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Dynamic Models (Commonalities)

I Dynamic usually means “harder”: e.g. in physics

I In networks, “dynamic” means “several data points”

I You have a “hint” when you’re fitting a static model

I NOTE: These models are not temporally generative: You
can’t generate (interesting) future networks from them (like,
for example, the preferential attachment model).
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Dynamic Models (Commonalities)

I EM

I Gibbs Sampling

I (Extended) Kalman Filter

I Conjugate Gradient Ascent

I SVD, MDS, PCA

I KD-trees

I Procrustean Transform

I Spectral Clustering

I Label Switching

I ...



Static LSM Refresher

I You want locations X

I Which are embedded in a matrix of dot products XXT

I Which are expressible as a function of distances
d2
ij = xTi xi + xTj xj − 2xTi xj

I Which you can actually get from the network

I ...

I (Once you decide what distances you want to use.)
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G = f (distances = g(dot products = h( latent positions!)))



Static LSM Refresher

I Take a random stroll (≥ 3 edges away) to determine
inter-node distances D

I Use D to minimize a set of distances expressed as dot
products minX |D− XXT|F

I Extract the positions.

G = f (distances = g(dot products = h( latent positions!)))



Static LSM Refresher

I The likelihood is not convex, so you have to have a good first
guess if you’re going to maximize iteratively (or you’ll get
stuck on the way).

I For the first step, find a linear solution (MDS/PCA), then
iterate on that. Hoff et. al use Metropolis-Hastings, Sarkar
and Moore use conjugate gradient descent.

I PROBLEM is, the likelihood is a function of DISTANCES,
and you want absolute POSITIONS. So, the correct solution
upside down has the same likelihood as the true solution.

I SOLUTION: Choose a position, always rotate back as close to
it as possible.



Dynamic LSMs

The biggest difference is the addition of Xt−1 in the conditioning
set

Xt = arg max
X

p(X |Gt ,Xt−1) = arg max
X

p(Gt |X )p(X |Xt−1)

The most “dynamic” part of this model is the “don’t move much”
rule

log p(Xt |Xt−1) = −
n∑

i=1

|Xi ,t − Xi ,t−1|2/2σ2 + const

The more the new positions are like the old ones, the greater the
likelihood



A Neat Trick, Once You Recognize It

(Sarkar and Moore, 2013):

arg min
X
|D − XXT |F

(Hoff, Raftery, and Handcock, 2002):

arg min
TZ

tr(Z0 − TZ )T (Z0 − TZ )

Why would you think of this, but –

tr(ATA) = tr

(
a2 + c2 ab + cd
ab + cd b2 + d2

)
=
∑
ij

a2ij = |A|F



KD-Trees: I Thought This Was Pretty Cool

Because of the range-restricted ties, the likelihood can be
calculated in local pieces.

KD-trees allow you to efficiently find only the relevant pieces.



Models for Growing Networks

I Latent Space Models have a logic

I This logic should be no less valid for as-yet-unobserved nodes

I Using this logic helps helps reduce uncertainty about
previously observed nodes

I If a new node N makes friends with a person P, but not their
friend F, then F and N should be placed as far apart as
possible.

I

min
X
|D− XXT|F − λ|Xnew − X/∈N(new)|F
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Static SBM Refresher

I There are “blocks” of uniform densities

I There are two versions of the problem: with (a priori) and
without (a posteriori) the class labels.

I If you know who’s in what class, this is just estimating a
Bernoulli.



Static SBM Refresher

I A posteriori is the more interesting problem, but you have to
check ALL 2n possible labelings.

I This is not possible to do for more than a few nodes, but
sampling approaches can be used.

P(Y ; θ, η)

=
∑

x∈[1,2]n
P(Y ,X ; θ, η)

=
∑

x∈[1,2]n
(1− θ)n

(
θ

1− θ

)n2

η̃
(n12 )
11 η̃n1n212 η̃

(n22 )
22

(
η11
η̃11

)e11(η12
η̃12

)e12(η22
η̃22

)e22

=
∑

θn1(1− θ)n2
∏

b∈block
ηebb (1− ηb)

(nbeb)−eb



Dynamic SBMs

The dynamic part:

f (ψt |W (t)) ∝ f (W (t)|ψt ,W (t−1))f (ψt |W (t−1))



Dynamic SBMs

The depth of my understanding: Kalman Filters are ways to solve
complicated HMMs.

You don’t force the class labels to only change a little, but if you
guess that they only change a little, then you tend to get a pretty
good fit. The previous parameter acts as a “hint.”



Thank you!
aloewi@andrew.cmu.edu
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