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Outline
� A few words about QAP

� Simulation: Permutation tests

� ERGMs

� An explicit computation

� ERGMs for valued ties

� Goodness of fit 

� Simulation: parametric bootstrap

� Graphical models vs social network models

� D-separation, identifiability

� HW03: Read Shalizi & Thomas for Thursday!



QAP Regression

� Let Y = [Yij] be an n× n response matrix

� An adjacency matrix, or

� A matrix of edge values

� Let X(1), X(2), …, X(k) be k n× n matrices of 

predictors.

� We can easily imagine

Etc.
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Yij = β0 + β1X
(1)
ij + · · ·+ βkX

(k)
ij + ǫij , or

logitP [Yij = 1] = β0 + β1X
(1)
ij + · · ·+ βkX

(k)
ij + ǫij

How can we do inference?

� Typically, the β’s are estimates with OLS for 

and estimated with the usual IRWLS algorithm for

� These methods assume Yij’s are independent –

probably not!

� If you talk to Mauricio and I talk to Mauricio, then chances 

are you and I talk to each other too!

� Another pseudo-likelihood method (like old ERGM fitting*)

� Need a way of estimating standard errors, p-values, …
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Yij = β0 + β1X
(1)
ij + · · ·+ βkX

(k)
ij + ǫij

logitP [Yij = 1] = β0 + β1X
(1)
ij + · · ·+ βkX

(k)
ij + ǫij

*Strauss & Ikeda (1990)



QAP inference: random permutation 

null distribution
� We need a “null” distribution for the β’s under 

H
0
: No relationship between the X’s and Y

� If we randomly permute the order of the graph 

nodes in Y but keep the weights between the 

permuted dyads the same, this should be H
0
.

� Algorithm: repeat (100, or 1000, or m, times):

� Randomly permute Y

� Re-run the regression

� Write down the estimated β’s
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QAP comments
� QAP = Quadratic Assignment Procedure

� Krackhardt, David. 1987. “QAP Partialling as a Test of 

Spuriousness.” Social Networks 9: 171-186.

� Krackhardt, David. 1988. “Predicting with Networks: 

Nonparametric Multiple Regression Analysis of Dyadic 

Data.” Social Networks 10: 359-381.

� It’s not always clear (to me!) that H
0
: “no relationship 

at all” is the right null to simulate from 

� There appear to be several possible null distributions to 

choose from in “netlm” and “netlogit” (from the “statnet” 

package(s) [ergm/network/sna…])

� David Krackhardt will give guest lecture later in mini
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ERGM for binary ties

� Recall that the general form of an ERGM is

� is a vector of parameters

� is a vector of “network statistics”

� is a normalizing constant, i.e.

where     is the set of all graphs on the vertices of y.
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P (Y = y) = exp{�θT�g(y)}

κ(�θ,Y)

�θ

�g(y)

κ(�θ,Y)

Y

κ(�θ,Y) =
∑
y∈Y

exp{�θT�g(y)}

ERGMs: an actual model

� Suppose we take the model Y ~ indegree
from the ergm() function in R.

� “This term adds one network statistic to the model for 

each element in d; the ith such statistic equals the 

number of nodes in the network of in-degree d[i]”

� Let’s see what this looks like on a network with 

three nodes…
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d_0(y): # of nodes with in-degree = 0
d_1(y): # of nodes with in-degree = 1
d_2(y): # of nodes with in-degree = 2



In-degree statistics for 3 nodes…
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for (i in 0:15) plot(graph.isocreate(3,i),edge.col="black")

…so the ERGM model will look like:

� Numerator:

� Denominator:
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exp{θ0d0(y) + θ1d1(y) + θ2d2(y)}

κ(�θ,Y) =
exp{θ03 + θ10 + θ20}+ exp{θ02 + θ11 + θ20}+ exp{θ02 + θ10 + θ21}+
exp{θ01 + θ12 + θ20}+ exp{θ01 + θ12 + θ20}+ exp{θ01 + θ11 + θ21}+
exp{θ01 + θ12 + θ20}+ exp{θ01 + θ11 + θ21}+ exp{θ01 + θ10 + θ22}+
exp{θ03 + θ13 + θ20}+ exp{θ00 + θ12 + θ21}+ exp{θ00 + θ13 + θ20}+
exp{θ00 + θ11 + θ22}+ exp{θ03 + θ12 + θ21}+ exp{θ03 + θ11 + θ22}+
exp{θ00 + θ10 + θ23}



Computing κ…
� Clearly for many nodes or many network 

statistics, this becomes unwieldy…

� As sketched in Hunter et al (2008), Snijders

(2002) applied a trick of Geyer & Thompson 

(1992):

where Ym∼ p(Y=y|θ0) from MCMC…
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ℓ(�θ)− ℓ(�θ0) = (�θ − �θ0)
T�g(y)− log

[

κ(�θ,Y)

κ(�θ0,Y)

]

= (�θ − �θ0)
T�g(y)− logE

Y |�θ0

[

exp{(�θ − �θ0)
T�g(Y )}

]

≈ (�θ − �θ0)
T�g(y)− log

[

1

M

M
∑

m=1

exp{(�θ − �θ0)
T�g(Ym)}

]

ERGM for valued ties

� What if y = [yij] is a matrix of edge values (amount 

of money paid from i to j, or number of advice-

seeking overtures, etc.)?

� In principle,

is just an exponential family model, so should 

generalize to arbirary y, with 
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P (Y = y) = exp{�θT�g(y)}

κ(�θ,Y)

κ(�θ,Y) =

∫
Y

exp{�θT�g(y)}dµ(y)



ERGM for valued ties…

� In practice, it is difficult to specify and compute

� Again, mostly                is the culprit

� Krivitsky (2012) has worked out some general 

theory 

� Krivitsky also developed an R package for the 

specific case of counted ties, ergm.count
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κ(�θ,Y)

� Graphical Model:

� Nodes are random 

variables

� Edges are fixed entities 

expressing conditional 

independence (non-dyadic!)

Graphical Models vs Social Network 

Models
� Social Network Model:

� Nodes are fixed entities

� Edges are random 

variables expressing 

some dyadic 

relationship
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A fast introduction/review for 

graphical models

� Motivated from path 

models/SEMs:

Y2 = β12

0
+ β12

1
Y1 + ǫ12

Y3 = β243

0
+ β243

1
Y2 + β

243

2
Y4 + ǫ243
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Y3

Y4

Y2Y1

� But for any kind of Y’s 
� Can write joint model from 

implied conditionals (like 

Bayes nets)

� Can “read off” conditional 

independencies

� Y1 ∐ (Y3, Y4)|Y2

� More generally, have 

graphical Markov property

p(y1, y2, y3, y4) = p(y3|y2, y4)×

p(y2|y1) p(y1) p(y4)

Pearl, J. (1995). Causal diagrams for empirical 
research. Biometrika, 82(4), 669-688.

Conditional independence and 

d-separation in graphical models
� Unconditional: � Conditional on Y2:
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Y1

Y1

Y1

Y1 Y3
Y2

Y2

Y2

Y2

Y3

Y3

Y3 Y1 �
∐

Y3

Y1 �
∐

Y3

Y1 �
∐

Y3

Y1

∐
Y3

Y1

∐
Y3|Y2

Y1

∐
Y3|Y2

Y1

∐
Y3|Y2

Y1 �
∐

Y3|Y2

chain

chain

common 
cause

collider, 
common 
effect

Let A, B, C be disjoint sets of nodes; and let p be an undirected path from A to B.
C blocks p, if (i) there exists a collider y on p with neither y nor its descendants
in C; or (ii)  there is a non-collider on p in C.  C d-separates A from B if it blocks 
every path between them.  This occurs if and only if, A∐ B | C. 



� C={Y3, Y4} or C={Y4, Y5} 

satisfy the backdoor 

criterion

� C = {Y4} does not, since 

Y4 does not block path 

Yi, Y3, Y1, Y4, Y2, Y5, Yj

� A backdoor path is a 

confounding path

Backdoor paths and estimating the 

effect of Yi on Yj
� Let (Yi, Yj) be an ordered 

pair. A set of nodes C 

satisfies the backdoor 

criterion for Yi and Yj if 

� No node of C is a 

descendant of Y
i
; and 

� C blocks every path with an 

arrow into Y
i

� Conditioning on C makes 

the effect of Yi on Yj

identifiable.
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Y1

Yi Y6

Y5Y4

Yj

Y2

Y3

Shalizi & Thomas’s main result

� Consider just one edge 

Aij in a social network

� Consider measured 

outcomes on the nodes 

at two different times

� Y
t-1

(i), Y
t-1

(j)

� Y
t
(i), Y

t
(j)

� When can we estimate 

effect of Yt-1(j) on Yt(i)?
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i j

Aij

Yt-1(i) Yt-1(j)

Yt(i) Yt(i)

Xi
Xj

Zi Zj

?

� Xi, Xi are unobserved 

(latent) features of i and j

� Zi and Zi are observed 

covariates on i and j
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Summary
� A few words about QAP
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� ERGMs

� An explicit computation

� ERGMs for valued ties

� Goodness of fit 
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� HW03: Read Shalizi & Thomas for Thursday!


