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‘ Outline

A few words about QAP

o Simulation: Permutation tests
ERGMs

o An explicit computation

o ERGMs for valued ties

0 Goodness of fit

= Simulation: parametric bootstrap
Graphical models vs social network models
D-separation, identifiability
HWO03: Read Shalizi & Thomas for Thursday!
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‘ QAP Regression

= LetY =[Y;] be an nx n response matrix
o An adjacency matrix, or
o A matrix of edge values

m Let X1 X2 XK be k nx n matrices of
predictors.

= We can easily imagine
Yé' — ﬁO + 51Xz(31) + -+ ﬁkXZ(jk) + €5 . Of
logit P[Vyj =1 = fo+/Xy ++ /X +ey
Etc.
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How can we do inference?

m Typically, the ’s are estimates with OLS for

Yii = [Bo+ ﬂlX@'(jl) 44 ﬁkXi(f) + e
and estimated with the usual IRWLS algorithm for

= These methods assume Y;'s are independent —
probably not!

o If you talk to Mauricio and | talk to Mauricio, then chances
are you and | talk to each other too!

o Another pseudo-likelihood method (like old ERGM fitting™)
o Need a way of estimating standard errors, p-values, ...
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‘ QAP inference: random permutation

null distribution

m We need a “null” distribution for the 3’s under
H,: No relationship between the X’s and Y

= If we randomly permute the order of the graph
nodes in Y but keep the weights between the
permuted dyads the same, this should be H,,.

m Algorithm: repeat (100, or 1000, or m, times):
o Randomly permute Y

0 Re-run the regression
o Write down the estimated 3's
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‘ QAP comments

= QAP = Quadratic Assignment Procedure

o Krackhardt, David. 1987. “QAP Partialling as a Test of
Spuriousness.” Social Networks 9: 171-186.

o Krackhardt, David. 1988. “Predicting with Networks:
Nonparametric Multiple Regression Analysis of Dyadic
Data.” Social Networks 10: 359-381.

= It's not always clear (to me!) that H,: “no relationship
at all” is the right null to simulate from

o There appear to be several possible null distributions to
choose from in “netim” and “netlogit” (from the “statnet”
package(s) [ergm/network/sna...])

m David Krackhardt will give guest lecture later in mini
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‘ ERGM for binary ties

m Recall that the general form of an ERGM is

expl{0'g

o @ is a vector of parameters
a ﬁ(y) a vector of “network statistics”
Q /@(5, Y) is a normalizing constant, i.e.

K(0,Y) = X,y exp{07G(y)}

where ) is the set of all graphs on the vertices of y.
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‘ ERGMs: an actual model

= Suppose we take the model Y ~ | ndegr ee

from the er gn() functionin R.

o “This term adds one network statistic to the model for
each element in d; the ith such statistic equals the
number of nodes in the network of in-degree d[i]”

m Let’s see what this looks like on a network with
three nodes...

d_0O(y): # of nodes with in-degree = 0
d_1(y): # of nodes with in-degree = 1
d_2(y): # of nodes with in-degree = 2
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‘ In-degree statistics for 3 nodes...
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1/21/2014 for (i in 0:15) plot(graph.isocreate(3,i),edge.col="black")

...50 the ERGM model will look like:

= Numerator:
exp{bodo(y) + 61d1(y) + 02d2(y)}

m Denominator:
k(0,Y) =

exp{903 + 010 + 020} + exp{002 + 011 + 920} + 6Xp{002 + 010 + 921}+
exp{001 + 912 + 920} + exp{001 + 012 + 920} + exp{001 + 911 + 921}+
exp{901 + 012 + 020} + exp{001 + 011 + 621} + exp{001 + 010 + 922}+
exp{0o3 + 013 + 020} + exp{6o0 + 612 + 021} 4 exp{6o0 + 613 + 620} +
exp{0o0 + 011 + 052} + exp{603 + 612 + 021} + exp{0o3 + 611 + 622} +

exp{900 + 910 + 923}
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‘ Computing k...
m Clearly for many nodes or many network
statistics, this becomes unwieldy...

m As sketched in Hunter et al (2008), Snijders
(2002) applied a trick of Geyer & Thompson
(1992):

00) — () = (6—00)"G(y) — log

—

’4'3( 0, y)
= (01— 00)"g(y) —log By 5, [exp{(6— 0)Tg(V)}]

K(0,Y) ]

— —

(0~ 00)" gy) — log

Q

=3 e {(F - 5) (Yo}

where Y, ~ p(Y=y|6,) from MCMC...
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‘ ERGM for valued ties

= What if y = [y;] is a matrix of edge values (amount
of money paid from i to j, or number of advice-
seeking overtures, etc.)?

= In principle,

exp{0' g
P(Y — y) — p,j(é’,g)()y)}

is just an exponential family model, so should
generalize to arbirary y, with

w0, ) = /y exp{075(y) }du(y)
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‘ ERGM for valued ties...

= In practice, it is difficult to specify and compute
a Again, mostly x(6, ) is the culprit

m Krivitsky (2012) has worked out some general
theory

m Krivitsky also developed an R package for the
specific case of counted ties, er gm count
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‘ Graphical Models vs Social Network
Models

= Graphical Model: = Social Network Model:

Y12

@"—”@\ @”“" Y23

o 3
‘!” Y43

m Nodes are random m Nodes are fixed entities
variables = Edges are random

m Edges are fixed entities variables expressing
expressing conditional some dyadic

independence (non-dyadic!) relationship
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‘ A fast introduction/review for

graphical models
= But for any kind of Y’s

G @ o Can write joint model from
V) implied conditionals (like
¥, Bayes nets)
. = X
= Motivated from path p(Y1, Y2, Y3, Ya) pgys:yz,)y4() o
models/SEMs: PRI PR PR
o Can “read off” conditional
Y, = 32+5%2Y1+612 |nd$peungenflﬁi
Y = 343—|—ﬁ%43Y2+ﬁ§43Y4+6243 = 1 3 T4l Ty

o More generally, have
graphical Markov property

Pearl, J. (1995). Causal diagrams for empirical
1/21/2014 research. Biometrika, 82(4), 669-688. 15

‘ Conditional independence and

d-separation in graphical models
= Unconditional: = Conditional onY,:

Y)—0—) i [Ys SRIRENE chain
Y—O—) Y; [[Ys Y1 [[Ys|Ys chain
G —O—® MY, HIYY  cause
¥)——)—1) Vi[]Ys Y V3]s collider,

common
effect

Let A, B, C be disjoint sets of nodes; and let p be an undirected path from A to B.
C blocks p, if (i) there exists a collider y on p with neither y nor its descendants

in C; or (ii) there is a non-collider on p in C. C d-separates A from B if it blocks
every path between them. This occurs if and only if, A[I B | C.
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‘ Backdoor paths and estimating the
effect of Y, on Y, ™ %

= Let (Y, Y;) be an ordered @? 2 %‘9
pair. A set of nodes C ) B Q
satisfies the backdoor _ —
m C={Y;, Y,} or C={Y,, Y}

criterion for Y, and Y if

o NonodeofCisa
descendant of Y;; and

o Cblocks every pathwithan  m C={Y,} does not, since

satisfy the backdoor
criterion

arrow into Y; Y, does not block path
m Conditioning on C makes Y, Y3, Yy, Yo Yy, Y, YJ.
the effect of Y, on Y,

= A backdoor path is a

identifiable. confounding path
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‘ Shalizi & Thomas’s main result

= Consider just one edge
in a social network

m Consider measured Y, (i) Y, ()
outcomes on the nodes X, 2" °
at two different times

, _ Y,(i) Y,(i)
a Yt-l(l)l Yt-1(J) Z

0 Y(i), Ye(j)
= When can we estimate = X, X;are unobserved
effect of Y, ,(j) on Y,(i)? (latent) features of i and j
m Z,and Z are observed
covariatesoniandj
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‘ Summary
m A few words about QAP

o Simulation: Permutation tests
m ERGMs

o An explicit computation

o ERGMs for valued ties

0 Goodness of fit

= Simulation: parametric bootstrap
= Graphical models vs social network models
m D-separation, identifiability
= HWO03: Read Shalizi & Thomas for Thursday!
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