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Using Sample Survey Weights in Multiple
Regression Analyses of Stratified Samples

WILLIAM H. DUMOUCHEL and GREG J. DUNCAN*

The rationale for the use of sample survey weights in a
least squares regression analysis is examined with respect
to four increasingly general specifications of the popu-
lation regression model. The appropriateness of the
weighted regression estimate depends on which model is
chosen. A proposal is made to use the difference between
the weighted and unweighted estimates as an aid in choos-
ing the appropriate model and hence the appropriate es-
timator. When applied to an analysis of the familial and
environmental determinants of the educational level at-
tained by a sample of young adults, the methods lead to
arevision of the initial additive model in which interaction
terms between county unemployment and race, as well
as between sex and mother’s education, are included.

KEY WORDS: Weighted regression; Finite population;
Super population model; Educational attainment model.

1. INTRODUCTION

Suppose that a sample survey measures (p + 1) var-
iables on each of n individuals, so that the data consist
of the n X 1 matrix Y and the n X p matrix X. Then the
least squares estimator of the regression coefficients of
YonXis

B=XX)'X'Y. 1.1

However, the rows of Y and X often are not a simple
random sample from the population. Differential sam-
pling rates and differential response rates among various
strata lead to different probabilities of selection forieach
individual. Kish (1965) discusses the computation of
these probabilities for various sampling schemes, but this
article is concerned only with stratified sampling and not
with the further complication of cluster sampling. Fur-
ther, the stratification is permitted to be based on X but
not on Y.

As described in Kish (1965), the differential sampling
and response rates lead to the computation of weights for
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each case, which attempts to give each stratum the same
relative importance in the sample that it has in the pop-
ulation. This article assumes that an observable stratifi-
cation variable J takes on k levels and that {m;}, the pro-
portions of the population for which J = j,j=1,...,
k are known. Let n; be the size of a simple random sample
drawn from the jth stratum,j = 1, ..., k, so that n; +

« + ni; = n. Since the jth stratum is underrepresented
in the sample by a factor proportional to n;/m;, the weight
assigned to the ith observation is

w; % a;/ny,

(1.2)

where j; is the value of J for the ith observation, i = 1,
., n. Let W denote the diagonal matrix whose ith di-
agonal element is w;. In some textbooks, and in many
analyses of survey data (see Klein 1953, Bachman,
Green, and Wirtanen 1974, Blumenthal et al. (1972), Dun-
can and Morgan (1976), Hu and Stromsdorfer (1970), and
Juster (1976)), a weighted least squares estimator is used,
namely,
Bw = (X'WX)~' X'WY. 1:3)
Which estimator should be used? Controversy has
raged at leas} since Klein and Morgan (1951). The ad-
vocates of B can point out that the justification for
weighted regression in terms of adjusting for unequal
error variances (see, e.g., Draper and Smith 1966) is not
at issue here. In the usual homoscedastic regression
model, 8 is minimum variance unbiased whether or not
the strata are sampled proportional to size. Nevertheless,
the advocates of B are concerned with reducing the sup-
posed bias caused by the sampling scheme, reasoning by
analogy to the estimation of an overall population total
or mean. In that case, such weighting is clearly necessary
if there are systematic differences in the stratum means.
In addition, they argue that the assumptions that lead to
the optimality of 8 are likely to be violated in populations
of interest. Brewer and Mellor (1973) discuss how the
choice between @ and B is influenced by the choice of
a model-based approach to inference versus an approach
based on randomization within a finite population in
which no particular model is assumed.
The point of this article is to clarify this issue by show-
ing how the appropriate estimator depends on which of
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several possible regression models (if any) is appropriate
and to show how a test based on B — B may be used
as a device to help decide which model, and hence which
estimator, is appropriate. In Section 2 we define four dif-
ferent regression models of increasing generality that
might be used to justify the use of Bw. In section 3 we
discuss the relationship between the models and the
choice of estimator, and in Sgction 4 we show how an
easily computed test based on By — B may help in choos-
ing a model. Section 5 contains further discussion, and
in the last two sections we illustrate the issues by the
construction of an educational attainment model based
on a national survey.

2. FOUR REGRESSION MODELS
21 Notation

The decision of whether to use the weights depends on
what one assumes about the population from which the
data have been drawn. In this section we describe four
models that exemplify the most common assumptions.
Associated with each model is a certain target quantity,
or parameter of interest. The question is whether B or
Bw is the more appropriate estimate of that target quan-
tity.

The reader may find it easier to think in terms of sam-
pling from an infinite population, since population size
per se is not a major issue here. We always assume that
the stratum sample sizes {n;} are small fractions of the
corresponding population statum sizes, and the mathe-
matics of sampling with replacement or from infinite pop-
ulations are used throughout this article. Let ¥ and X
denote the scalar and (1 X p) random variables defined
by a single draw of the dependent and independent var-
iables, respectively, from the entire population. Let y and
x denote values of ¥ and X, namely, single rows of the
data matrices Y and X respectively. Unconditional ex-
pectations E(-) refer to a simple random sample from the
population, while conditional expectations E(- | J) refer
to stratified sampling, where a simple random sample of
size n; is taken from the jth stratum, j = 1, ..., k.

2.2 The Simple Linear Homoscedastic Model
This is the usual regression model in which
Y=XB + ¢ 2.1

where Bisap X 1 vector of coefficients, and € is random
error with mean 0 and variance o2. The key assumption
is that the mean and variance of €, conditional on (X, J),
are independent of (X, J).

2.3 The Miqure Model

This model supposes no unique B, but that g varies by
stratum in the population. That is, there are k parameter
vectors B(1), . . ., B(k), and, conditional on J = j,

Y = XB() + ¢, (2.2)

where, again, € has mean 0 and variance o, independent
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of (X, J). By analogy to the univariate sample survey
problem of estimating a mean, one target quantity of in-
terest is the weighted average coefficient, namely, the
vector

w
I

Z:. WiBi/ ;} Wi,

2.3)

where B; = B(j:;) and the second equality follows from
(1.2).

2.4 The Omitted-Predictor Model

This model assumes that the simple homoscedastic
model] of Section 2.2 would hold if only X were augmented
by the unfortunately omitted (1 X g) variable Z. That is,
given (X, Z, J),

Y = Xo + Zy + €,
= XB + Uy + g, (2.4)

where € has mean 0 and variance ?z’ independent of (X,
Z, J). The coefficients of X a_nd Z are o and Y, respec-
tively, while U is the part of Z orthogonal to X, namely

U=272-XEX'X)"'EX'2). (2.5)

Since Z has not been identified, the target quantity or
parameter of interest in this model is B, but if Z were
identified, we assume the analyst would prefer to know
(a, 7y) rather than to know merely B.

There are two important points relating this model and
the mixture model. First, even if Z is taken to be the X
-x J interaction variable, so that the two models are iden-
tical, the two parameters B and  usually will not be
equal. Second, even when assuming that omitted predic-
tors exist, we have in mind that they are not too numer-
ous, so that although the omitted-predictor model is the-
oretically a generalization of the mixture model, in
practice it would have fewer parameters since one would
hope that (p + q) < kp, especially if k, the number of
strata, is large.

2.5 The General Nonlinear Model (No Model)
This model makes the minimal assumption that
Y = Xp* + &+, (2.6)
where E(é*) = 0 and cov(X, €*) = 0. However, no other

assumptions are made about E(é* | X, J) or V(é* | X, J).
The parameter B* is thus defined as

B* = EX'X)"' EX'Y). Q.7

The parameter B* will be called the census coefficient,
since it would be the least squares estimate if the popu-
lation were finite and the entire population were sampled,
as in a census. Another interpretation of B* is that Xp*
represents the best linear predictor of Y in the sense of
minimizing the expected squared error of prediction. This
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““model’’ is not really a model since it assumes no pop-
ulation structure except that necessary to define the tar-
get quantity B*.

If every n; is small compared to the size of the jth pop-
ulation stratum, this model seems equivalent to the finite
population formulation in which the values of ¥ and X in
the population are treated as fixed with no underlying
structure. This model includes the three earlier models
as special cases. Note, however, that if the mixture
model is true, it is not generally true that * = B, while,
if the simple homoscedastic model or the omitted pre-
dictor model is true, then f* = B. In fact, setting €* =
Uy + & shows that the omitted-predictor model is for-
mally equivalent to the general nonlinear model. But the
former model assumes that U (actually Z) is an easily
interpreted and not-too-hard to measure variable that was
omitted by oversight or by some practical necessity,
while the latter model allows U to be any variable with
cov(U, X) = 0, perhaps an unobservable variable.

One reason for introducing both models is, as discussed
in Section 3.4, to contrast two approaches a statistician
might take after rejecting the simple homoscedastic
model. The optimist (‘‘a good fitting model is just around
the corner’’) searches for extra predictors. The pessimist
(‘‘models are never valid in the real world’’) refuses to
rely on any population structure.

3. WHEN TO USE WEIGHTED REGRESSION

3.1 Not If the Simple Linear Homoscedastic
Model is Acceptable

Under the linear homoscedastic model, f is unbiased
and has minimum variance among all linear unbiased es-
timators; it would naturally be preferred to Bw Haber-
man (1975) proves various relations between § and By.
For example, he shows that for any linear combination
¢’ of the coefficients

4R/1 + R < V(c'B | NIV(c'Bw|I) <1

where R is the ratio of the largest to the smallest of the
{wi}. In order for the linear homoscedastic model to be
acceptable, it must be a priori plausible substantively and
in addition pass the usual data analytic tests involving
examination of residuals, checking for interactions, and
so on. '

3.2 Not If the Parameter B in the Mixture Model is
to be Estimated

The mixture model cannot provide a general rationale
for preferring Bw to B as an estimator of B. To see this,
consider the model of Section 2.3 and let v,,.; and p, x;
be defined by

'V,'=X,'Bi i= 1,
p = XB,

where x; is the ith row of X. Then elementary calculations
(letY=v+e=pm+v—pn+ein(l.1)and (1.3)) show

» 5
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that

B+ X'X)'X'(w— p),

B+ (X'WX)"'X'W — p).

EB|J) =
E@Rw|J) =

Notice that, in general, neither 3 nor B is an unbiased
estimate of the average coefficient 8, and there is no sim-
ple way to tell from the two preceding expressions which
has the smaller bias. For example, if p = 1, so that B,
the B;, and the x; are all scalars, then

Bias (B) = X x2(B: — B/ X x7,
Bias (éw) = 2 w;x;z(Bi - B)/E w,-x,~2.

Then, if x; = 1, Bias (Bw) = 0 by the definition (2.3) of
B, but for other choices of X this will not be true. In fact,

it could happen that x? is proportional to w;, in which
case 8 would 'be unbiased but w would not be. In gen-
eral, neither B nor B appear to be suitable estimators
for B in the mixture model. Konijn (1962) and Porter
(1973) use the mixture model and recommend estimating
B separately within each stratum and then taking a
weighted average of the estimates as the final estimate of
B. That is, use

é = 2 "Tjé(j) = 2 wi«fi.-/E Wi.

Unfortunately, this recommendation is inadvisable for
sampling schemes with many strata and relatively few
observations per stratum. Pfefferman and Nathan (1981)
suggest using weights for the 3; that take into account the
precision of each B;. Sometimes separate estimation
within many strata is impossible because there are too
few degrees of freedom. If one were especially suspicious
that one of the coefficients (typically the constant term
of the usual regression) varies by strata, one could allow
the estimate of only that coefficient to vary by strata.
Such an analysis of covariance on the entire data set costs
only one degree of freedom per stratum.

3.3 Use Bw If the Linear Homoscedastic Model is
not Acceptable but an Estimate of B*
Desired

The advantage of Bw in the models of Sections 2.4 and
2.5 is that Bw is at least a consistent estimator of B =
B*, while B may not be. Proof of consistency: let each n;
— o and w; « m;/n;;, i = 1, ..., n. Then with probability
one X' WX/, w; approaches E(X X) and X'WY/> w;
approaches E(X'Y) so that by (2.7) |3w — B*. On the
other hand, if the sample sizes of the strata, n;, are not
proportional to the population proportions m; (i.e., the w;
do not approach equality), then § need not approach B*.

3.4 A Strategy for Choosing Between g and Bw

First, if one believes the mixture model of Section 2.3
and de51res to estimate |3 of Equation (2.3), then neither
B nor Bw is appropriate. Therefore, for the rest of this
article we ignore the mixture model and the estimation
of B.
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There remains the problem of choosing between the
linear homoscedastic model of Section 2.2 (thus choosing
B) and the more general models of Sections 2.4 and 2.5.
If one prefers to estimate §* within the general nonlinear
model, B is appropriate. If one believes the omitted-
predictor model, then one should try to identify the extra
predictor Z and estimate (a, ) in Equation (2.4) or, failing
that, settle for using B as an estimate of B.

The controversy arises in deciding how much evidence,
if any, to require before giving up the linear homosce-
dastic model. Closely related is the question of how hard
to look for additional predictors. On one side are those
(see Kish and Frankel 1974, Brewer and Mellor 1973, and
references therein) who tend to be extremely dubious of
the assumptions of the linear homoscedastic model and
who also may not be very interested in searching for extra
predictors. They are satisfied with making inferences
about the census parameter $*.

On the other side are those who tend to accept the
simple model of Section 2.2 so long as it can withstand
the scrutiny of a careful regression analysis as described,
for example, in the books by Mosteller and Tukey (1977)
and Belsley, Kuh, and Welsch (1980). The process of re-
fitting with transformed variables, checking for interac-
tions, plotting residuals, and so on, may lead to the use
of extra predictors, but the basic strategy is to accept the
simple model (and use ) unless evidence against it de-
velops. The advantages of this approach are, one, the
simple inferential procedures (standard F tests and con-
fidence intervals) and, two, the more straightforward in-
terpretation of B, which the model of Section 2.2 allows.
Without the assumptions of that model, the interpretation
of B* is difficult. For example, years of schooling may
have a positive B * for predicting income, but the income
of some subgroups may drop with increasing education.
Published regression analyses are often applied to sub-
populations or to completely different populations by
later researchers. In that case, * may be misleading,
while the extra effort spent to identify interactions or
other omitted predictors may lead to greater theoretical
understanding. Smith (1976) makes a similar point.

Another way to contrast the opposing sides of the con-
troversy is by the priority they assign to defining a target
quantity. One side first defines the target quantity B* as
the parameter of interest, no matter what the population
structure may be. The other side tends to spend more
effort searching for structure in the population and then
chooses, from among target quantities like B, B, (o, 7),
and B* that parameter most suited to whatever structure
seems to be present.

In the spirit of this latter approach, we next describe
yet another test that the data should pass before one ac-
cepts the simple model and uses the estimator f.

4. USING THE WEIGHTS TO TEST THE SIMPLE MODEL

The test is based on the difference A = |3w B. The
assumptions of Section 2.2 imply that A = E(A) = 0. As
an alternative hypothesis, we consider the omitted-pre-
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dictor model of Section 2.4, Y = Xa + Zvy + €, where
the columns of Z are further (perhaps unobserved) pre-
dictors that should have been included in the regression
but were not. Although this particular alternative hy-
pothesis formulation is not essential here, its use will be
convenient for expressing and interpreting the expected
mean squares of an ANOVA test of A = 0 using standard
linear models theory. We will see that the hypothesis y
= 0 implies A = 0 but not vice versa. The hypothesis A
= 0 can also be interpreted as E(8 | J) = B* in the context
of the general model of Section 2.5, but our development
concentrates on the use of A in a test (perhaps one of
many) of the simple model versus the omitted-predictor
model. Furthermore, when our test rejects the simple
model, examination of A usually suggests candidates for
the needed predictors Z. In this section we do not dis-
tinguish between E() and E(- | J), since all expectations
here are conditional on (X, Z) and, for the two models
being compared, the additional conditioning on J makes
no difference.

Since A = By —
where

ﬁ, it may be represented as A = Dy,

=X'WX)"'X'W-X'X)"'X'.

Under the model of Section 2.2, elemeptgry calcu!ations
show that the covariance matrices of 3,8w, and A are

V(B) = (X'X)" "2,
V(Bw) = (X'WX)~'(X'W2X)(X'WX) ™ o2
V(A) = DD'o?
= [(X'WX)"'X'W2X)(X'WX)"! — (X'X) ']o?
= V(Bw) — V(B). 4.3)

Notice two things about these expressions. First,
V(|3 w) is not (X' WX)~ o2, as would be true if V(e;) =

o?/w;, i = 1, ..., n. Thus, the standard errors and ¢
statistics output by most weighted regression computer
programs are invalid for our situation, even if the linear
model holds and A = 0. Second, since VBw) = V(B +

V(B) -+ V(A), we see that B and A are uncorrelated,
as can be shown directly by noticing that, as a linear
transformation of Y, A is orthogonal to the columns of X
(i.e., DX = 0). Therefore, the sum of the squared resid-
uals from the unweighted regression can be partitioned
into a part due to A and an error, or unexplained, com-
ponent. (Assume n > 2p and that both (X'X) and V, =
V(A)/o? are nonsingular.) This leads to an ANOVA table
with three independent components (see Table 1).

If the model of Section 2.2 is true, and in addition e is
normally distributed, then the ratio MSy/6% has an F
distribution with p and (n — 2p) degrees of freedom.
Under the extended model of Section 2.4, the expected
value of MSw is 6> + A'V,o~'A/p, while the expected
value of 6% is 02 + 72/(n — 2p), where

2=v'Z'"(I - X(X'X)7'X")Zy — A'V,A.

The formula for 72 can be interpreted as the difference
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Table 1. Formulas for ANOVA Table Comparing
Weighted and Unweighted Regressions

Source df Sum of Squares Mean Square
Regression? p SSr = B'(X'X)B MSg = SSr/p
Weights p SSw= A'Va"'A  MSw = SSwip
Error n — 2p SSeg = remainder 6° = SSg/(n — 2p)
Total n Y'Y

2 The source labeled regression here includes the constant term if it is present in the
model. In most applications, and in our examples of Section 7, the effect of the grand
mean is omitted and the df for regression is p-1, while SSg and Y'Y are reduced by the
square of the grand mean.

between the excess in the residual sum of squares due to
neglecting the term Zvy in the model (4.1) and that ac-
counted for by estimating A = DZ~, where D is given by
(4.2). If 72 is small (the next theorem implies that 72 = 0
is equivalent to Z = WXC for some matrix C), then the
F test based on MS /6% will be a useful test of the simple
linear model of Section 2.2. If this model is rejected, we
conclude that B and B w have different expectations. The
rationale for preferring unweighted to weighted regres-
sion is also rejected unless some other variables Z can
be found that lead one to accept an extended model of
the form (4.1).

A weighted least squares computer program is requlred '

to compute By and A, and another special program is
required to compute V5. However, as the following theo-
rem shows, SSw can be computed and the test performed
with ordinary, unweighted, regression programs.

Theorem. The F test for A = 0 is the same as the usual
F test for y = 0, if the regression model Y = Xa + WXy
+ e is fitted by ordinary least squares. (That is, create
the new variables Z = WX and test for the effect of Z
partialled on X.)

Proof. Since A = DY = D(Xo + WXy + €), and DX
=0,

A = E(A) = DWXy = VA(XWX)y

using (4.2) and (4.3), where Vo = V(A)/o?. Therefore,
the F tests of A = 0 and y = 0 will be equivalent if V,
and (XWX) are both nonsingular. One can show that this
condition is equivalent to the assumption that the matrix
(X:WX) is full rank (=2p), which is true if there are at
least (p + 1) distinct w; whose corresponding rows of X
have rank p. (We conjecture that the theorem is true for
arbitrary X and W, although the F tests would have fewer
degrees of freedom in the numerator.)

In practice, one might use one of two different methods
to compute SSx and SSw, depending on the details of
one’s least squares regression computer program, after
having formed the variables Y, X, and Z = WX (Z;; =
W,'Xi j).

Method A. Perform the regression of Y on X and Z,
and then refit the regression, dropping the Z variables.
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The two ‘‘due to regression’’ sums of squares will be Sz
+ SSw, and SSg, respectively.

Method B. Perform the regressions of Y and Z on X.
Then perform the regression of Y on the residuals of the
Z-on-X regressions. The last ‘‘due to regression’’ sum of
squares will be SSw.

5. SOME FURTHER REMARKS

The following remarks are somewhat independent of
each other but are offered as discussion and for clarifi-
cation.

Remark 1. Although the tests involving A and 4 are
equivalent, interpretation of their individual components
is somewhat different and less straightforward for 4 than
for A. If the hypothesis A = 0 is rejected, we suggest
checking for interactions among the variables for which
the corresponding components of A or 4 are significantly
different from zero. This procedure has, of course, no
power to detect interactions not related to the weight var-
iable, that is, those for which the 72 of Section 4 is large.

Remark 2. Bishop (1977) suggests using a weighted
regression in certain situations when the sampling ratio
is a function of the dependent variable (not merely the’
predictor variables) even when the simple model holds.
The present article does not discuss that situation, which
is akin to retrospective or case-control sampling. Manski
and McFadden (1980) provide a general formulation and
analysis of the problem. Holt, Smith, and Winter (1980)
provide a different formulation and solution that assumes
that the probability of selection depends on a normally
distributed design variable with known variance.

Remark 3. Thomson (1978) presents another rationale
for using estimates of regression coefficients that depend
on the sample design, even when the additive model
holds. He shows that although {8 is best conditional on
X, there may be other unbiased estimators with smaller
variance for certain ranges of the true B, if bias and var-
iance are computed by averaging over all values of X in
a given samplmg design. However, under Thompson’s
model, B is always more efficient than 3.

6. AN EXAMPLE

To elucidate the issues in terms of the applicability of
the models discussed in Section 2, we consider the anal-
ysis of a subset of data from the Panel Study of Income
Dynamics, a continuing longitudinal study begun in 1968
by the University of Michigan’s Survey Research Center.
The original sample of 4,802 families was composed of
two subsamples. The larger portion (2,930) of the original
interviews were conducted with household heads from a
representative cross-section sample of families in the
United States. An additional 1,872 interviews were con-
ducted with heads of low-income households drawn from
a sample identified and interviewed by the Census Bureau
for the 1966—1967 Survey of Economic Opportunity. An-
nual interviews have been conducted since 1968 with
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these household heads and also with the heads of new
families formed by original panel members who have left
home. At the end of the fifth year of the study, a set of
weights was calculated to account for initial variations in
sampling rates and variations in nonresponse rates. The
weights were intended to help estimate population means
and totals and for possible use in other statistical anal-
yses. The calculation of the weights, which are inversely
proportional to the probability of selection for each in-
dividual, is described in Morgan (1972, pp. 33-34). For
the purpose of this example, we ignore the fact that the
sampling scheme was clustered as well as stratified.

In this analysis we attempt to predict educational at-
tainment and we restrict ourselves to panel individuals
(a) who were children in 1968 households, aged 14-18;
(b) who had become heads or wives of families by 1975;
(c) who had completed their schooling by 1975; and (d)
who had completed at least eight years of schooling. Re-
strictions (c) and (d) eliminated 46 and 9 observations,
respectively. A final restriction was necessary because
the 867 individuals satisfying restrictions (a) through (d)
came from only 658 different families. Since the educa-
tional attainments of siblings are not likely to be inde-
pendent, we randomly selected one observation from
each set of siblings that came from the same family, re-
ducing the number of observations to 658. The weights
for these 658 cases range from 1 to 83, with a mean of
29.0 and standard deviation equal to 21.4. The data used
in this analysis, consisting of 867 computer card images,
is available from the authors.

Theoretical and empirical studies of the economics of
educational attainment (Becker 1975, Ben-Porath 1967,
Duncan 1974, Edwards 1975, Hill 1979, Liebowitz 1974,
Parsons 1975, and Wachtel 1975) have identified numer-
ous characteristics of the family and the economic en-
vironment that may affect the attainment decision. This
past research leads to our initial specification of the fol-
lowing form:

Ed = o + B]FaEd + BzMOthEd + B3Slbs

(+) (+) (-)
+ BaFamily Income + BsAge + BeExp/Pupil
(+) (+) (+) -
+ BsUnemployment + BsRural + Bs%College
(+) (-) (+)
+ BioCounty Income.
(+) (6.1)

Table 2 defines the variables in the model (6.1) and the
hypothesized signs of the coefficients are given in the
parentheses of (6.1). In addition, we include dummy var-
iables for black males, white females, and black females
in order to compare their educational attainment with
white males. Because low-income families were over-
sampled, the number of black and white observations are
far more evenly distributed in the sample than in the pop-
ulation. There are 176 observations on white males, 112
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Table 2. Variable Definitions in Model Equation (6.1)

Ed Completed educational attainment of the
individual, in years, self-reported

FaEd Educational attainment level of the father, in
years, reported by the father

MothEd Educational attainment level of the mother, in
years, reported by the father

Sibs Number of siblings

Family Income 1967-1971 average total parental family
income, in thousands of 1967 dollars,

reported by the father

Age The age of the individual, in years

Exp/Pupil Per student public school expenditure in
1968, for county of residence in 1968

Unemployment The percent of county labor force
unemployed in 1970, for county of
residence in 1968

Rural A dichotomous variable equal to one if the

parental family resides more than 50 miles
from a city of 50,000 or more in 1968, and
zero otherwise

The percent of persons 25 or more years old
in the 1968 county of residence who have
completed four or more years of college

The median 1969 income in 1968 county of
residence, in thousands of 1969 dollars

% college

County Income

on black males, 221 on white females, and 149 on black
females.

7. RESULTS OF THE DATA ANALYSES

We began our analysis by obtaining unweighted esti-
mates of the parameters of (6.1), with the race-sex dummy
variables included as additive predictors. The coefficients
and associated standard errors are the boldface entries in
the second and third columns, respectively, of Table 3.
Considered as a whole, these variables account for more
than a quarter of the variance in educational attainment.
Virtually all of them have the hypothesized signs, al-
though, with the exception of the county income variable,
only the ones measured at the family level are statistically
significant at conventional levels. The results for the
county income variable is puzzling, although a significant
negative coefficient has also been found by Wachtel
(1975, p. 515) with different data. A histogram of the re-
siduals and a scatterplot of the residuals versus the fitted
values showed no gross deviations from the assumptions
of the simple model. i

Using Method A of Section 4 to compare 3 with B,
we formed 14 Z variables by multiplying each indepen-
dent variable (including the constant) by the weight var-
iable. When the dependent variable is regressed on both
sets of independent variables, we found that the null hy-
pothesis, that A = 0 (i.e., the simple model is correct),
could be rejected at about the 6 percent level, as Table
4 indicates. We proceeded to calculate estimates of A,
Va, and weighted estimates of B.

The weighted estimates of B and the ¢ ratios of A are
given in the boldface entries of columns 4 and 5 of Table
3. The regression performed in Method A provides an
estimate of coefficients (y) and standard errors for each
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Table 3. Coefficients, Standard Errors, and t Rtios of Various Tests for Two Versions of the Educational
Attainment Model

tA:
t Ratio of ty:
Difference t Ratio of
. . Between Estimated
B A Bw: Weighted and Coefficient of
Independent Unweighted SE®B): Weighted Estimate Unweighted Variable x
Variable Estimate of B Standard Error of B Estimates of p Weight
EaEd .082 .076 (.021) (.020) .082 .082 .0 .3 .0 .1
MothEd 125 .002 (.026) (.126) .158 .055 1.6 .6 2.0 .5
Sibs -.073 —-.069 (.031) (.031) -.069 —.074 2 -2 .0 -.2
Family Income -.044 .033 (.012) (.012) .039 .030 -9 -.5 -2 -.5
Age 271 .251 (.045) (.045) 314 .297 1.3 1.4 1.6 1.6
Whether Black -.280 —-1.267 (-215) (.448) -.639 —-1.753 -1.5 -1.0 -21 -20
Male
Whether White —-.068 1.385 (.163) (.796) -.218 1.048 -28 -5 -2.8 -1.1
Female
Whether Black -.070 491 (.196) (.900) 142 .268 1.0 -.3 -3 1.0
Female
Expenditure/Pupil .022 .006 (.078) (.077) .027 .027 A 4 5 .6
Unemployment .037 .183 (-042) (.076) -.015 .210 -23 .3 -23 .3
Rural —-.081 -.097 (.175) (.172) -.113 -.119 -3 -2 2 2
% College .016 .019 (.017) (.017) .030 .024 1.0 4 .6 4
County Income -.104 —.084 (.049) (.048) -.129 -.092 -7 -2 -7 -3.
Constant 6.705 7.679 (.907) (1.080) 6.073 6.794 -1.0 -1.1 -7 -.6
Whether White —-.208 (.085) -.252 -.5 -1.2
and
Unemployment
Whether Female -.340 (.169) -.320 2 2
and MothEd
MothEd? .008 (.007) .005 -.6 -4
Whether Female .017 (.009) .017 -.0 -.2
X MothEd?
R? .289 .315
Standard Error of 1.60 1.57
Estimate
Sample Size 658 658

Source: Morgan (1972).

of the Z variables; the ¢ ratios of each are given in the
sixth column of the table.

Given the significance of these differences, we could
have chosen to use the Bw of column 4 as descriptive
estimates of B* in the census model. This rejection of the
simple model would put more emphasis on race and sex,
and less on unemployment, as predictors of educational
attainment.

Table 4. ANOVA Table Comparing Weighted and
Unweighted Regressions Using the Initial Model

Sum of Mean
Source df Squares  Square F Significance
Regression 13 670.0 51.5 20.1 <.0001
Weights 14 59.2 42 1.7 .056
Error 630 1586.7 2.5
Total 657 2315.9

We chose instead to use the information in the boldface
entries of Table 3 to explore extensions of the simple
model of (6.1). The unweighted coefficients differed sub-
stantially from the weighted coefficients for four varia-
bles: mother’s education, county unemployment rate,
and two of the race-sex dummy variables. Notice that
there is a rough correspondence between the ranking (and
direction) of the ¢ ratios on differences between un-
weighted and weighted coefficients and the ¢ ratios of the
corresponding Z variables. Thus, the more easily com-
puted tests of significance on the Z variables can appar-
ently serve as a gvide to variables with large A’s.

Prior research and the significant A’s suggest that the
most probable cause of misspecification is omitted inter-
actions between race and sex and some of the indepen-
dent variables listed in (6.1), especially mother’s edu-
cation and county unemployment. Although the
hypothesis of equal slopes for the four race and sex
subgroups could not be rejected (F = .94; df = 30, 614),
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the subset regressions did suggest a possible interaction
between race and county unemployment rate in which
increases in unemployment had a stronger positive effect
on the educational attainment of blacks than of whites.
This interaction is quite plausible since unemployment
rates for blacks are considerably higher than those of
whites and a unit change in the overall county unem-
ployment rate has more effect on blacks than on whites.
When this interaction term was added to (6.1), the coef-
ficient was —.21 with a standard error of .09. Further-
more, when Method A was repeated with it and its as-
sociated Z variable (i.e., whether white X county
unemployment rate X weight) included as predictors, the
F ratio of the entire set of weight interactions drops from
1.7 to 1.3, and the coefficients of the two Z variables
formed from the county unemployment variable are in-
significant.

Since the three other Z variables significant at the .05
level in the original specification remained significant
when the race-unemployment interaction was included,
we continued our search for additional interactions. We
discovered that mother’s education interacted with itself
(i.e., its effect was nonlinear) and, furthermore, that these
nonlinear effects of mother’s education on the educa-
tional attainment of the children depended upon the sex
of the child.

Results from the estimation of our final specification
of the education attainment model are the italicized en-
tries of Table 3. In contrast to the initial specifications,
the highest ¢ ratio for the difference between weighted
and unweighted coefficients is 1.4. The analysis of vari-
ance table for the final model, Table 5, shows that the F
ratio associated with the weights is below 1.0.

The coefficients and standard errors presented as the
italic entries of columns 2 and 3 of Table 3 should be
regarded with some caution because the data were used
to suggest the appropriate functional form.

As a final analysis step, we reestimated the model on
the 209 individuals who were excluded when the sample
was restricted to only one sibling per family. The results
were quite similar, particularly for the race-unemploy-
ment interaction and the nonlinear effect of mother’s ed-
ucation. Although the sign of the interaction between sex
of child and mother’s education changed direction, the
only coefficient that changed by a statistically significant
amount was family income. The income coefficient in-
creased, suggesting a more important role for income for

Table 5. ANOVA Table Comparing Weighted and
Unweighted Regressions Using the Final Model

Sum of Mean
Source df Squares  Square F Significance
Regression 17 730.6 43.0 17.35 <.0001
Weights 18 43.3 24 . .97 494
Error 622 1542.0 25
Total 657 2315.9

Joumnal of the American Statistical Association, September 1983

Table 6. Estimated Increase in Mean Ed per Year of
Increase in MothEd, Based on Final Model

Education Level of Mother

Sex of 8 12 Grades 16 Grades

Child Grades (H. S. Grad.) (College Grad.)
Male 13 19 .26
Female .06 .26 .46

these 209 individuals from families with at least two chil-
dren in this five-year age cohort. When the final model
was fitted to the complete sample of 867 individuals, the
coefficient of income rose from .033 to .044.

Our use of the weights to test for model misspecifi-
cation has led us to the substantive conclusion that a sim-
ple linear additive educational attainment model is not
appropriate for several reasons. First, a worsening of
local economic conditions (as measured by the county
unemployment rate) appears to provide more of an in-
centive for blacks to stay in school than for whites. A
one percentage point increase in the unemployment rate
was associated with an additional one-fifth of a year of
educational attainment for blacks, while the effect for
whites was essentially zero. Second, the effects of moth-
er’s education on the educational attainment of children
increase with the level of her education and furthermore
depend on the sex of the child. Table 6+evaluates dEd/
dMothEd for mothers with 8, 12, and 16 years of edu-
cation.

There is a modest increase in the marginal effect of
mother’s educational attainment for sons and a much
more dramatic increase in this effect for daughters. An
extra year of mother’s education level is associated with
virtually no increase in the attainment of daughters whose
mothers have an eighth grade education but is associated
with an additional one-half year of education for daugh-
ters with college-educated mothers. These conclusions do
not change when the model is estimated from the com-
plete sample of 867 individuals. None of the six numbers
in this table changes by more than .03.

Finally, an analysis of the residuals from this extended
model revealed no anomalies, and we thus prefer the un-
weighted estimates of its coefficients.

[Received November 1976. Revised November 1982.]
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