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What is a network?

Network data records interactions between units, such as
» Communication/friendships/etc. between people

» Chemical reactions between proteins

Common depictions for network data:
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|dentifying communities in networks

Clustering + post-hoc checks to find community structure

Political blog network, Adamic 2005

v

Network equivalent of clustering

Post-hoc checks are usually required to interpret clusters
Checks may be effort-intensive — should be reserved for
statistically significant findings

But statistical significance is not well understood for
community detection
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Example from Ad-Health dataset
Survey of high school friendships

students grouped by students grouped by
school year race
(black lines) (blue lines)

Could this be due to noise?
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students grouped by race

(blue lines) and within

race by likelihood-based
clustering

(red lines)



What is known about community detection

Assuming a particular parametric generative model (stochastic
blockmodel):

» Polynomial time algorithm (spectral clustering) finds correct
clusters, with fraction of errors — 0
» Exhaustive search (profile likelihood) finds correct clusters,
with total number of errors — 0
» Also yields asymptotically normal parameter estiamtes

Issue: Assuming a stochastic blockmodel seems unrealistic — what
if “true communities” don't exist in reality?



Main result

» Assume network data is generated a general nonparametric
model, and then fit by a community detection model known
as “stochastic co-blockmodel”

» Then the resulting estimate is a near-optimal “piecewise
constant” approximation to the generative model

Implication: detected communities are consistent, in a sense
analogous to histograms
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Idea of nonparametric model

Adjacency matrix ‘ Model w, : [0,1]? +— [0,1]

Figures from Lovasz, L. “Very Large Graphs” (2013)
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Description of nonparametric model

> W, maps [0,1]? — [0, 1], parameterized by

» The directed adjacency matrix A is generated as follows:

a ~ Unif[0, 1],
& " Unif[0, 1]
¢ % Unif[0, 1]
Ajléi ¢ iid Bernoulli(wa (&, ¢))

> w, cannot be distinguished from (x,y) — wq(m1(x), m2(y))
for any measure preserving transformations 71, mo.

Interpretation: &;, (; are latent factors controlling i’'s propensities in
sending and receiving links
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Picture of generative process
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» £ and ( are latent
» Otherwise estimation of w, would be straightforward

» Eq(wqs): equivalence class of wy, induced by
measure-preserving maps on [0, 1]

» Mapping o — w, is not identifiable from a single network

Note: results will not require w, to be smooth, only measurable
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A natural model for exchangeable data

Model encompasses all infinitely exchangeable arrays

Definition (Exchangeable arrays)
Binary array {A,-j}?jzl is separately exchangeable if

IED(AU = XU’ Ij€ [n]) = P(AU = Xm(i)ng(j)a I,j € [n])

for all n, all permutations 71,7, of [n], and all X.

Theorem (Aldous-Hoover)(di Fenetti)

Let {A;}75_; be a separately exchangeable binary array. There
exists w which generates A.

Given a static snapshot of a network, natural to require the model
to be invariant to a permutation of the adjacency matrix

We'll discuss later: are sparse graphs exchangeable?
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Approximating w, by a piecewise constant function

Question: Can we fit a piecewise constant approximation to the

generative model?

10...

Given| 1 0 generated by , estimate

A Wey We

Parameters ¢ = (1, v, ) describe wy:

> Vectors i, v : boundaries of the piecewise constant regions
(i.e., nonuniform grid)

» Matrix 6: heights of the piecewise constant regions
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Fitting criteria for approximation
Fit by finding optimal clustering

We can fit ¢ = (i, v,0) to an observed adjacency matrix A by
various criteria:

Likelihood: La(u,v,0) = @,372(2 log P(Aj | 95(i)T(j))
iJ

(2 error: Ra(p,v,0) = mpin Z (Aj = sy ()
1J

2

Mappings S and T assign nodes to K clusters, and are constrained
to have assignment proportions matching p and v.
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Metrics for approximation quality

In what sense might w, be close to wq?

Fitting criteria correspond to risk functions that measure distance
to the unknown w:

Lo(@) = _inf EKL((E C),wo(€.0))
Ro(¢) = inf E(w(£ () —we(& ()

weEEq(wa)

Eq(wa): equivalence class of w, (all measure preserving maps of
[0, 1])
KL: Kullback-Leibler divergence
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First main result

Excess risk goes to zero
Theorem

For ¢ maximizing* the true L., and qg maximizing its proxy La,
such that 6 and 6 are bounded away from 1 or 0,

- - 1
Lol@) = (D) = 0p (1 )
Also, for ¢ minimizing R.,, and<$ minimizing Ra,

Ru() — Ru(3) = Op (11/) |

The estimate will be asymptotically optimal in terms of minimizing
risk.

Lover class frequencies pi, v which are multiples of 1/n
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Significance of detected community structure

Corollary of Theorem 1

The estimate gZA) approximates ¢*, for some some blockmodel ¢*
induced by partitioning wg:

1 2 3
1 |

Wey Wy W2
By approximate we mean:
> Identical region boundaries y and v
» Heights of piecewise constant regions are close:
167~ 8113 = 0p (=).
Implication: if you see an extreme partition in the data, then one
also exists in the model



Discussion (1/2)

Why new approach was needed

» In standard learning problems, we want to choose ¢ to
minimize expected loss compared to wy:

Ru(9) = E(wa(€,¢) — ws(€,())?

» We can't evaluate R,,, so we use noisy samples instead:

- n2z 7 élvgj))

» We'd try to show that Ra(¢) ~ R, (¢) uniformly over ¢
» Note: the n? samples (&;,(;) are not independent. Better to
think of as n independent samples.
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Discussion (2/2)

Why new approach was needed

What happens now that (&;, (;) are latent?

> w, is indistinguishable under measure-preserving maps:

Ru(¢) = _inf E(w(& () —ws(£,¢))°

weEq(wa)

» We have to estimate ¢ and the latent &, ¢ jointly:

Ra(9) = min—= 3" (Aj — wol(r )2,

Only n samples — won't suffice for union bound

Our approach: optimization over &;, (; has additional structure
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Second main result

Convex hulls of partition spaces Fa and F,

s =0

conv (Fy)

.03 .06
02 1

w/oT

conv (F,,)
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Second main result

Convex hulls of partition spaces Fa and F,

5

13 24 .
LA
A/ST

conv (Fy)

.03 .06
02 1

w/oT

| — conv (]:w)

Theorem: max,, dHausdorff (conv(Fy ), conv(Fa)) = Op (#) .
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Relation to excess risk bound (1/2)

Prelude: understanding convex hulls

» Notion of supporting hyperplane in each direction ¢

> The set of supporting hyperplanes in all directions induces the
convex hull
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Relation to excess risk bound (2/2)

Simple algebra (expanding the square):
: 2
Ra(p,v,0) = min Z (Osiyri) — Ai)™

1)
2 2
hJ N——— hJ
supporting hyperplane

> Ra(6) is determined by boundary of convex hull of Fj4 in
direction 0
> Similar result relates R, to conv(Fy).

» Convergence of convex hulls — convergence of risk functions
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Intuition of proof

v

The supporting hyperplane

n;aTx<9, A/ST)

involves an optimization over assignments S, T of all N nodes
to clusters

» Show if v/N nodes are assigned optimally, and remainder are
assigned “greedily”, clustering is near-optimal?

» This implies the intrinsic dimensionality is v/N

» Hence, N samples will suffice to estimate supporting
hyperplane

2Alon et. al. “Random sampling and approximation of MAX-CSPs.” 2003.
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Relation to graph limits literature

» Approach is taken from Borgs et. al. (2008) work on graph
limits
» Defines convergence of dense graphs to be convergence of all
subgraph frequencies
» Closure (i.e. the limit objects) shown to be w,, termed
“graphons”
» Proved law of large numbers under this sense of convergence

» Relation to this work (roughly):

» They show Fa — F,,, instead of conv(Fa) — conv(F,).
» Their proof requires Szemeredi lemma and has exponentially
slower rate

» Multiple notions of convergence exist for sparse graphs, with
closure not yet known
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Dense vs. sparse graphs

Is exchangeablity assumption always appropriate?

» Exchangeability is bad for modeling asymptotics when graph
density — 0.
» Assumes that w, is fixed with n
» One approach: assume model is ppws, where p, — 0 and
normalize risk by p,
» Our results carry over; risk bound of Op(1/+/d) if degree
d = w(log n)
> Issue: model becomes very smooth for large n

> For finite data, when is the sparse asymptotic regime
appropriate?
» Opinion: issue is one of enforcing sparsity and connectedness
at once

> If average degree is d, then expected number of isolates under
We is at least e~
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Conclusions

Summary

» Blockmodels may be useful for exploratory data analysis of
network data

» Even if generative model is not even approximately a
blockmodel

» Akin to taking histograms
Future work
» Symmetric graphs
» Sparse graphs with w(log n) degree.

» Nonparametric estimation: letting model complexity increase
with n so that total risk — 0.

» Conjecture: proof techniques may be useful for other latent
variable models.
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Backup slides
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Description of co-blockmodel

Let p, v be points on K-simplex. Let § € [0, 1]K*K.
Stochastic co-blockmodel

Given p,v, 0, the graph G = (V4, Va, E) and its adjacency matrix
A € {0,1}™*" are generated as follows:

1. Generate latent variables S = (S1,...,5m) ~ i, and
T=(T1,...,Tm) ~v

2. Let Aj; be Bernoulli with parameter Osjy7(j). Connect (i, ) if
Aj=1.

Intuition: Discrete number of classes, with class probabilities 1+ and
v, and connections probabilities 6.

Note: Only identifiable up to label-switching.
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Picture of near-optimal clustering
Similar to Borgs et al. (2008), Alon et al. (2003)

m n

max(, A/ST) = max >3 bsiyrihAi

i—1 j—1
— <9,A/§?->, where 5 and T given by:
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Picture of near-optimal clustering
Similar to Borgs et al. (2008), Alon et al. (2003)

max(0, A/ST) = maxd > Osiym)Ai

i—1 j—1
— <9,A/§?->, where 5 and T given by:

» Randomly sample rows Z and columns J
[y

S
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Picture of near-optimal clustering
Similar to Borgs et al. (2008), Alon et al. (2003)

max(0, A/ST) = maxd > Osiym)Ai

i—1 j—1
— {0, A/§ ?->, where 5 and T given by:

sy » Randomly sample rows Z and columns J

&= I}I > Given Sz, choose T\ 7 to maximize
e 2ier OsiyT(hw (& §)-

7
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Picture of near-optimal clustering
Similar to Borgs et al. (2008), Alon et al. (2003)

max(9 A/ST) = maxZZGS( T()Ajj

i=1 j=1
— {0, A/S T>, where 5 and T given by:

T; TN\g » Randomly sample rows Z and columns J
51 }I » Given Sz, choose T\ s to maximize
S\I ngj 216105 )T3) (fn@)
I~ » Given T, choose S\I to maximize
v T Yier Yjes Oy (6 §)-
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Picture of near-optimal clustering
Similar to Borgs et al. (2008), Alon et al. (2003)

max(9 A/ST = maxZZGS()TQ)AU

i=1 j=1
— {0, A/S T>, where 5 and T given by:

T, TN\7 » Randomly sample rows Z and columns J

51 }I » Given Sz, choose T\ s to maximize

jer 2ier OsiyT(hw (& §)-

» Given Tz, choose S\I to maximize
Digz 2jeg UsiyT()@ (s §)-

> Choose Sz and Tz to maximize

21551 Z_/gj 05 (TG (EICJ)

S\z

7

Show that § and T involve KIZITI71 « K" possible labelings
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Simulation results
Data generated by non-blockmodel
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Top: excess risk.
Bottom: KL divergence of blockmodel approximation (grey line is optimal).

[: True model more resembles blockmodel for large . 33/33



