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Latent Space Models (LSMs)

� A fairly recent invention (Hoff et al 2002).

� Mathematically similar to multidimensional 

scaling (MDS): find a lower-dimensional spatial 

representation of (complex) network data

� Replace adjacency matrix (of order n2) with a set of 

latent node attributes (of order n) – e.g. locations in 

Euclidean space

� Because distance is inherently symmetric, LSMs 

tend to work better for symmetric relations

� One can add “fixed effects” to model directionality
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LSMs – a basic model

� For adjacency matrix Y = [Yij] ,

� Yij indep given Z’s; the Zi, Zj are positions in a low-

dimensional Euclidean space Rd, typically d=2 or 3

� d=1 imposes constraints; 

� d >> 3 introduces computational and data problems

� Xij can encode edge covariates (as in QAP or 

ERGM), or dyadic-independence network 

statistics
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logitP [Yij = 1] = βTXij − dist(Zi, Zj)



LSM - interpretation

� The closer Zi to Zj, the more likely a tie (both ways)

� A kind of “latent homophily” model 

� Like a latent proximity/unfolding model for choice

� Zi’s can account for dependence between links not 

modeled by β Xij

� Zi’s can also generate a greater preponderance of 

triangles, stars, etc., than a p1 model would

� Xij can make P[Yij=1]≠ P[Yji=1]  (like p1 model), 

so we can get directed graphs
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logitP [Yij = 1] = βTXij − dist(Zi, Zj)

� Account for affinity 

between actors that 

may not be group 

based

� Xij = edge covariates

� Zi = latent space 

position for actor i

logitP [Yij = 1]

= βTXij − dist (Zi, Zj)

LSM – a generative view  
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Latent Space 
Positions

Tie Probabilities

Realized Network

LSM – a larger generative example
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What else to set up the LSM?

� Distribution for the Zi’s ∈ Rd

� Convenient simple case:

� Can incorporate model-based clustering as well:

(e.g. Fraley & Raftery, 2002, JASA)

� Any other tractable distribution for Z is fine also.
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Zi

iid
∼ Nd(�µ,Σ)

Zi

iid
∼

∑
K

k=1
Nd(�µk,Σk)



LSMs - Estimation

� Maximum likelihood (E-M) is plausible

� E-step – impute Z’s; M-step – estimate β ’s, µ, ∑

lather, rinse, repeat…

� Bayesian MCMC fairly workable also

� Identifiability issues

� The “closeness” dist(Zi, Zj) will not be affected by the 

orientation of the ensemble of Z’s in the latent space

� Hoff (2002) imposes a “procrustean” constraint based 

on preliminary estimation of the Zi’s

� Sweet (2013) uses a simple orientation heuristic on 

the first d latent locations Z1, …. Zd.
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LSM generalizations – valued edges

� The logit LSM is clearly an instance of a 

generalized linear model (glm):

for example:
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Yij ∼ p(y|E[Yij ], . . .)

E[Yij ] = g−1(ηij)

ηij = βTXij − |Zi − Zj |

Data Yij Distribution p(y|u) Link g(u)

Yij ∈ {0, 1} Bernoulli log u/(1− u) [logit]
Yij ∈ {0, 1} Bernoulli Φ−1(u) [probit]

Yij ∈ {0, 1, 2, . . .} Poisson log u
Yij ∈ ℜ Normal g(u) = u



LSM generalizations – distance 

functions
� So far we have taken dist(Zi, Zj) = |Zi – Zj|, 

Euclidian distance 

� Certainly d(Zi, Zi) in the linear predictor 

need not be a distance, or even symmetric, e.g.

� Hoff (2007) considers symmetric quadratic forms 

d(Zi, Zj) = ZiTΛ Zj where Λ is a diagonal matrix

� Why not d(Zi, Zj) =  ZiT A Zj where A is nonsymmetric?

� Other nonsymmetric s(Zi, Zj)? 
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ηij = βTXij − d(Zi, Zj)

Stochastic Block Models (SBMs)

� The idea is to group the vertices into latent 

classes showing community structure

� Typically all nodes in a cluster have similar affinities for 

other nodes in the network (stochastic equivalence)

� This is a much older method for identifying 

community structure in networks

� Deterministic block-finding, like in the first few “sna” 

labs we did, goes back to Lorrain & White (1971)

� Stochastic block models go back to Fienberg & 

Wasserman (1981), Holland, Laskey & Leinhardt (1983)
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� B[k,l] = P[tie from 
member of block k to 

member of block l]

� Mi = k if node i belongs 
to block k

� pk = P[Mi = k]

� P[Yij = 1] = B[Mi, Mj]
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SBMs – a basic model
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SBM – edge covariates
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logitP [Yij = 1] = βTXij + logitB(Mi,Mj)

= βTXij + logitSTi BSj

� Again, Xij encodes edge covariates and/or dyadic-

independence network statistics

� B is a K × K matrix, for a K-block model

� Si is a 0/1 vector with all 0’s except for a 1 in 

position Mi

� Mi = k if node i is in block k.

� The Mi ’s (or Si ’s) are the latent variables here



SBMs – Estimation

� Again E-M works

� E step: impute M’s

� M step: estimate the entries of B, and pk= P[Mi = k].

� Again, Bayesian MCMC also works

� Identifiability: any relabelling of the blocks gives 

the same data predictions

� Latent class label-switching well-understood, e.g Jasra, 

Holmes & Stephens, Statistical Science (2005).
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SBM generalizations – valued edges

� Again we can consider glm’s

(For the logit link function this leads to

rather than
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Yij ∼ p(y|E[Yij ], . . .)

E[Yij ] = g−1(ηij)

ηij = βTXij + STi BSj

logitP [Yij = 1] = βTXij + STi BSj

logitP [Yij = 1] = βTXij + logitSTi BSj )



SBMs –unifications & generalizations
� Both SBMs and LSMs are conditionally independent 

dyad (CID) models

� Conditional on the latent variables, these models have all 

the advantages of dyadic independence models (like p
1

or 

the beta model)

� Averaging over the latent variables allows flexibility to 

model non-dyadic structure in the networks

� Hoff (2007) uses the ZT Λ Z structure to unify LSMs 

and SBMs in a general “eigenmodel” framework

� SBMs can be generalized to allow nodes to shift 

block membership for different ties (mixed 

membership SBMs, MMSBMs – more later!)
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Summary
� Latent Space Models

� Motivations and a simple formulation

� An illustration
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