term

$$\rho \sum_{ij} y_{ij} y_{ji}$$

counts a certain "topological feature" (reciprocal ties).

• Could replace $\sum_{ij} y_{ij} y_{ji}$ with a summary g(y) of some other topological feature(s), getting a new model term

$$\theta^*g(y)$$

■ This may depend on more than one edge at a time, and hence the model no longer has independent dyads. E.g., $g(y) = \sum_{i,j,k} y_{ij} y_{jk} y_{ki} = \#$ of 3-cycles.

Exponential Random Graph Models (ERGMs)²

This leads to a model of the form

$$\log P(Y=y) \propto \theta y_{++} + \sum_{i} \alpha_i y_{i+} + \sum_{j} \beta_j y_{+j} + \theta^* g(y)$$

■ No need to retain the p_1 terms, and we could have more than one g(y); this leads to

$$P(Y = y) = \frac{\exp\{\vec{\theta}^\mathsf{T} \vec{g}(y)\}}{\kappa(\vec{\theta}, \mathcal{Y})}$$

where $\vec{\theta}$ is a vector of parameters, $\vec{g}(y)$ is a vector of summary statistics, $\kappa(\vec{\theta}, \mathcal{Y})$ is a normalizing constant, summed over the set \mathcal{Y} of "all" networks on E(Y).

ERGM computational explosion...

■ The normalizing constant

$$\kappa(\vec{\theta}, \mathcal{Y}) = \sum_{y \in \mathcal{Y}} \exp{\{\vec{\theta}^{\mathsf{T}} \vec{g}(y)\}}$$

is a sum over all possible graphs in ${\mathcal Y}$ and this can be a big number:

$$\operatorname{card}(\mathcal{Y}) = 2^{\binom{N}{2}}$$

- Usually infeasible to compute the MLE directly. Instead, we see
 - Independent-dyad approximation (Strauss & Ikeda, 1990)
 - MCMC-MLE (Snijders, 2002)

ERGM: Independent-dyads approx.

■ Let Y_{ij} indicate (1 or 0) an edge, let Y_{ij}^c be the rest of the graph, and let y^+ and y^- be the graph with $y_{ij}=1$, and $y_{ij}=0$, respectively. Then

$$\log \frac{P[Y_{ij}=1|Y_{ij}^c=y_{ij}^c]}{P[Y_{ij}=0|Y_{ij}^c=y_{ij}^c]} = \vec{\theta}^{\mathsf{T}}[\vec{g}(y^+) - \vec{g}(y^-)]$$

■ If we now "pretend" that $\vec{g}(y)$ does not depend on Y^c_{ij} , we get an independent dyads model

$$\log \frac{P[Y_{ij}=1]}{P[Y_{ij}=0]} = \vec{\theta}^{\mathsf{T}} [\vec{g}(y_{ij}|_{y_{ij}=1}) - \vec{g}(y_{ij}|_{y_{ij}=0})]$$

that is easy to estimate (e.g., glm).

ERGM: Full (MCMC) approx MLE (Snijders, 2002)

- The "indep dyads" approximation made ERGMs feasible and hence popular
 - But it can produce really bad answers (van Duijn, Gile, and Handcock 2007)
- Snijders (2002) exploits a trick of Geyer & Thompson (1992) to approximate (a ratio involving) $\kappa(\vec{\theta}, \mathcal{Y})$ with MCMC, and hence to get approximate full MLEs.
- All of the above also works when $\vec{g}(y, X)$ depends on covariates X!

Building ERGMs...

■ What can be $\vec{g}(y, X)$ terms in

$$\log P(Y = y) \propto \vec{\theta}^{\mathsf{T}} \vec{g}(y, X)$$

$$= \theta_1 g_1(y, X) + \theta_2 g_2(y, X) + \dots + \theta_k g_k(y, X) ?$$

- $g(y,X)=y_{i+}$, y_{+j} , y_{++} , $\sum_{ij}y_{ij}y_{ji}$, $\sum_{ijk}y_{ij}y_{jk}y_{ki}$, etc.
- g(y, X) = the 16 counts in a triad census
- g(y,X) = 1 if node i is male, 0 else
- g(y,X) = 1 if nodes i and j have same gender, 0 if not.
- g(y, X) = difference in income between i and j
- Etc. etc. etc.!

ERGMs in R: The Good, The Bad, ...

- The above is the GOOD news about ERGMs.
- We will look at an example in R.
- You will also look at the "ergm" package in your hw.

■ The BAD news about ERGMs will come next week (and, somewhat, in the R example...)

Outline

- Special cases of ERGMs
 - Erdos-Renyi-Gilbert model
 - Beta model
 - □ p₁ model
- Exponential Random Graph Models (ERGMs)
 - Computational explosion
 - Independent-dyads approximation
 - MCMC-MLE
- ERGMs: The Good, The Bad, The R Example
- HW02, for Tuesday, is on line