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What is a network?

Network data records interactions between units, such as

I Communication/friendships/etc. between people

I Chemical reactions between proteins

Common depictions for network data:

Graph Adjacency matrix Large adj. matrix

2 / 33



Identifying communities in networks
Clustering + post-hoc checks to find community structure

Political blog network, Adamic 2005

I Network equivalent of clustering
I Post-hoc checks are usually required to interpret clusters

I Checks may be effort-intensive – should be reserved for
statistically significant findings

I But statistical significance is not well understood for
community detection
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Example from Ad-Health dataset
Survey of high school friendships

students grouped by
school year
(black lines)

students grouped by
race
(blue lines)

students grouped by race
(blue lines) and within
race by likelihood-based

clustering
(red lines)

Could this be due to noise?
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What is known about community detection

Assuming a particular parametric generative model (stochastic
blockmodel):

I Polynomial time algorithm (spectral clustering) finds correct
clusters, with fraction of errors → 0

I Exhaustive search (profile likelihood) finds correct clusters,
with total number of errors → 0

I Also yields asymptotically normal parameter estiamtes

Issue: Assuming a stochastic blockmodel seems unrealistic – what
if “true communities” don’t exist in reality?
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Main result

I Assume network data is generated a general nonparametric
model, and then fit by a community detection model known
as “stochastic co-blockmodel”

I Then the resulting estimate is a near-optimal “piecewise
constant” approximation to the generative model

Implication: detected communities are consistent, in a sense
analogous to histograms

8 D. S. CHOI, P. J. WOLFE AND E. M. AIROLDI

Fig. 3. Results of logit blockmodel fitting to the data of Fig. 2 for each of K 2 {4, 5, 6, 7} classes. Top row: Adjacency
structure of the data, ordered by grade and by block assignment within each grade, for K 2 {4, 5, 6, 7}. Solid and
dashed lines respectively denote grade and block boundaries. Second row: Adjacency structure of data ordered by
block assignment, and corresponding estimates ✓̂, with Kullback–Leibler divergence bounds 0·012, 0·014, 0·017, and

0·019. Bottom row: Racial identity of students whose grouping remained constant over these four values of K

roughly constant, with 234 students whose meta-group membership did not change at all as K
ranged from 4 to 7. The two meta-groups have similar grade and nodal degree distributions, with
a two-sample Kolmogorov-Smirnov test returning p-values of 0·63 and 0·08 for grade and degree
respectively. The bottom row of Fig. 3 shows differing racial compositions for the meta-groups,
with race 2 concentrated almost exclusively in meta-group 2. However, membership was not
determined solely by race; we note that race 1 students in the second meta-group had a higher
density of friendships with race 2 than did the race 1 students in the first meta-group by a factor
of 10, justifying their inclusion in the second meta-group.
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APPENDIX

Proofs of Theorems 1 and 2
Proof of Theorem 1. To begin, observe that for any fixed class assignment z, every ✓̂ab is a sum of nab

independent Bernoulli random variables, with corresponding mean ✓̄ab. A Chernoff bound (Dubhashi &
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Idea of nonparametric model

Adjacency matrix Model ωα : [0, 1]2 7→ [0, 1]

Figures from Lovasz, L. “Very Large Graphs” (2013)
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Description of nonparametric model

I ωα maps [0, 1]2 7→ [0, 1], parameterized by α

I The directed adjacency matrix A is generated as follows:

α ∼Unif[0, 1],

ξi
iid∼ Unif[0, 1]

ζi
iid∼ Unif[0, 1]

Aij |ξi , ζj iid∼ Bernoulli(ωα(ξi , ζj))

I ωα cannot be distinguished from (x , y) 7→ ωα(π1(x), π2(y))
for any measure preserving transformations π1, π2.

Interpretation: ξi , ζi are latent factors controlling i ’s propensities in
sending and receiving links
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Picture of generative process

I ξ and ζ are latent
I Otherwise estimation of ωα would be straightforward

I Eq(ωα): equivalence class of ωα, induced by
measure-preserving maps on [0, 1]

I Mapping α 7→ ωα is not identifiable from a single network

Note: results will not require ωα to be smooth, only measurable
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A natural model for exchangeable data
Model encompasses all infinitely exchangeable arrays

Definition (Exchangeable arrays)

Binary array {Aij}∞i ,j=1 is separately exchangeable if

P(Aij = Xij , i , j ∈ [n]) = P(Aij = Xη1(i)η2(j), i , j ∈ [n])

for all n, all permutations η1, η2 of [n], and all X .

Theorem (Aldous-Hoover)(di Fenetti)

Let {Aij}∞i ,j=1 be a separately exchangeable binary array. There
exists ω

˜
which generates A.

Given a static snapshot of a network, natural to require the model
to be invariant to a permutation of the adjacency matrix

We’ll discuss later: are sparse graphs exchangeable?
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Approximating ωα by a piecewise constant function

Question: Can we fit a piecewise constant approximation to the
generative model?

Parameters φ ≡ (µ, ν, θ) describe ωφ:

I Vectors µ, ν : boundaries of the piecewise constant regions
(i.e., nonuniform grid)

I Matrix θ: heights of the piecewise constant regions
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Fitting criteria for approximation
Fit by finding optimal clustering

We can fit φ = (µ, ν, θ) to an observed adjacency matrix A by
various criteria:

Likelihood: LA(µ, ν, θ) = max
S ,T

∑

i , j

logP(Aij | θS(i)T (j))

`2 error: RA(µ, ν, θ) = min
S,T

∑

i , j

(
Aij − θS(i)T (j)

)2

Mappings S and T assign nodes to K clusters, and are constrained
to have assignment proportions matching µ and ν.
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Metrics for approximation quality
In what sense might ωφ be close to ωα?

Fitting criteria correspond to risk functions that measure distance
to the unknown ω:

Lω(φ) = inf
ω∈Eq(ωα)

EKL(ω(ξ, ζ), ωφ(ξ, ζ))

Rω(φ) = inf
ω∈Eq(ωα)

E(ω(ξ, ζ)− ωφ(ξ, ζ))2

Eq(ωα): equivalence class of ωα (all measure preserving maps of
[0, 1])

KL: Kullback-Leibler divergence
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First main result
Excess risk goes to zero

Theorem
For φ̄ maximizing1 the true Lω, and φ̂ maximizing its proxy LA,
such that θ̄ and θ̂ are bounded away from 1 or 0,

Lω(φ̄)− Lω(φ̂) = OP

(
1

n1/4

)
.

Also, for φ̄ minimizing Rω, and φ̂ minimizing RA,

Rω(φ̂)− Rω(φ̄) = OP

(
1

n1/4

)
.

The estimate will be asymptotically optimal in terms of minimizing
risk.

1over class frequencies µ, ν which are multiples of 1/n
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Significance of detected community structure
Corollary of Theorem 1

The estimate φ̂ approximates φ∗, for some some blockmodel φ∗

induced by partitioning ωα:

By approximate we mean:

I Identical region boundaries µ and ν

I Heights of piecewise constant regions are close:

‖θ∗ − θ̂‖2
2 = OP

(
1

n1/4

)
.

Implication: if you see an extreme partition in the data, then one
also exists in the model
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Discussion (1/2)
Why new approach was needed

I In standard learning problems, we want to choose φ to
minimize expected loss compared to ωα:

Rω(φ) = E(ωα(ξ, ζ)− ωφ(ξ, ζ))2

I We can’t evaluate Rω, so we use noisy samples instead:

RA(φ) =
1

n2

∑

i ,j

(Aij − ωφ(ξi , ζj))2

I We’d try to show that RA(φ) ≈ Rω(φ) uniformly over φ
I Note: the n2 samples (ξi , ζj) are not independent. Better to

think of as n independent samples.
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Discussion (2/2)
Why new approach was needed

What happens now that (ξi , ζj) are latent?

I ωα is indistinguishable under measure-preserving maps:

Rω(φ) = inf
ω∈Eq(ωα)

E(ω(ξ, ζ)− ωφ(ξ, ζ))2

I We have to estimate φ and the latent ξ, ζ jointly:

RA(φ) = min
ξi ,ζj

1

n2

∑

i ,j

(Aij − ωφ(ξi , ζj))2,

Only n samples – won’t suffice for union bound

Our approach: optimization over ξi , ζj has additional structure
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Second main result
Convex hulls of partition spaces FA and Fω
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Second main result
Convex hulls of partition spaces FA and Fω

.
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Theorem: maxµ,ν dHausdorff (conv(Fω), conv(FA)) = OP

(
1

n1/4

)
.
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Relation to excess risk bound (1/2)
Prelude: understanding convex hulls

I Notion of supporting hyperplane in each direction θ

I The set of supporting hyperplanes in all directions induces the
convex hull
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Relation to excess risk bound (2/2)

Simple algebra (expanding the square):

RA(µ, ν, θ) = min
S,T

∑

i , j

(
θS(i)T (j) − Aij

)2
,

=
∑

i , j

θ2
S(i)T (j) − 2 max

S ,T
〈θ,A/ST 〉

︸ ︷︷ ︸
supporting hyperplane

+
∑

i , j

A2
ij

I RA(θ) is determined by boundary of convex hull of FA in
direction θ

I Similar result relates Rω to conv(Fω).

I Convergence of convex hulls → convergence of risk functions
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Intuition of proof

I The supporting hyperplane

max
S ,T
〈θ,A/ST 〉

involves an optimization over assignments S ,T of all N nodes
to clusters

I Show if
√
N nodes are assigned optimally, and remainder are

assigned “greedily”, clustering is near-optimal2

I This implies the intrinsic dimensionality is
√
N

I Hence, N samples will suffice to estimate supporting
hyperplane

2Alon et. al. “Random sampling and approximation of MAX-CSPs.” 2003.
22 / 33



Relation to graph limits literature

I Approach is taken from Borgs et. al. (2008) work on graph
limits

I Defines convergence of dense graphs to be convergence of all
subgraph frequencies

I Closure (i.e. the limit objects) shown to be ωα, termed
“graphons”

I Proved law of large numbers under this sense of convergence

I Relation to this work (roughly):
I They show FA → Fω, instead of conv(FA)→ conv(Fω).
I Their proof requires Szemeredi lemma and has exponentially

slower rate

I Multiple notions of convergence exist for sparse graphs, with
closure not yet known
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Dense vs. sparse graphs
Is exchangeablity assumption always appropriate?

I Exchangeability is bad for modeling asymptotics when graph
density → 0.

I Assumes that ωα is fixed with n
I One approach: assume model is ρnωα, where ρn → 0 and

normalize risk by ρn
I Our results carry over; risk bound of OP(1/

√
d) if degree

d = ω(log n)
I Issue: model becomes very smooth for large n

I For finite data, when is the sparse asymptotic regime
appropriate?

I Opinion: issue is one of enforcing sparsity and connectedness
at once

I If average degree is d , then expected number of isolates under
ωα is at least e−d
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Conclusions

Summary

I Blockmodels may be useful for exploratory data analysis of
network data

I Even if generative model is not even approximately a
blockmodel

I Akin to taking histograms

Future work

I Symmetric graphs

I Sparse graphs with ω(log n) degree.

I Nonparametric estimation: letting model complexity increase
with n so that total risk → 0.

I Conjecture: proof techniques may be useful for other latent
variable models.
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Backup slides
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Description of co-blockmodel

Let µ, ν be points on K -simplex. Let θ ∈ [0, 1]K×K .

Stochastic co-blockmodel
Given µ, ν, θ, the graph G = (V1,V2,E ) and its adjacency matrix
A ∈ {0, 1}m×n are generated as follows:

1. Generate latent variables S = (S1, . . . ,Sm) ∼ µ, and
T = (T1, . . . ,Tm) ∼ ν

2. Let Aij be Bernoulli with parameter θS(i)T (j). Connect (i , j) if
Aij = 1.

Intuition: Discrete number of classes, with class probabilities µ and
ν, and connections probabilities θ.

Note: Only identifiable up to label-switching.
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Picture of near-optimal clustering
Similar to Borgs et al. (2008), Alon et al. (2003)

Idea of proof
Similar to Borgs, et. al.9

max
S,T

h✓, A/ST i = max
ST

mX

i=1

nX

j=1

✓S(i)T (j)Aij

! h✓, A/ŜT̂ i, where Ŝ and T̂ given by:

I Randomly sample rows I and columns J
I Given SI , choose T\J to maximizeP

j /2J
P

i2I ✓S(i)T (j)!(⇠i , ⇣j).

I Given TJ , choose S\I to maximizeP
i /2I

P
j2J ✓S(i)T (j)!(⇠i , ⇣j).

I Choose SI and TJ to maximizeP
i /2I

P
j /2J ✓S(i)T (j)!(⇠i⇣j)

Show that Ŝ and T̂ involve K |I|+|J | ⌧ K n possible labelings

9“Convergent subsequences of dense graphs I: subgraph frequencies, metric
properties, and testing.” Advances in Mathematics
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Simulation results
Data generated by non-blockmodelCO-CLUSTERING NETWORK DATA 19
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Fig 1. Median performance of approximate profile likelihood maximization according
to (3.2), for ⇢n 2 {1/2, n�2/3, n�1 log2 n} (left column, middle, right). Top row: per-
cent relative excess risk, decaying toward zero. Bottom row: Kullback–Leibler divergence
normalized by ⇢n, decaying toward its asymptotic optimum in n (grey horizontal lines).

6. Simulation study. We now present a brief simulation study which
investigates empirical rates of convergence as model misspecification in-
creases. We control the degree of misspecification through a sigmoidal func-
tional form f�(x) : [0, 1] ! [�1/2, 1/2], parameterized by � � 1:

f�(x) = Z�1
�

✓
x�

x� + (1 � x)�
� 1

2

◆
, 0  x  1; Z� =4

Z 1/2

0

�� x�

x�+(1�x)�
�1

2

�� dx.

Each f�(x) describes a strictly monotone increasing sigmoidal curve on [0, 1],
proportional to x � 1/2 for � = 1 and to 1{x > 1/2} � 1/2 in the limit as
� ! 1. Normalization by Z� maintains constant area under |f� |.

To explore sparse graph regimes, we introduce an additional n-dependent
parameter ⇢n 2 (0, 1), and take the outer product f�(x)f�(y) to obtain a
separable generative function ⇢n !�(x, y) = ⇢n (f�(x)f�(y) + 1/2). As � !
1, this tends to a stochastic co-blockmodel, with two classes of equal size.

Figure ?? shows a number of simulation results based on this model.
Specifically, for � 2 {1, 3, 5} and ⇢n 2 {0.5, n�2/3, n�1 log2 n}, one thou-

Top: excess risk.
Bottom: KL divergence of blockmodel approximation (grey line is optimal).

β: True model more resembles blockmodel for large β. 33 / 33


