
Dynamic Social Network Analysis using
Latent Space Models

Purnamrita Sarkar, Andrew W. Moore
Center for Automated Learning and Discovery

Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213

psarkar,awm@cs.cmu.edu

ABSTRACT
This paper explores two aspects of social network modeling.
First, we generalize a successful static model of relationships
into a dynamic model that accounts for friendships drifting
over time. Second, we show how to make it tractable to learn
such models from data, even as the number of entities n gets
large. The generalized model associates each entity with a
point in p-dimensional Euclidean latent space. The points
can move as time progresses but large moves in latent space
are improbable. Observed links between entities are more
likely if the entities are close in latent space. We show how
to make such a model tractable (sub-quadratic in the num-
ber of entities) by the use of appropriate kernel functions
for similarity in latent space; the use of low dimensional
KD-trees; a new efficient dynamic adaptation of multidi-
mensional scaling for a first pass of approximate projection
of entities into latent space; and an efficient conjugate gra-
dient update rule for non-linear local optimization in which
amortized time per entity during an update is O(log n). We
use both synthetic and real-world data on up to 11,000 enti-
ties which indicate near-linear scaling in computation time
and improved performance over four alternative approaches.
We also illustrate the system operating on twelve years of
NIPS co-authorship data.

1. INTRODUCTION
Social network analysis is becoming increasingly important
in many fields besides sociology, including intelligence anal-
ysis [1], marketing [2] and recommender systems [3]. Here
we consider learning in systems in which relationships drift
over time. In 2002, Raftery et al[4] introduced a model
similar to Multidimensional Scaling in which entities are as-
sociated with locations in p-dimensional space, and links are
more likely if the entities are close in latent space. In this
paper we formulate an extension of this static model that
allows link prediction and visualization in a dynamic set-
ting. Unlike most of the existing models our work takes the
sequential aspect of the data into account.

A friendship graph is one in which the nodes are entities and
two entities are linked if and only if they have been observed
to collaborate in some way. We try to embed an evolving
friendship graph in a p dimensional latent space. We expect

that with time entities will come closer together forming
new groups, or moving away from one another. These kind
of changes in interaction patterns are very common in social
networks, where people move in and out of neighborhoods
forming new friend circles. This model will also help us pre-
dict whether two entities will form a connection at timestep
t, given the kind of relation they had over the past timesteps.
At first sight a much simpler algorithm might seem prefer-
able: predict x and y are linked at time t if and only if they
were linked at time t − 1. But in many cases even without
having been linked at all, two entities can be very close to
one another because of common friends or friends of friends.
In this paper we suppose that each observed link is associ-
ated with a discrete timestep, so each timestep produces its
own graph of observed links, and information is preserved
between timesteps by two assumptions. First we assume en-
tities can move in latent space between timesteps, but large
moves are improbable. Second, we make a standard Markov
assumption that latent locations at time t + 1 are condi-
tionally independent of all previous locations given latent
locations at time t and that the observed graph at time t is
conditionally independent of all other positions and graphs,
given the locations at time t (see Figure 1). This is the same
assumption as in HMMs and Kalman Filters.
Let Gt be the graph of observed pairwise links at time t.
Assuming n entities, and a p-dimensional latent space, let
Xt be an n× p matrix in which the ith row, called xi, corre-
sponds to the latent position of entity i at time t. Our con-
ditional independence structure is shown in Figure 1. For
most of this paper we treat the problem as a tracking prob-
lem in which we estimate Xt at each timestep as a function
of the current observed graph Gt and the previously esti-
mated positions Xt−1. We want

Xt = arg max
X

P (X|Gt, Xt−1)

= arg max
X

P (Gt|X)P (X|Xt−1) (1)

if we put a uniform prior on Xt. In Section 2 we design
models of P (Gt|Xt) and P (Xt|Xt−1) that meet our model-
ing needs and which have learning times that are tractable
as n gets large. In Sections 3 and 4 we introduce a two-
stage procedure for locally optimizing equation (1). The first
stage generalizes linear multidimensional scaling algorithms
to the dynamic case while carefully maintaining the abil-
ity to computationally exploit sparsity in the graph. This
gives an approximate estimate of Xt. The second stage re-

Page 31Volume 7, Issue 2SIGKDD Explorations

fines this estimate using an augmented conjugate gradient
approach in which gradient updates can use KD-trees over
latent space to allow O(n log n) computation per step.

X1

G1

XT

GT

…X0

G0

Figure 1: Model through time

2. THE DSNL (DYNAMIC SOCIAL
NETWORK IN LATENT SPACE) MODEL

Let dij = |xi−xj | be the Euclidean distance between entities
i and j in latent space at time t. We will not use a t subscript
on these variables except where it is needed for clarity. We
denote linkage at time t by i ∼ j, and absence of a link by
i 6∼ j. p(i ∼ j) denotes the probability of observing the link.
We use p(i ∼ j) and pij interchangeably.

2.1 Observation Model
Following [4] the probability of a link between i and j, de-
noted as pL

ij is

pL
ij =

1

1 + e(dij−α)
(2)

where α is a constant whose significance is explained shortly.
P (Gt|Xt) is then simply

p(Gt|Xt) =
Y

i∼j

pij

Y

i6∼j

(1 − pij)

The likelihood score function intuitively measures how well
the model explains pairs of entities who are actually con-
nected in the training graph as well as those that are not.
So far this model is similar to [4]. To extend this model to
the dynamic case, we now make two important alterations.

First, we allow entities to vary their sociability. Some enti-
ties participate in many links while others are in few. We
give each entity a radius, which will be used as a sphere of
interaction within latent space. We denote entity i’s radius
as ri.
We introduce the term rij to replace α in Equation (2). rij

is the maximum of the radii of i and j. Intuitively, an entity
with higher degree will have a larger radius. Thus we define
the radius of entity i with degree δi as c(δi + 1) so that rij

is c × (max(δi, δj) + 1), and c will be estimated from the
data. In practice, we estimate the constant c by a simple
line-search on the score function. The constant 1 ensures a
nonzero radius.

The second alteration is to weigh the link probabilities by
a kernel function. We alter the simple logistic link prob-
ability pL

ij , such that two entities have high probability of
linkage only if their latent coordinates are within radius rij

of one another. Beyond this range there is a constant noise
probability ρ of linkage. For later optimization we will need
the kernelized function to be continuous and differentiable
at dij = rij . Thus we pick the biquadratic kernel.

K(dij) = (1 − (dij/rij)
2)2, when dij ≤ rij

= 0, otherwise (3)

Using this function we redefine our link probability as

pij =
1

1 + e(dij−rij)
K(dij) + ρ(1 −K(dij))

This is equivalent to having,

pij = pL
ijK(dij) + ρ(1 −K(dij)) when dij ≤ rij

= ρ otherwise

We plot this function in Figure 2B.
Thus the full expression of the first part of the model log-
likelihood is given by,

log P (Gt|Xt)

=
X

i∼j

log p(i ∼ j) +
X

i6∼j

log p(i 6∼ j)

=
X

i∼j,dij<=rij

log p(i ∼ j) +
X

i6∼j,dij<=rij

log p(i 6∼ j)

+ #(i ∼ j, dij > rij) log ρ+ #(i 6∼ j, dij > rij) log(1 − ρ)

where #(expression) denotes the number of pairs satisfying
the expression.

2.2 Transition Model
The second part of the score penalizes large displacements
from the previous time step. We use the most obvious Gaus-
sian model: each coordinate of each latent position is inde-
pendently subjected to a Gaussian perturbation with mean
0 and variance σ2. Thus

log P (Xt|Xt−1) = −

n
X

i=1

|Xi,t −Xi,t−1|
2/2σ2 + const (4)

Here we are trying to optimize the log-likelihood of the
graphs G1:t, conditioned on the latent positions X1:t, where
t ≤ T , T being the total number of timesteps. This is a
forward inference, since we constrain the positions on each
timestep to be similar to the last time-step only. However we
also present a global optimization of all time-steps together
in section 5.4.

3. LEARNING STAGE ONE: LINEAR AP-
PROXIMATION

We generalize classical multidimensional scaling (MDS) [5]
to get an initial estimate of the positions in the latent space.
We begin by recapping what MDS does. It takes as input
an n × n matrix of non-negative distances D where Di,j

denotes the target distance between entity i and entity j.
It produces an n × p matrix X where the ith row is the
position of entity i in p-dimensional latent space. Let the
coordinates of n points in a p dimensional Euclidean space
be given by xi, (i = 1 : n) where xi = (xi1,, xip) . Let
X denote the unknown coordinate matrix. The Euclidean
distance between points i and j is given by

d2
ij =

p
X

k=1

(xik − xjk)2 (5)

Also let D̃ denote XXT , such that

d̃ij =

p
X

k=1

xikxjk = xT
i xj (6)

Page 32Volume 7, Issue 2SIGKDD Explorations

−2−101−2−101
0

10

20

30

40

50

60

70

0 0.2 0.4 0.6 0.8 1
0

0.5
1

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Simple
Logistic

New
Linkage
Probability

(A) (B)

Figure 2: A.The actual (flat, with one minimum), and the modified (steep with two minima) constraint functions, for two dimensions,
with Xt varying over a 2-d grid, from (−2,−2) to (2, 2), and Xt−1 = (1, 1). B. The actual logistic function, and our kernelized version
with ρ = 0.1.

d2
ij = xT

i xi + xT
j xj − 2xT

i xj = d̃ii + d̃jj − 2d̃ij

If X is centered, then we can write

1

n

n
X

i=1

d2
ij =

1

n

n
X

i=1

d̃ii + d̃jj

1

n

n
X

j=1

d2
ij = d̃ii +

1

n

n
X

j=1

d̃jj

1

n2

n
X

i=1

n
X

j=1

d2
ij =

2

n

n
X

i=1

d̃ii (7)

From equations 6 and 7 it follows that,

d̃ij = −
1

2
(d2

ij − d2
i· − d2

·j + d2
··) (8)

Substituting aij for − 1
2
d2

ij we have a new matrix A, and

d̃ij = aij − ai· − a·j + a··

Thus we have ,

D̃ = XXT = HAH = H(−
1

2
D

2)H

where H is the idempotent centering matrix, such that

hij = −
1

n
if i 6= j

= 1 −
1

n
otherwise

However we do not know the true distance matrix D or
the resulting similarity matrix D̃. Therefore classical MDS
works with the dissimilarity matrix D obtained from the
data [6]. D̃ is the similarity matrix obtained from D using

D̃ = H(−
1

2
D2)H (9)

Let Γ be the matrix of the eigenvectors of D̃, and Λ be a
diagonal matrix with the corresponding eigenvalues. Denote
the matrix of the first p positive eigenvalues by Λp and the
corresponding columns of Γ by Γp. From this follows the

expression of classical MDS, i.e. X = ΓpΛ
1

2
p . MDS finds

arg min
X

|D̃ −XXT |F

where | · |F denotes the Frobenius norm [6].

Two questions remain. Firstly, what should be our target
distance matrix D? Secondly, how should this be extended
to account for time? The first answer follows from [4] and
defines Dij as length of the shortest path, nhopsij from i to
j in graph G. We restrict this length to a maximum of three
hops in order to avoid the full n2 computation of all-shortest
paths. Thus D is a dense mostly constant matrix, such that,

Dij = nhopsij if nhopsij < c

= c otherwise

In spite of having this linear approximation step as an ini-
tialization to the nonlinear optimization described in Section
4, we want to account for the temporal aspect, so that we
begin with a educated guess. Therefore we do not want the
positions of entities to change drastically from one time step
to another. Hence we try to minimize |Xt − Xt−1|F along

with the main objective of MDS. Let D̃t denote the D̃ matrix
derived from the graph at time t. We formulate the above
problem as minimization of |D̃t −XtX

T
t |F +λ|Xt −Xt−1|F ,

where λ is a parameter which controls the importance of
the two parts of the objective function. The above does not
have a closed form solution. However, by constraining the
objective function further, we can obtain a closed form so-
lution for a closely related problem. The idea is to work
with the distances and not the positions themselves. Since
we are learning the positions from distances, we change our
constraint (during this linear stage of learning) to encour-
age the pairwise distance between all pairs of entities to
change little between each time step, instead of encouraging
the individual coordinates to change little. Hence the new
function we try to minimize is given by

|D̃t −XtX
T
t |F + λ|XtX

T
t −Xt−1X

T
t−1|F (10)

Minimizing Equation 10 is equivalent to minimizing the trace
of

(D̃t −XtX
T
t)T (D̃t −XtX

T
t)+

λ(XtX
T
t −Xt−1X

T
t−1)

T (XtX
T
t −Xt−1X

T
t−1)

= D̃2
t + λ(Xt−1X

T
t−1)

2 − (
D̃t+λXt−1XT

t−1

1+λ
)2+

(1 + λ)(XtX
T
t −

D̃t+λXt−1XT
t−1

1+λ
)2

= Constant w.r.t Xt + (1 + λ)(XtX
T
t −

D̃t+λXt−1XT
t−1

1+λ
)2

(11)

Page 33Volume 7, Issue 2SIGKDD Explorations

The trace of Equation (11) is minimized at an affine combi-
nation of the current information from the graph, and the
coordinates at the last timestep. Namely, the new solution
satisfies,

XtX
T
t =

1

1 + λ
D̃t +

λ

1 + λ
Xt−1X

T
t−1 (12)

We plot the trace of the two constraint functions in Fig-
ure 2A.The steeper surface belongs to our second constraint.
It can be seen that this new function has two minima, namely
Xt = +Xt−1 whereas the first one is much more flat, and
has an unique minima at Xt−1. An eigendecomposition of
the right hand side of the solution, as in Equation 12, mini-
mizes the objective function. We shall explain the role of λ,
by varying it between two extreme values. When λ is zero,
XtX

T
t equals D̃t, and we ignore all information except the

current graph. When λ → ∞, XtX
T
t equals Xt−1X

T
t−1 and

we are entirely concerned with keeping entities stationary in
the latent space. So λ works like a forgetting factor.

We now have a method which finds latent coordinates for
time t that are consistent with Gt and have similar pair-
wise distances as Xt−1. But although all pairwise distances
may be similar, the coordinates may be very different. In-
deed, even if λ is very large and we only care about pre-
serving distances, the resulting Xt may be any reflection,
rotation or translation of the original Xt−1. We solve this
by applying the Procrustean transform to the solution Xt of
Equation 12. This transform finds the linear area-preserving
transformation of Xt that brings it closest to the previous
configuration Xt−1. The solution is unique if XT

t Xt−1 is
nonsingular [7], and for zero centered Xt and Xt−1, is given
by X∗

t = XtUV
T , where XT

t Xt−1 = USV T , using conven-
tional notation for Singular Value Decomposition(SVD).

Before moving onto stage two’s nonlinear optimization we
must address the scalability of stage one. The naive imple-
mentation (SVD of the matrix from equation 12) has a cost

of O(n3), for n nodes, since both D̃t, and XtX
T
t , are dense

n× n matrices. We use the power method [8], to find the p
eigenvectors and values. The naive implementation of this is
O(n2) for n nodes, since both D̃t and XtX

T
t are dense n×n

matrices. However with some care its possible to exploit the
dense mostly constant structure of the distance matrix Dt

obtained from the graph. The power method involves the
multiplication of a matrix with a vector iteratively, till it
converges to the first eigenvalue-vector pair. Choosing the
next starting vector to be perpendicular to the first eigen-
vector, we find the second eigenvalue-vector pair too. The
beauty of this method is that, in case the underlying ma-
trix is sparse, the matrix-vector multiplication involves only
n2 × f computation per iteration, where f is the fraction of
nonzero entries in the matrix. We briefly sketch the equa-
tions to show how we avoid O(n2) computation despite the
fact that our matrices are dense. The heart of power method
is computing v′ = D̃v , where D̃ is defined in Equation(9).
Thus each iteration involves computing n entries of v′.

We first represent D′ = D2
t as a linear combination between

a dense fully constant matrix D′
d and a sparse matrix D′

s.
All the entries of D′

d have the constant value c′ = c2. We
shall denote each entry of D′

d ,and D′
s by ddij , and dsij

respectively. For simplifying the notation we drop the suffix
t for the time being. We also denote an element-wise square

by D2 in this section.

D̃ = HAH = H(−
1

2
D2)H = −

1

2
HD2H

D′ = D2 = D′
d −D′

s

d′ij = c′ − dsij

d′i· = c′ − dsi·

d′·j = c′ − ds·j

d′·· = c′ − ds··

d̃ij = −
1

2
(d′ij − d′i· − d′·j + d′··)

= (−
1

2
)(−(dsij − dsi· − ds·j + ds··))

=
1

2
(dsij − dsi· − ds·j + ds··)

D̃ =
1

2
HDsH

n
X

j=1

d̃ijvj =

n
X

j=1

(dsij − dsi· − ds·j + ds··)vj

=

n
X

j=1

dsijvj − dsi·

n
X

j=1

vj −

n
X

j=1

dsj·vj + ds··

n
X

j=1

vj

(13)

The complexity of calculating the above, is as follows: the
first part requires O(n2f) time in one iteration of power
method, since D′

s is sparse; The row, column, and overall
means i.e. ds·j , dsi·, and ds·· need to be computed once,
with a cost O(n2f) overall . Once they are computed, the
rest of the terms of Equation(13) take O(n) time per itera-
tion of the power method. Also, we don’t create the XtX

T
t

matrix. Since we use the power method, in one iteration the
computation comes down to,

XtX
T
t v = Xt(X

T
t v)

= (n× p)((p× n)(n× 1)) = (n × p)(p× 1)

The above has a time complexity of O(pn), where p is the
number of dimensions of the latent space. Thus the net cost
of power-method is O(n2f + n+ pn) per iteration.

4. STAGE TWO: NONLINEAR SEARCH
Stage one finds reasonably consistent locations for entities
which fit our intuition, but it is not tied in any way to the
probabilistic model from Section 2. Stage two uses this rea-
sonable initial guess as a starting point and then applies
nonlinear optimization directly to the model in Equation 1.

We use conjugate gradient (CG) which was the most effec-
tive of several alternatives attempted. The most important
practical question is how to make these gradient compu-
tations tractable, especially when the model likelihood in-
volves a double sum over all entities.

We must compute the partial derivatives of logP (Gt|Xt) +
logP (Xt|Xt−1) with respect to all values xi,k,t for i ∈ 1...n
and k ∈ 1..p. First consider the P (Gt|Xt) term:

Page 34Volume 7, Issue 2SIGKDD Explorations

∂ log P (Gt|Xt)

∂Xi,k,t

=
X

j,i∼j

∂ log pij

∂Xi,k,t

+
X

j,i6∼j

∂log(1 − pij)

∂Xi,k,t

=
X

j,i∼j

∂pij/∂Xi,k,t

pij

−
X

j,i6∼j

∂pij/∂Xi,k,t

1 − pij

(14)

∂pij

∂Xi,k,t

=
∂(pL

ijK + ρ(1 −K))

∂Xi,k,t

= K
∂pL

ij

∂Xi,k,t

+ pL
ij

∂K

∂Xi,k,t

− ρ
∂K

∂Xi,k,t

= ψi,j,k,t

However K, the biquadratic kernel introduced in Equation
3, evaluates to zero and has a zero derivative when dij > rij .
Plugging this information in (14), we have,

∂pij/∂Xi,k,t =

(

ψi,j,k,t when dij ≤ rij ,

0 otherwise.

Equation (14) now becomes

∂ log p(Gt|Xt)

∂Xi,k,t

=
X

j,i∼j
dij≤rij

ψi,j,k,t

pij

−
X

j,i6∼j
dij≤rij

ψi,j,k,t

1 − pij

This simplification is very important because we can now
use a spatial data structure such as a KD-tree in the low
dimensional latent space to retrieve all pairs of entities that
lie within each other’s radius in time O(rn+ n log n) where
r is the average number of in-radius neighbors of an entity
[9; 10]. The computation of the gradient involves only those
pairs. A slightly more sophisticated trick lets us compute
log P (Gt|Xt), in O(rn + n log n) time.

From equation(4), we have

∂ log p(Xt|Xt−1)

∂Xi,k,t

= −
Xi,k,t −Xi,k,t−1

σ2

In the early stages of Conjugate Gradient, there is a danger
of a plateau in our score function in which our first derivative
is insensitive to two entities that are connected, but are not
within each other’s radius. To aid the early steps of CG, we
add an additional term to the score function, which penalizes
all pairs of connected entities according to the square of their
separation in latent space , i.e.

P

i∼j
d2

ij .

Weighting this by a constant pConst, our final CG gradient
is

∂Scoret

∂Xi,k,t

=
∂ log p(Gt|Xt)

∂Xi,k,t

+
∂ log p(Xt|Xt−1)

∂Xi,k,t

− pConst× 2
X

j
i∼j

(Xi,k,t −Xj,k,t)

4.1 An example of the different steps of the
model

Here we give the figures from the different timesteps through
our algorithm, on a simulated dataset consisting of 10 enti-
ties. The true model represents the actual spatial positions
of the entities, from which the links were generated using
our probabilistic model. Figures 3(A) and (C) show the
true model at the first and second timestep. Figure 3(B)
gives the result of the entire algorithm i.e. our MDS with
λ = 0, i.e. classical MDS on the data in (A) followed by

conjugate gradient. Through figures 3(D), (E), and (F) we
motivate the time-variant MDS, Procrustean transform and
finally the conjugate gradient step in our algorithm.
Figure (D) shows the result of time-variant MDS with λ =
10, on the data in (C), and the coordinates learned in (B).
Note that though entity ody is no more connected to amy in
timestep 2, it is not placed far apart from the latter, since
they were connected in the former timestep. This shows
how the initial MDS step takes into consideration the coor-
dinates from the last timestep as well. Now look at (E). It
is obtained by applying Procrustean transform on the co-
ordinates from (D), so that it aligns as closely as possible
to the coordinates in (B). Careful observation reveals that
this step in this certain case just has rotated the coordi-
nates in step (D) to have the same orientation as in (B).
This demonstrates the necessity of using the Procrustean
transform. As MDS deals directly with distances the re-
sulting configuration can be rotated without affecting the
mutual distances between the entities. The final figure is
(F), which gives the result of applying conjugate gradient
on step (E), and also the re-estimated radii from the cur-
rent time-step. It is evident from the figures that for these
small number of entities conjugate gradient after MDS does
not yield much improvement. However for larger number
of entities MDS helps only as a very educated guess to ini-
tialize conjugate gradient, which subsequently makes very
significant improvements.

5. RESULTS
We report experiments on synthetic data generated by a
model described below and the NIPS co-authorship data
[11], and some large subsets of citeseer. We investigate three
things: ability of the algorithm to reconstruct the latent
space based only on link observations, anecdotal evaluation
of what happens to the NIPS data, and scalability.

5.1 Comparing with ground truth
We generate synthetic data for six consecutive timesteps. At
each timestep the next set of two-dimensional latent coordi-
nates are generated with the former positions as mean, and
a gaussian noise of standard deviation σ = 0.01. Each entity
is assigned a random radius. At each step , each entity is
linked with a relatively higher probability to the ones falling
within its radius, or containing it within their radii. There
is a noise probability of 0.1, by which any two entities i and
j outside the maximum pairwise radii rij are connected. We
generate graphs of sizes 20 to 1280, doubling the size every
time. Accuracy is measured by drawing a test set from the
same model, and determining the ROC curve for predicting
whether a pair of entities will be linked in the test set. We
experiment with six approaches:

A. The True model that was used to generate the data
(this is an upper bound on the performance of any
learning algorithm).

B. The DSNL model learned using the above algorithms.

C. A random model, guessing link probabilities randomly
(this should have an AUC of 0.5).

D. The Simple Counting model (Control Experiment). This
ranks the likelihood of being linked in the testset ac-
cording to the frequency of linkage in the training set.

Page 35Volume 7, Issue 2SIGKDD Explorations

amy

bob

cat dot

edd

flo ged
hem

ida

jay

kip

lee

mac
ned

ody

amy bob
cat

dot

edd

flo

ged hem

ida

jay

kip

lee

mac

ned

ody

amy

bob

cat dot

edd

flo ged
hem

ida

jay

kip

lee

mac ned

ody

(A) (B) (C)

amy

bob

cat

dot
edd

flo

ged

hem

ida

jay

kip

lee mac
ned

ody

amy

bob

cat

dot

edd

flo

ged hem

ida

jay

kip

lee

mac
ned

ody amy

bob
catdot

edd

flo

ged hem

ida

jay

kip

lee

mac
ned

ody

(D) (E) (F)

Figure 3: The model through different steps of our algorithm A. True model for 1st timestep B. Learned model from graph
in (A) C. True model for 2nd timestep. D. Time variant MDS on the graph in (C) accounting for pairwise distances in (B)
E.Procrustean transform on (D): Note the amount of rotation to bring (D) closest to (B) D Conjugate Gradient on (E)

It can be considered as the equivalent of the 1-nearest-
neighbor method in classification: it does not general-
ize, but merely duplicates the training set.

E. Time-varying MDS: The model that results from run-
ning stage one only.

F. MDS with no time: The model that results from ignor-
ing time information and running independent MDS
on each timestep.

Figure 4 shows the ROC curves for the third timestep on
a test set of size 160. Table 1 shows the AUC scores of our
approach and the five alternatives for 3 different sizes of the
dataset over the first, third, and last time steps.

As we can see, from the figures in all the cases, the true
model has the highest AUC score, followed by the model
learned by DSNL. The ROC curve of the simple counting
model goes up very steeply, since it rightly guesses some of
the links in the test graph from the training graph. How-
ever it also predicts the noise as links, and ends up being
beaten by the model we learn. The results show that it is
not sufficient to only perform Stage One. When the num-
ber of links is small, MDS without time does poorly com-

pared to our temporal version. However as the number of
links grows quadratically with the number of entities, regu-
lar MDS does almost as well as the temporal version: this
is not a surprise because the generalization benefit from the
previous timestep becomes unnecessary with sufficient data
on the current timestep.

5.2 The best value of λ
In this section we show how we selected the value of λ. We
vary λ from 0.0 to 90.0, in steps of 10.0 and plot the AUC
scores of the models resulting from time-varying MDS in
Figure 5.We repeat this experiment for model sizes 40, 80,
160, and 320. All the experiments show that AUC score of
the resulting model from the MDS step grows better as λ
increases from 0 to around 10 or 20. However after that the
AUC scores start decreasing. This shows the two extreme
simple predictive models which could be used. One is the
time invariant classical MDS, when λ = 0. The other ex-
treme is when λ is infinite, i.e. we only use the coordinates
learned from the former timestep for predicting the behavior
of the current timestep, ignoring information from current
time step.We choose λ = 10 from the empirical results pre-
sented in Figure 5 .We choose a bigger value of λ = 30 for

Page 36Volume 7, Issue 2SIGKDD Explorations

0 2000 4000 6000 8000 10000 12000 14000
0

100

200

300

400

500

600

False Positive

Tr
ue

 P
os

itiv
e

True Model
Random Model
MDS without time
Time−varying MDS
Model Learned
Control Experiment

Figure 4: ROC curves of the six different models described
earlier for test set of size 160 at timestep 3, in simulated
data.

0 10 20 30 40 50 60 70 80 90
0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84 AUC score vs lambda for n=40
AUC score vs lambda for n=80
AUC score vs lambda for n=160
AUC score vs lambda for n=320

Figure 5: AUC scores vs λ.

the massive datasets.

5.3 How effective is MDS ?
In this section we try to see how effective our initialization
step is. We examine the AUC scores of two different models.
One starts with the MDS step , and the other starts with
the random initialization. We also give the total time taken
for both the variations to converge.

First we look at the starting log likelihood of the two proba-
bilistic models with different initializations. We will refer to
the method with MDS initialization as method 1, and the
one with random initialization as method 2. From the ta-
bles 2 and 3 we see that method 1 starts with a much higher
log-likelihood. Thus MDS is a much more educated guess
than the random initialization. It ends with a better log-
likelihood also. This difference between the log-likelihoods
of the final models increases with the complexity of the
model, i.e. the number of entities. However the AUC scores
on the test set generated from the true generative model is
not very different for the models learned by methods 1 and 2.

Table 1: AUC score on graphs of size n for six different mod-
els (A) True (B) Model learned using DSNL, (C) Random
Model, (D) Simple Counting Model, (E) Multidimensional
Scaling with time, and (F) MDS without time.

Time A B C D E F
n=80

1 0.95 0.88 0.51 0.81 0.80 0.82
3 0.94 0.87 0.49 0.76 0.88 0.81
6 0.93 0.86 0.48 0.75 0.85 0.79

n=160
1 0.90 0.85 0.51 0.73 0.73 0.75
3 0.90 0.85 0.50 0.75 0.85 0.73
6 0.90 0.85 0.50 0.73 0.83 0.72

n=320
1 0.86 0.82 0.50 0.71 0.72 0.72
3 0.85 0.83 0.49 0.70 0.80 0.71
6 0.86 0.83 0.50 0.72 0.79 0.72

n=640
1 0.84 0.81 0.50 0.70 0.68 0.71
3 0.83 0.81 0.50 0.70 0.78 0.70
6 0.83 0.80 0.50 0.71 0.78 0.70

n=1280
1 0.81 0.79 0.50 0.68 0.61 0.69
3 0.81 0.79 0.50 0.69 0.77 0.71
6 0.81 0.79 0.50 0.68 0.76 0.70

Another very striking observation is the running time(in sec-
onds) of these two methods per time-step. Method 1 takes
almost half as much time as method 2. So we conclude that
conjugate gradient followed by MDS converges almost twice
as fast as the method with random initialization , and it
converges to a solution with higher log-likelihood.

5.4 Forward vs Forward-backward
The transition model presented in section 2.2 was a forward
method of finding positions, given the past coordinates, and
the current coordinates. Now we also compare the perfor-
mance of a model with a forward backward method with the
forward one. In this new method, we try to maximize the
posterior probabilities of data of all time-steps.

Xt = arg max
X

P (X|Gt, Xt−1, Xt+1)

= arg max
X

P (Gt|X)P (X|Xt−1, Xt+1)

The P (Gt|Xt) part remains the same, though the second
part incurs an extra term, which penalizes any shift of the
current coordinates w.r.t. the next time-step as well. The
additional term is −

Pn

i=1 |Xi,t−Xi,t+1|
2/2σ2. We first find

the positions for each timestep using our time variant exten-
sion of classical MDS. After this batch initialization of all
timesteps, we try to learn the coordinates at time t so that
the resulting model explains the current graph, and is con-
strained to be very close to the coordinates of the models of
the former and later timesteps.

We compare these two methods by presenting their respec-
tive training, and test log-likelihoods, along with the AUC
scores in table 4. We see that the log-likelihood of the

Page 37Volume 7, Issue 2SIGKDD Explorations

Table 2: Log-likelihood, and time taken per iteration of Con-
jugate gradient with MDS initialization

Conjugate gradient with MDS
Time log-likelihood log-likelihood AUC Total

after time
initialization CG

n=80
1 -1078.76 -708.749 .87 19.76
2 -1047.57 -743.59 .87 11.23
3 -999.334 -720.714 .86 11.46

n=160
1 -3492.85 -2564.16 .83 49.2
2 -3121.25 -2587.59 .84 36.37
3 -3151.77 -2601.29 .84 39.36

n=320
1 -11808.7 -9477.46 .82 105.47
2 -11147.5 -9507.91 .83 66.07
3 -11126.9 -9419.03 .82 86.38

n=640
1 -62543.7 -44305.9 .81 449.71
2 -46268.7 -44227.2 .81 410.0
3 -46713.8 -44609.3 .81 209.32

model from the forward-backward method gets better than
the forward-only method as we increase the number of en-
tities. However the AUC score on unseen data is almost
comparable for these two methods.

5.5 Visualizing the NIPS coauthorship data
over time

In this section we present a subset of the NIPS dataset, ob-
tained by choosing a well-connected author, and including
all authors and links within a few hops. We dropped authors
who appeared only once and we merged the timesteps into
three groups: 1987-1990 (Figure 6A), 1991-1994(Figure 6B),
and 1995-1998(Figure 6C). In each picture we show the links
for that timestep and highlight a few well connected people
with their radii. These radii are learned from the model.
Remember that the distance between two people is related
to the radii. Two people with very small radii are consid-
ered far apart in the model even if they are physically close.
To give some intuition of the movement of the rest of the
points, we divided the area in the first timestep in 4 parts
and used different colors and shapes for the points in each.
This coloring is preserved throughout all the timesteps.
In this paper we limit ourselves to anecdotal examination
of the latent positions. For example, with BurgesC and
V apnikV we see that they had very small radii in the first
four years, and were further apart from one another, since
there was no co-publication. However in the second timestep
they move closer, though there are no direct links. This is
because of the fact that they both had co-published with
neighbors of one another. On the third time step they make
a connection, and are assigned almost identical coordinates,
since they have a very overlapping set of neighbors.
We end the discussion with entitiesHintonG, GhahramaniZ ,
and JordanM . In the first timestep they did not coauthor
with one another, and were placed outside one-another’s
radii. In the second timestep GhahramaniZ , and HintonG

coauthor with JordanM . However since HintonG had a
large radius and more links than the former, it is harder for

Table 3: Log-likelihood, and time per iteration of Conjugate
gradient with random initialization

Conjugate gradient with random initialization
Time log-likelihood log-likelihood AUC Total time
step after after per

initialization CG timestep
n=80

1 -2425.81 -710.383 .86 23.77
2 -2569.34 -785.118 .85 40.01
3 -2415.42 -758.374 .83 29.40

n=160
1 -6569.84 -2582.44 .84 62.69
2 -7159.99 -2698.56 .84 84.73
3 -7073.78 -2648.44 .83 80.33

n=320
1 -22124.2 -9622.56 .80 215.65
2 -21333.4 -9720.77 .81 145.15
3 -21171 -9718.47 .80 212.61

n=640
1 -79211.4 -44519.6 .80 671.04
2 -81051.8 -45050.8 .81 1084.6
3 -79280.1 -45763.5 .80 731.33

him to meet all the constraints, and he doesn’t move very
close to JordanM . In the next timestep howeverGhahramaniZ
has a link with both of the others, and they move substan-
tially closer to one another.

5.5.1 Varying the number of latent space dimensions
It is possible and often useful to have more than two latent
dimensions. For visualization we can only utilize up to three
dimensions. But it might be necessary to have the entities
in a higher dimensional latent space for improved link pre-
diction. For the NIPS corpus we experimented on learning
models with 1 to 3 dimensional latent space. Based on the
results presented here, we decided to use 2 dimensions. We
split the NIPS dataset randomly in different sized test, and
training sets. We trained 3 different models with 1,2 and 3
latent space dimensions and computed the AUC scores for
predicting the links in the test data.
We present the AUC scores of the datasets for the 4 : 1,
and 3 : 2 ratio cuts of training and test set in table 5.
As the ratio goes up the AUC scores go down in general.
This is expected as we are increasing the test set size w.r.t
the training set size, thus constraining the training phase
to less evidence of connections. We see that in both cases
the 2-dimensional model performs at least as good as the 3
dimensional model in terms of prediction. This is why we
chose 2 dimensions for visualizing the NIPS dataset.

5.6 Scaling to Very Large Networks
We successfully applied our algorithms to networks of sizes
up to 11,000. These graphs were extracted from the cite-
seer dataset. We will only mention the performance on two
datasets. The first one contained 9364 entities from citeseer,
publication years spanning over 6 years : 1998 to 2003. We
split up each year’s links in a 9:1 train:test set partition. The
computation took around three and half hours. The AUC
scores for the six timesteps ranged from 0.78 to 0.86. The
second dataset with 11,218 entities was more densely con-

Page 38Volume 7, Issue 2SIGKDD Explorations

Burges
C

Ghahramani
Z

Hinton
G

Jordan
M

Koch
C

Manwani
A

Sejnowski
T

Vapnik
V

Viola
P

Burges
C

Ghahramani
Z

Hinton
G

Jordan
M

Koch
C Manwani

A

Sejnowski
T

Vapnik
VViola

P

(A) (B)

Burges
C

Ghahramani
Z

Hinton
G

Jordan
M

Koch
C

Manwani
A

Sejnowski
T Vapnik

V

Viola
P

300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of entities

Ti
m

e
in

 S
ec

on
ds

quadratic score
score using kd−tree

(C) (D)

Figure 6: NIPS coauthorship data at A. timestep 1: green stars in upper-left corner, magenta pluses in top right, cyan spots
in lower right, and blue crosses in the bottom-left, and B. Time step 2. C. NIPS coauthorship data at timestep 3. D. Time
taken for score calculation vs number of entities.

nected. It had four years of information (1998-2001). This
took around four and half hours, and the AUC scores under
similar setting as before ranged from 0.80 to 0.92.

5.7 Performance Issues
Figure 6D shows the performance against the number of en-
tities. When KD-trees are used and the graphs are sparse
scaling is clearly sub-quadratic and nearly linear in the num-
ber of entities, meeting our expectation of O(n log n) perfor-
mance. Similar experiments for gradient computation also
show that its complexity is O(n log n).

6. CONCLUSIONS AND FUTURE WORK
This paper has described a method for modeling relation-
ships that change over time. We believe it is useful both
for understanding relationships in a large mass of historical
data and also as a tool for predicting future interactions,
and we plan to explore both directions further. This pa-
per presented both a forward pass and a forward-backward
algorithm on the Markov chain over timesteps. In the sec-
ond technique we optimize the global likelihood instead of
treating the model as a tracking model. We also plan to ex-
tend this in order to find the posterior distributions of the
coordinates following the approach used in the static case
by [4].

Page 39Volume 7, Issue 2SIGKDD Explorations

Table 4: Training and Test log-likelihood, and AUC scores
for forward-backward vs forward method

Forward-Backward Forward
Time training test AUC training test AUC
step LogLike LogLike LogLike LogLike

n=80
1 -622.30 -688.91 .87 -694.978 -790.62 .87
2 -633.46 -705.31 .87 -691.775 -763.30 .88

n=160
1 -2257.9 -2497.05 .85 -2547.31 -3047.48 .84
2 -2322.26 -2459.13 .85 -2710.72 -2881.05 .84

n=320
1 -9384.79 -9850.77 .84 -11592.2 -12623.2 .82
2 -9473.83 -9985.53 .83 -11849.7 -12795.7 .83

n=640
1 -45189.6 -46462.7 .81 -64153.1 -68754 .79
2 -44126.3 -46756.5 .81 -62573.3 -67271.8 .79

Table 5: AUC scores on the NIPS dataset over 3 timesteps
for different number of dimensions

AUC scores over 3 timesteps
Number of Training to test Training to test
dimensions set ratio 4:1 set ratio 3:2

1 0.85 0.88 0.83 0.84 0.79 0.80
2 0.94 0.94 0.88 0.88 0.85 0.85
3 0.90 0.91 0.83 0.89 0.84 0.85

7. ACKNOWLEDGMENTS
We are very grateful to Anna Goldenberg for her valuable
insights. We also thank Paul Komarek for some helpful dis-
cussions.

8. REFERENCES
[1] J. Schroeder, J. J. Xu, and H. Chen. Crimelink explorer:

Using domain knowledge to facilitate automated crime
association analysis. In ISI, pages 168–180, 2003.

[2] J. J. Carrasco, D. C. Fain, K. J. Lang, and L. Zhukov.
Clustering of bipartite advertiser-keyword graph. In
ICDM, 2003.

[3] J. Palau, M. Montaner, and B. López. Collaboration
analysis in recommender systems using social networks.
In Eighth Intl. Workshop on Cooperative Info. Agents
(CIA’04), 2004.

[4] A. E. Raftery, M. S. Handcock, and P. D. Hoff. Latent
space approaches to social network analysis. J. Amer.
Stat. Assoc., 15:460, 2002.

[5] R. L. Breiger, S. A. Boorman, and P. Arabie. An al-
gorithm for clustering relational data with applications
to social network analysis and comparison with mul-
tidimensional scaling. J. of Math. Psych., 12:328–383,
1975.

[6] I. Borg and P. Groenen. Modern Multidimensional Scal-
ing. Springer-Verlag, 1997.

[7] R. Sibson. Studies in the robustness of multidimen-
sional scaling : Perturbational analysis of classical scal-

ing. J. Royal Stat. Soc. B, Methodological, 41:217–229,
1979.

[8] David S. Watkins. Fundamentals of Matrix Computa-
tions. John Wiley & Sons, 1991.

[9] F. Preparata and M. Shamos. Computational Geome-
try: An Introduction. Springer-Verlag, 1985.

[10] A. G. Gray and A. W. Moore. N-body problems in sta-
tistical learning. In NIPS, 2001.

[11] R. Salakhutdinov, S. T. Roweis, and Z. Ghahramani.
Optimization with em and expectation-conjugate-
gradient. In ICML, volume 20, pages 672–679, 2003.

Page 40Volume 7, Issue 2SIGKDD Explorations

