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‘ Outline

= Latent Space Models
o Motivations and a simple formulation
o Anillustration
0 Some generalizations

m Stochastic Block Models
o Motivations and a simple formulation
0 Anillustration

0 Some generalizations

= HWO04 is posted (reading and some R examples)
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‘ Latent Space Models (LSMs)

= A fairly recent invention (Hoff et al 2002).

= Mathematically similar to multidimensional
scaling (MDS): find a lower-dimensional spatial
representation of (complex) network data

o Replace adjacency matrix (of order n?) with a set of
latent node attributes (of order n) — e.g. locations in
Euclidean space

m Because distance is inherently symmetric, LSMs
tend to work better for symmetric relations

0 One can add “fixed effects” to model directionality
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| LSMs — a basic model
= For adjacency matrix Y = [Y,],
logit P[Y;; = 1] = 8" X;; — dist(Z;, Z;)

= Y indep given Z's; the Z, Z; are positions in a low-
dimensional Euclidean space R9, typically d=2 or 3
0 d=1imposes constraints;
o d >> 3 introduces computational and data problems

= X; can encode edge covariates (as in QAP or

ERGM), or dyadic-independence network
statistics
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‘ LSM - interpretation
logit PY;; = 1] = 8" X;; — dist(Z;, Z;)

= The closer Z; to Z, the more likely a tie (both ways)
o A kind of “latent homophily” model
m Like a latent proximity/unfolding model for choice

o Z/'s can account for dependence between links not
modeled by (3 X;

o Z’s can also generate a greater preponderance of
triangles, stars, etc., than a p, model would

= X; can make P[Y;=1]# P[Y;=1] (like p, model),
so we can get directed graphs
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‘ LSM — a generative view

Network

= Account for affinity 6 S~ ]
between actors that /
may not be group 3
based ’ /
logit P[Y;; = 1]
_ ﬁT‘sz‘7 . dlSt (ZZ, ZJ) o Latent Socizl Space

= X; = edge covariates

m Z; = latent space -
position for actor i T
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‘ LSM — a larger generative example

Latent Space Tie Probabilities
Positions

Realized Network
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‘ What else to set up the LSM?

= Distribution for the Z’s € R¢
o Convenient simple case:

1id R
L ~ Nd(”? Z)

o Can incorporate model-based clustering as well:

11d R
Z; Sy Naii, 2r)

(e.g. Fraley & Raftery, 2002, JASA)
= Any other tractable distribution for Z is fine also.
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‘ LSMs - Estimation

= Maximum likelihood (E-M) is plausible
0 E-step —impute Z’s; M-step — estimate 3’s, 1, 2.
lather, rinse, repeat...
m Bayesian MCMC fairly workable also

= |dentifiability issues

o The “closeness” dist(Zi, Z) will not be affected by the
orientation of the ensemble of Z’s in the latent space

o Hoff (2002) imposes a “procrustean” constraint based
on preliminary estimation of the Z's

0 Sweet (2013) uses a simple orientation heuristic on
the first d latent locations Z,, .... Z,,.
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‘ LSM generalizations — valued edges

m The logit LSM is clearly an instance of a
generalized linear model (glm):

Yij ~ p(y‘E[Y;j]v . )

1
ElYi;l = 97 (m5)
T
mij = B Xij—|Zi = Zj|
for example:
Data Y;; Distribution p(y|u) Link g(u)
Yi; € {0,1} Bernoulli logu/(1—u) [logit]
Y;; € {0,1} Bernoulli O~ (u) [probit]
Yi; €{0,1,2,...} Poisson logu

Y;; € R Normal g(u) =u
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‘ LSM generalizations — distance

functions
= So far we have taken dist(Z, Z) = |Z,- 7],
Euclidian distance

m Certainly d(Z, Z)) in the linear predictor
nij = B' Xij — d(Zs, Z;)

need not be a distance, or even symmetric, e.g.

o Hoff (2007) considers symmetric quadratic forms
d(Z;, Z;) = ZTA Z; where A is a diagonal matrix

o Why not d(Z, Z) = Zi" A Z where A is nonsymmetric?
a_Other nonsymmetric s(Z, Z;)?
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‘ Stochastic Block Models (SBMs)

m The idea is to group the vertices into latent
classes showing community structure
o Typically all nodes in a cluster have similar affinities for
other nodes in the network (stochastic equivalence)
m This is a much older method for identifying
community structure in networks

o Deterministic block-finding, like in the first few “sna”
labs we did, goes back to Lorrain & White (1971)

o Stochastic block models go back to Fienberg &
Wasserman (1981), Holland, Laskey & Leinhardt (1983)
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‘ SBMs — a basic model

m B[k,f] = P[tie from
member of block k to
member of block €]

B—| 005 095 002 003 ---

0.99 0.05 0.01 0.01 j|

= M, =kif node i belongs
to block k

= Py = P[M; =K]
= P[Y, = 1] = B[M, M]
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‘ SBM — edge covariates

logit P[Y;; =1] = B'X;; + logit B(M;, M)
= B'X;; + logit S; BS;
= Again, X; encodes edge covariates and/or dyadic-
independence network statistics
m Bisa K x K matrix, for a K-block model

= S.is a 0/1 vector with all 0’s except fora 1 in
position M,

= M. =kif nodeiisin block k.

m The M,’s (or S, ’s) are the latent variables here
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‘ SBMs — Estimation

= Again E-M works
o E step: impute M’s
0 M step: estimate the entries of B, and p,= P[M, = k].

= Again, Bayesian MCMC also works

= |dentifiability: any relabelling of the blocks gives
the same data predictions

0 Latent class label-switching well-understood, e.g Jasra,
Holmes & Stephens, Statistical Science (2005).
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‘ SBM generalizations — valued edges

m Again we can consider glm’s

Yi; ~ pWlEYiyl )
ElY,] = g ' (my)
ni; = B'Xi;+ 8] BS;

(For the logit link function this leads to
logitP[Yij =1] = ﬁTXZ'j + SZTBSJ'

rather than
logit PD/ZJ = 1] = ﬂTXij + logit S,;I-BSJ )
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‘ SBMs —unifications & generalizations

= Both SBMs and LSMs are conditionally independent
dyad (CID) models

o Conditional on the latent variables, these models have all
the advantages of dyadic independence models (like p, or
the beta model)

o Averaging over the latent variables allows flexibility to
model non-dyadic structure in the networks

m Hoff (2007) uses the Z" A Z structure to unify LSMs
and SBMs in a general “eigenmodel” framework

m SBMs can be generalized to allow nodes to shift
block membership for different ties (mixed
membership SBMs, MMSBMs — more later!)
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‘Summary

= Latent Space Models
o Motivations and a simple formulation
o Anillustration
o Some generalizations

m Stochastic Block Models
o Motivations and a simple formulation
0 Anillustration

0 Some generalizations

= HWO04 is posted (reading and some R examples)
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