36-780: Social Network Modeling

Latent space and stochastic block models Brian Junker 132E Baker Hall brian@stat.cmu.edu

1/23/2014

Outline

- Latent Space Models
 - Motivations and a simple formulation
 - An illustration
 - Some generalizations
- Stochastic Block Models
 - Motivations and a simple formulation
 - □ An illustration
 - Some generalizations
- HW04 is posted (reading and some R examples)

1

LSMs – a basic model

For adjacency matrix Y = [Y_{ij}],

logit
$$P[Y_{ij} = 1] = \beta^{\mathsf{T}} X_{ij} - \operatorname{dist}(Z_i, Z_j)$$

 Y_{ij} indep given Z's; the Z_i, Z_j are positions in a lowdimensional Euclidean space R^d, typically d=2 or 3

d=1 imposes constraints;

- d >> 3 introduces computational and data problems
- X_{ij} can encode edge covariates (as in QAP or ERGM), or dyadic-independence network statistics

LSM generalizations – valued edges

 The logit LSM is clearly an instance of a generalized linear model (glm):

$$Y_{ij} \sim p(y|E[Y_{ij}], \ldots)$$

$$E[Y_{ij}] = g^{-1}(\eta_{ij})$$

$$\eta_{ij} = \beta^{\mathsf{T}} X_{ij} - |Z_i - Z_j|$$

for example:

Data Y_{ij}	Distribution $p(y u)$	Link $g(u)$	
$Y_{ij} \in \{0,1\}$	Bernoulli	$\log u/(1-u)$	[logit]
$Y_{ij} \in \{0,1\}$	Bernoulli	$\Phi^{-1}(u)$	[probit]
$Y_{ij} \in \{0, 1, 2, \ldots\}$	Poisson	$\log u$	
$Y_{ij} \in \Re$	Normal	g(u) = u	

LSM generalizations – distance functions

- So far we have taken dist(Z_i, Z_j) = |Z_i Z_j|, Euclidian distance
- Certainly d(Z_i, Z_i) in the linear predictor

$$\eta_{ij} = \beta^{\mathsf{T}} X_{ij} - d(Z_i, Z_j)$$

need not be a distance, or even symmetric, e.g.

- □ Hoff (2007) considers symmetric quadratic forms d(Z_i, Z_i) = Z_i^T Λ Z_i where Λ is a diagonal matrix
- □ Why not $d(Z_i, Z_i) = Zi^T A Z_i$ where A is nonsymmetric?
- Other nonsymmetric s(Z_i, Z_i)?

1/23/2014

- The idea is to group the vertices into latent classes showing community structure
 - Typically all nodes in a cluster have similar affinities for other nodes in the network (*stochastic equivalence*)
- This is a much older method for identifying community structure in networks
 - Deterministic block-finding, like in the first few "sna" labs we did, goes back to Lorrain & White (1971)
 - Stochastic block models go back to Fienberg & Wasserman (1981), Holland, Laskey & Leinhardt (1983)

11

- M_i = k if node i is in block k.
- The M_i's (or S_i's) are the latent variables here

Summary

- Latent Space Models
 - Description of the second s
 - An illustration
 - Some generalizations
- Stochastic Block Models
 - Motivations and a simple formulation
 - □ An illustration
 - Some generalizations
- HW04 is posted (reading and some R examples)