Case Studies in Dynamic Network Models: (Xu and Hero, 2013) (Sarkar and Moore, 2005)

Alex Loewi

February 25, 2014

Introduction

Dynamic Models (Commonalities)

Latent Space Models

Static LSM Refresher Dynamic LSMs

The Basis of an Extension

Stochastic Block Models

Static SBM Refresher Dynamic SBMs

Dynamic Models (Commonalities)

- Dynamic usually means "harder": e.g. in physics
- In networks, "dynamic" means "several data points"
- You have a "hint" when you're fitting a static model

Dynamic Models (Commonalities)

- Dynamic usually means "harder": e.g. in physics
- In networks, "dynamic" means "several data points"
- You have a "hint" when you're fitting a static model

NOTE: These models are not temporally generative: You can't generate (interesting) future networks from them (like, for example, the preferential attachment model).

Dynamic Models (Commonalities)

- ► EM
- Gibbs Sampling
- (Extended) Kalman Filter
- Conjugate Gradient Ascent
- SVD, MDS, PCA
- KD-trees

►

Procrustean Transform

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Spectral Clustering
- Label Switching

You want locations

Х

You want locations

Х

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Which are embedded in a matrix of dot products XX^T

You want locations

Х

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Which are embedded in a matrix of dot products XX^T
- Which are expressible as a function of distances

$$d_{ij}^2 = x_i^T x_i + x_j^T x_j - 2x_i^T x_j$$

You want locations

Х

- Which are embedded in a matrix of dot products XX^T
- Which are expressible as a function of distances

$$d_{ij}^2 = x_i^T x_i + x_j^T x_j - 2x_i^T x_j$$

Which you can actually get from the network

▶ ...

You want locations

Х

- Which are embedded in a matrix of dot products XX^T
- Which are expressible as a function of distances

$$d_{ij}^2 = x_i^T x_i + x_j^T x_j - 2x_i^T x_j$$

Which you can actually get from the network

You want locations

Х

- Which are embedded in a matrix of dot products XX^T
- Which are expressible as a function of distances

$$d_{ij}^2 = x_i^T x_i + x_j^T x_j - 2x_i^T x_j$$

- Which you can actually get from the network
- ▶ ..
- (Once you decide what distances you want to use.)

►

You want locations

- Which are embedded in a matrix of dot products XX^T
- Which are expressible as a function of distances

$$d_{ij}^2 = x_i^T x_i + x_j^T x_j - 2x_i^T x_j$$

Х

Which you can actually get from the network

G = f(distances = g(dot products = h(latent positions!)))

- ► Take a random stroll (≥ 3 edges away) to determine inter-node distances D
- ► Use D to minimize a set of distances expressed as dot products min_X |D - XX^T|_F
- Extract the positions.

G = f(distances = g(dot products = h(latent positions!)))

- The likelihood is not convex, so you have to have a good first guess if you're going to maximize iteratively (or you'll get stuck on the way).
- For the first step, find a linear solution (MDS/PCA), then iterate on that. Hoff et. al use Metropolis-Hastings, Sarkar and Moore use conjugate gradient descent.
- PROBLEM is, the likelihood is a function of DISTANCES, and you want absolute POSITIONS. So, the correct solution upside down has the same likelihood as the true solution.
- SOLUTION: Choose a position, always rotate back as close to it as possible.

Dynamic LSMs

The biggest difference is the addition of X_{t-1} in the conditioning set

$$X_t = \arg \max_X p(X|G_t, X_{t-1}) = \arg \max_X p(G_t|X)p(X|X_{t-1})$$

The most "dynamic" part of this model is the "don't move much" rule

$$\log p(X_t|X_{t-1}) = -\sum_{i=1}^n |X_{i,t} - X_{i,t-1}|^2 / 2\sigma^2 + const$$

The more the new positions are like the old ones, the greater the likelihood

A Neat Trick, Once You Recognize It

(Sarkar and Moore, 2013):

$$\arg\min_{X} |D - XX^{T}|_{F}$$

(Hoff, Raftery, and Handcock, 2002):

$$\arg\min_{TZ} tr(Z_0 - TZ)^T(Z_0 - TZ)$$

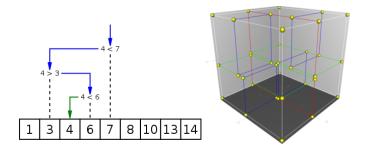
Why would you think of this, but -

$$tr(A^{T}A) = tr\begin{pmatrix}a^{2}+c^{2} & ab+cd\\ab+cd & b^{2}+d^{2}\end{pmatrix} = \sum_{ij}a_{ij}^{2} = |A|_{F}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

KD-Trees: I Thought This Was Pretty Cool

Because of the range-restricted ties, the likelihood can be calculated in local pieces.



KD-trees allow you to efficiently find only the relevant pieces.

・ロト ・ 一下・ ・ ヨト ・ ・

ъ

Models for Growing Networks

- Latent Space Models have a logic
- This logic should be no less valid for as-yet-unobserved nodes
- Using this logic helps helps reduce uncertainty about previously observed nodes
- If a new node N makes friends with a person P, but not their friend F, then F and N should be placed as far apart as possible.

Models for Growing Networks

►

- Latent Space Models have a logic
- This logic should be no less valid for as-yet-unobserved nodes
- Using this logic helps helps reduce uncertainty about previously observed nodes
- If a new node N makes friends with a person P, but not their friend F, then F and N should be placed as far apart as possible.

$$\min_{X} |\mathbf{D} - \mathbf{X}\mathbf{X}^{\mathsf{T}}|_{F} - \lambda |X_{new} - X_{\notin N(new)}|_{F}$$

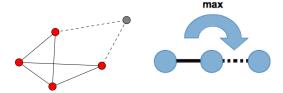
Models for Growing Networks

 If a new node N makes friends with a person P, but not their friend F, then F and N should be placed as far apart as possible.

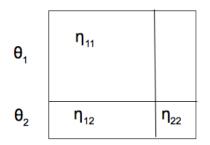
$$\min_{X} |\mathbf{D} - \mathbf{X}\mathbf{X}^{\mathsf{T}}|_{\mathcal{F}} - \lambda |X_{new} - X_{\notin N(new)}|_{\mathcal{F}}$$

イロト 不得 トイヨト イヨト

э



- There are "blocks" of uniform densities
- There are two versions of the problem: with (a priori) and without (a posteriori) the class labels.
- If you know who's in what class, this is just estimating a Bernoulli.



- A posteriori is the more interesting problem, but you have to check ALL 2ⁿ possible labelings.
- This is not possible to do for more than a few nodes, but sampling approaches can be used.

$$\begin{aligned} &P(Y;\theta,\eta) \\ &= \sum_{x \in [1,2]^n} P(Y,X;\theta,\eta) \\ &= \sum_{x \in [1,2]^n} (1-\theta)^n \left(\frac{\theta}{1-\theta}\right)^{n_2} \tilde{\eta}_{11}^{\binom{n_1}{2}} \tilde{\eta}_{12}^{n_1 n_2} \tilde{\eta}_{22}^{\binom{n_2}{2}} \left(\frac{\eta_{11}}{\tilde{\eta}_{11}}\right)^{e_1 1} \left(\frac{\eta_{12}}{\tilde{\eta}_{12}}\right)^{e_1 2} \left(\frac{\eta_{22}}{\tilde{\eta}_{22}}\right)^{e_1 2} \\ &= \sum \theta^{n_1} (1-\theta)^{n_2} \prod_{b \in block} \eta_b^{e_b} (1-\eta_b)^{\binom{n_b}{e_b} - e_b} \end{aligned}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Dynamic SBMs

The dynamic part:



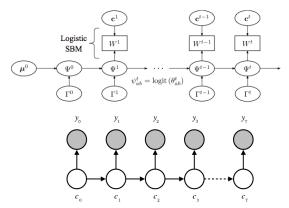
 $f(\psi^t|W^{(t)}) \propto f(W^{(t)}|\psi^t, W^{(t-1)})f(\psi^t|W^{(t-1)})$

(日)、

æ

Dynamic SBMs

The depth of my understanding: Kalman Filters are ways to solve complicated HMMs.



You don't *force* the class labels to only change a little, but if you guess that they only change a little, then you tend to get a pretty good fit. The previous parameter acts as a "hint."

Thank you! aloewi@andrew.cmu.edu Hamburg Hall, 3005