Jining Qin
Feb 20, 2014
\[ f_{ij}=\frac{1}{1+\delta_1 d_{ij} (1+\delta_2 e_{ij})} \] \[ n_{ij}=\left\{\begin{array}{cc} 0, & j \not \in N(i)\\ f_{ij}, & j \in N(i) \end{array} \right. \]
\[ p_i^j=(\kappa_i+\xi_i)s_i+\psi_1 s_i \mathbf{N(\delta)s}+\psi_2 \mathbf{N_i(\delta)s}+\epsilon_i^j \]
“Production” of state capacity in a certain municipality \[ s_i=[\alpha l_i^{\frac{\sigma-1}{\sigma}}+(1-\alpha)(\tau b_i)^{\frac{\sigma-1}{\sigma}}]^{\frac{\sigma}{\sigma-1}}, \sigma>0 \] Utility for municipality \[ U_i=E[\frac{1}{J} \sum \limits_{j} p_i^j - \frac{\theta}{2} l_i^2] \] Utility at the national level \[ W_i=E[\sum \limits_i (U_i \zeta_i-\frac{\eta}{2}b_i^2)] \]