Goodness of Fit in Social Networks

Beau Dabbs

February 18, 2014

Beau Dabbs Goodness of Fit in Social Networks

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Motivation

Model Selection

- Detect a Misspecified Model
- Select the Best Model from Candidate Models

Model Comparison:

- How Well Can a Mis-Specified Model Recover
- What Features of a Model Are Unique

・ 同 ト ・ ヨ ト ・ ヨ ト …

ъ

Overview

- Three Similar Generative Models:
 - Stochastic Block Model
 - Mixed Membership Stochastic Block Model
 - Latent Space Model
- Goodness of Fit Tests
 - Posterior Predictive Checking
 - Out of Sample Validation

ヘロン 人間 とくほ とくほ とう

3

Stochastic Block Model

$$Y_{ij}|\pi_i = k, \pi_j = l \sim \textit{Bernoulli}(b_{kl})$$

 $b_{kl} \sim \textit{Beta}(a, b) \qquad \pi_i \sim \textit{multinom}(rac{1}{m}, ..., rac{1}{m})$

Simple Community Detection ModelGroup Membership is Strict

Beau Dabbs

Mixed Membership Stochastic Block Model

$$Y_{ij}|\pi_i, \pi_j \sim Bernoulli(\pi_i^T B \pi_j)$$

 $b_{kl} \sim Beta(a, b)$ $\pi_i \sim Dirichlet(\vec{\alpha})$

- Group Membership is Partial
- Within Block Ties Decrease; Between Block Ties Increase

Latent Space Model

Clusters in Latent Space Can Mimic Communities
Number of Communities Not Specified

Beau Dabbs Goodness of Fit in Social Networks

Goodness of Fit Tests

Posterior Predictive Checking

- Given Posterior Distribution, Sample New Networks and Compare Statistics
- Questions:
 - Which Statistics Should we Use?
 - How Extreme is Too Extreme?
- Out of Sample Tests
 - Leave-Out Validation
 - K-Fold Cross Validation
 - Questions:
 - What Percentage of Data Should be Left Out
 - What Metric Should be Used

ヘロン 人間 とくほ とくほ とう

3

Posterior Predictive Checks

Network Statistics:

- Degree Distribution [0.0, 0.0, 0.6, 0.4]
- Geodesic Distance Distribution Distribution of shortest paths between pairs of nodes [0.6, 0.4]
- Shared Partner Distribution Distribution of shared partners between adjacent nodes **[0.5, 0.5]**

Three ModelsPosterior Predictive CheckingGoodness of FitOut of Sample Validation

3 Block SBM - Degree Distribution

Beau Dabbs Goodness of Fit in Social Networks

э

Three Models Posterior Predictive Checking Goodness of Fit Out of Sample Validation

3 Block SBM - Geodesic Distance Distribution

Beau Dabbs Goodness of Fit in Social Networks

3

Posterior Predictive Checking Out of Sample Validation

3 Block SBM - Shared Partner Distribution

Beau Dabbs Goodness of Fit in Social Networks

(E) < E)</p>

ъ

Posterior Predictive Checking Out of Sample Validation

Degree Distribution

Beau Dabbs

Three ModelsPosterior Predictive CheckingGoodness of FitOut of Sample Validation

Geodesic Distance Distribution

Beau Dabbs

Posterior Predictive Checking Out of Sample Validation

Shared Partner Distribution

Beau Dabbs

Out of Sample Metrics

Leave Out Validation Method:

- Observe complete graph G
- Create a new graph H by removing p percent of the edges at random.
- Fit a model M on H to predict tie probabilities
- Use a loss function L to measure accuracy of prediction

Cross-Validation Method

- Divide data into K sets.
- Iteratively leave out one of the K sets, and compute Leave Out Validation for each

ヘロン 人間 とくほ とくほ とう

1

Sample Sizes in Cross-Validation

Risk: \hat{f} trained on full dataset; **X** and Y new points

$$\mathbb{E}_{\mathcal{P}}\left[(\hat{f}(\mathbf{X}) - Y)^2\right] = \mathbb{V}_{\mathcal{P}}[\hat{f}(\mathbf{X})] + \mathbb{E}_{\mathcal{P}}[(\hat{f}(\mathbf{X}) - Y)]^2$$

Leave One Out Risk (LOO): $\hat{f}_{(i)}$ trained without *i*th point;

$$\mathbb{E}_{\mathcal{P}}\left[(\hat{f}_{(i)}(\mathbf{X}_i) - Y_i)^2\right] = \mathbb{V}_{\mathcal{P}}[\hat{f}_{(i)}(\mathbf{X}_i)] + \mathbb{E}_{\mathcal{P}}[(\hat{f}_{(i)}(\mathbf{X}_i) - Y_i)]^2$$

- Variance of $\hat{f}_{(i)}$ is generally larger
- LOO Risk is a conservative, biased estimate of true Risk
- Leaving out more data increases this bias, but lowers the variance of our risk estimation.

イロン 不良 とくほう 不良 とうほ

Commonly Used Loss Functions

Loss Function Definitions:

• RMSE =
$$\sqrt{\frac{1}{T}\sum_{i=1}^{T}(Y_i - p_i)^2}$$

• 1 - AUC =
$$\frac{1}{N_0 N_1} \sum_{i: Y_i=0} \sum_{j: Y_j=1} \mathbf{1}\{p_i > p_j\}$$

Details

- RMSE Is a Standard Metric in Statistics
- AUC Area Under ROC Curve
- AUC Cares About Ordering of Points

ヘロン 人間 とくほ とくほ とう

= 990

Posterior Predictive Checking Out of Sample Validation

ROC Curve

∃ → < ∃ →</p>

æ

Three ModelsPosterior Predictive CheckinGoodness of FitOut of Sample Validation

SBM - 3 Blocks - Leave-out Validation

- All MMSBM fits and LSM achieve optimal risk
- SBM with two blocks underfits
- SBM with four blocks overfits

.≣⇒

 Three Models
 Posterior Predictive Checking

 Goodness of Fit
 Out of Sample Validation

MMSBM - 3 Blocks - Leave-out Validation

- Only Stochastic Block Model has poor fit
- Latent Space Model out-performs with low data

Three ModelsPosterior Predictive CheckingGoodness of FitOut of Sample Validation

LSM - 3 Clusters - Leave-out Validation

- Latent Space Model is a relatively clear winner
- Four block SBM outperforms three block SBM
- Adding blocks to MMSBM does not increase risk

Conclusions

Goodness of Fit Techniques:

- Posterior Predictive checks are hard to interpret
- Posterior Predictive plots can detect model misspecification
- Out-of-Sample Validation techniques avoid some overfitting and underfitting

Comparison of Models:

- Latent Space Models can recover SBM and MMSBM properties well
- LSM communities have properties different from SBM and MMSBM communities
- SBM is most sensitive to under and overfitting
- MMSBM does not appear to overfit

ヘロン 人間 とくほ とくほ とう