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Summary 

The design and analysis of randomized experiments and randomly selected sample surveys are 
traced to the work of Fisher, Neymanch and Tchuprov in the 1920's and 1930's, although precursors 
to their work appeared many years earlier. This paper explores some of the developments flowing 
from their pioneering efforts with an emphasis on the parallels between the methodologies. After 
reviewing the basic parallels between concepts in the design of experiments and the design of 
sample surveys, the paper turns to a new class of parallels linking restricted forms of sampling to the 
design-of-experiments literature on treatment structures, such as that on balanced incomplete block 
designs. The parallel concepts for control in the two areas lead naturally to a discussion of 
embedding experiments in surveys or surveys in experiments. After speculating on the possible 
causes of the separation of the areas, the paper summarizes the parallel controversies between the 
two modes of inference, design-based and model-based, used in both the experimental design and 
sample survey literatures. In summary, the paper proposes how new intertwining concepts and 
constructs may emerge in future research and enrich future practice. 

Key words: Control; Experimental design; Embedding; Randomization; Restricted randomization; 
Sampling design. 

1 The tradition begins 

The design of randomized experiments and the use of random selection in sampling are 
usually traced to the work of Fisher and Neyman in the 1920's and 1930's (see the related 
discussions in the biographies by Box (1978) and by Reid (1982) respectively) as well as to 
Tchuprov (1923), although precursors to their work appeared many years earlier; see, for 
example, the discussion by Seng (1951) and Zarkovich (1956, 1962). In the earlier work, 
randomization and random selection were primarily associated with the notions of 
fairness, objectivity, and, even later, representativeness (Fienberg, 1971; Kruskal & 
Mosteller, 1980). Smith & Sugden (1985) review the pivotal role the International 
Statistical Institute played in some of these early discussions in the area of sampling. The 
novel departure in the work of Fisher, Neyman and Tchuprov was the introduction of 
chance mechanisms in order to make available probability-based methods of inference at 
the analysis stage. In the present paper we trace some of the developments flowing from 
this early work, noting in particular that several statisticians (e.g. Cochran, Finney, 
Hartley, Madow, Yates) contributed to the literature in both areas, and so it is not 
surprising that there are commonalities across the methodologies. 

While we argue that the two traditions grew up together, Stephan (1948), writing 
almost 40 years closer to the events, pointed out a lack of communication at the outset 
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very similar to that which we point out here. In a presentation before the 25th Session of 
the International Statistical Institute, he argued (Stephan, 1948, p. 30) 

... developments in agriculture and engineering have both direct and indirect effects on sampling survey 
practice. They provided principles of design and contributed to the growth of applied mathematical statistics. 
Still there were many practical problems and obstacles that delayed the immediate extension of the methods 
developed for field trials and manufacturing to large-scale surveys. One of the obstacles was the relative lack of 
communication between statisticians engaged in different types of work. 

Stephan went on to suggest that it is institutional mechanisms that overcome communica- 
tion barriers and encourage cross-fertilization. It is to further encourage cross-fertilization 
that we have embarked on the present research. 

In ? 2, we briefly review the basic parallels between the design of randomized 
experiments and sampling studies. We include a detailed description of a two-treatment 
randomization design for an experiment and show that the structure is identical to the one 
that describes the selection of a simple random sample. In ? 3, we go on to note some of 
the more modern parallels that have been developed. One of the more important lessons 
to be learned from the intertwining concepts and constructs of experimentation and 
sampling is that the two can profitably be combined, with sampling embedded in 
experiments and experiments embedded in sampling structures. In ? 4, we pursue this 
theme, reviewing the institutionalization of the embedding of experiments within samples, 
including Mahalanobis' concept of interpenetrating networks of samples and voluminous 
work at the U.S. Bureau of the Census, especially in connection with the evaluation of 
decennial census methodology. In contrast to some of this careful work, we point to 
examples in which investigators have failed to take full advantage of the possibilities of 
control offered by the device of embedding. 

Why is it that modern researchers and students seem to be ignorant of these parallels 
across fields? In ? 5, we propose some tentative answers to this question. Then in ? 6, we 
summarize the two modes of inference that are used in both the experimental design and 
sampling literatures: design-based inference, which relies on the probabilistic structure 
associated with the design; model-based inference, which introduces stochastic com- 
ponents as part of parametric structures. We take special note of the parallel 
controversies in the two areas. In the concluding section, we speculate on how new 
intertwining concepts and constructs may emerge in future research and may enrich future 
practice. 

2 Basic parallels 

It is well known that the basic concepts in the design of sampling studies parallel those 
for the design of randomized experiments. For example, coupled to the notion of 
randomization in experimentation is probability (random) sampling, both involving the 
introduction of chance mechanisms (for assignment of treatments to units in experiments 
and for the choice of sample units in surveys) in order to make available probability-based 
methods of inference at the analysis stage. The parallel concepts and structures are most 
easily illustrated in the simple two-treatment or two-group experiment and its parallel 
structure, the simple random sample. 

Consider a universe of N objects, U= {U1, U2,. . . , UN}, and a sample selection 
function A, = (A1, A2, . . ., AN), where 

1 if i E Tl, 
i 0o ifieT2. 
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In a two-treatment experiment, the sample selection function, A,, specifies which 
members of the universe are allocated to treatment 1, that is T1, and which to treatment 
2, that is T2. In the sampling situation, allocation to T7 corresponds to being selected for 
inclusion in the sample, and allocation to T2 corresponds to nonselection. If Ti contains n 
members, then experimental randomization and simple random sampling both take each 
of the 

N 
(n 

As's with n of the Ai equal to 1 to have probability of selection equal to 

/(N). 

In an experiment, under the null hypothesis of no differential treatment effect, the 
observed value of the test statistic (e.g. the difference in sample means) is compared with 
the distribution of all 

n 
possible values associated with the totality of allocations that could have been obtained 
under the randomization. This use of what is now known as randomization theory 
originated in the work of Fisher (1925, 1926), and it figures prominently in his 1935 book, 
The Design of Experiments. Fisher's theory, as it was later developed by Kempthorne 
(1952, 1955) and others, utilizes the formal act of randomization in exactly the same way 
that the standard approach to survey analysis, originally proposed by Tchuprov (1923) 
and Neyman (1934) and developed further by Hansen, Hurwitz & Madow (1953a,b), 
utilizes random selection in sampling. 

We note that, while the language is the same, some of the purposes of the 
randomization structures in the sampling and the experimental contexts are different. For 
example, in the simplest experiment, we are trying to compare the effects of two 
treatments. In a sampling study, on the other hand, we want to generalize from one group 
to the other, i.e. from the the sample to the rest of the population. (The sampling literature 
usually speaks of generalizing to the entire population rather than to the rest of the 
population, i.e., minus the sample.) As Bartlett (1978) points out, Fisher stressed that in 
controlled experiments there is the opportunity for deliberately introducing randomness 
into the design in order to separate systematic variation from purely random error. In an 
experiment, through randomization we 'hold everything constant', and thus we can 
attribute any effects to the treatment differences; in the sampling context, the random 
selection and the fact that no treatment is applied to the sampled group allows us to make 
the generalization to the rest of the population. Nonetheless in both contexts, the 
randomization structure is used to provide a meaningful estimate of variability. In the 
experimental context, this underlying variability is the yardstick by which we compare the 
measurements of the responses to the treatments; in the sampling context, the sampling 
variability induced by the randomization is used to gauge the precision of sample estimates of 
population quantities. 

The use of homogeneous groups is common to both experimental design and to 
sampling design. Homogeneous groups are used in experimental design to minimize 
experimental error via the device of blocking (Cochran & Cox, 1957, p. 106ff.), each 
replication being carried out on a homogeneous group of subjects. Unlike randomization 
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which attempts to control for other factors by ensuring that each treatment has an equal 
chance of being favoured or handicapped by an extraneous source of variation, blocking 
exerts its control by attempting to segregate the effects of an extraneous source of 
variation and thereby reduce experimental error. Similarly, homogeneous groups are used 
in sampling to minimize sampling error via the device of stratification (Cochran, 1977, 
p. 89ff.), with samples drawn from each of the homogeneous groups into which a 
population is divided. Note that this analogy is particularly strong in design, where the 
blocking and the stratification are both used as control structures, but is less strong in 
analysis where the error terms for the two techniques differ. In randomized blocks, the 
error term is defined as the block-by-treatment interaction, while in stratification there is 
only one treatment (we examine only those in the sample) and thus the error term is 
'within replications'. Therefore, the real analogy is between stratification and randomized 
blocks with multiple replications within blocks. 

Devices in experimental design that aim to reduce experimental error by simul- 
taneously controlling for two or more sources of extraneous variability, such as Latin and 
Graeco-Latin squares (Fisher, 1935, Ch. V; Cochran & Cox, 1957, p. 117ff.), find 
parallels in sampling design. Just as these procedures are used in experimental design 
when the pairing of all possible combinations of control factors is impossible, when there 
are two or more dimensions of stratification and choosing a sample from each cell in the 
cross-classification is unwieldy, the application of Latin or Graeco-Latin squares 
produces a method for choosing strata to include in the sample and is called lattice 
sampling (Cochran, 1977, p. 228ff.) or 'deep' stratification (Frankel & Stock, 1942; 
Tepping, Hurwitz & Deming, 1943; Hansen et al., 1953a, p. 480ff.; Kish, 1965, pp. 
488-495). 

At a more refined level, the convenience of split-plot designs (Cochran & Cox, 1957, 
p. 293ff.) is echoed in the analogous sampling technique, cluster sampling (Hansen et al., 
1953b, Ch. 6; Cochran, 1977, p. 233ff.). In a split-plot experiment we can think in terms 
of two sources of error: one between plots and one within plots. Similarly, in cluster 
sampling, we can think in terms of two components of variability, one between clusters 
and one within clusters. In the experimental context, separating out the between-plot 
component of variability allows for greater precision in sub-plot comparisons, whereas in 
cluster sampling, because the sample is used to produce estimates of overall population 
quantities, the two components are combined to produce an overall sampling variance 
which is larger than that associated with a simple random sample of the same size. In the 
analysis phase, covariance analysis (Cochran & Cox, 1957, p. 82ff.) in an experimental 
investigation adjusts estimates of the magnitude of treatment effects for environmental 
influences in the same way that post-stratification and regression estimates (Cochran, 
1977, p. 189ff.) are used to adjust sampling results. 

The analysis of variance (ANOVA) structure is used in both areas as a way of 
summarizing information associated with many of the basic methods for control, although 
this usage is found in the sampling literature primarily in the work of authors steeped in 
the traditions of both areas; Yates (1985) attributes this usage to Fisher. This use of the 
analysis of variance is often related to a Model I or fixed effects linear model with 
normally distributed error term, although such a link is not the only possible formaliza- 
tion for inference purposes. There are, in addition, analogues for the experimental- 
design-based Model II or random effects linear models in the sampling context. Model II 
approaches have not received much attention in the sampling literature, primarily because 
of the heterogeneity among the units of the typical sampling population. We note two 
exceptions. The conceptualization of models for the total survey error can take the 
component of variation due to interviewer as a random effect (Hartley & Rao, 1978; 
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Table 1 
Parallels between basic concepts in design and analysis of experiments and 
in sampling design and analysis 

Experiments Sampling 

Randomization Random sampling 
Blocking Stratification 
Latin squares Lattice sampling (deep stratification) 
Split-plot designs Cluster sampling 
Covariance adjustment Post-stratification 

Hansen et al., 1951). In small area estimation, components of variance approaches seem 
appropriate because the assumption that homogeneity holds within small areas is less 
problematic than that it holds across large and disparate areas; for example, see the 
various papers in the book by Platek et al. (1986). 

In order to confirm the existence of these parallels and to suggest others, we reviewed 
many of the basic textbooks in experimental design and sampling to see whether the 
parallel structures were referenced or used as pedagogic tools. The textbooks on 
experimental design exhibited virtually no direct reference to this parallel structure (a 
notable exception being a passing reference by Cox (1958)) although the reader perusing 
Kempthorne's (1952) book will find formulae of direct use in a sampling context and even 
a discussion of sampling within experiments (see ? 4 below). When we looked at sampling 
texts, we found a parallel neglect, but with some more exceptions. Cochran (1977) uses 
the analysis of variance structure throughout as a summary device, while Hansen et al. 
(1953a) and Kish (1965) discuss the parallel between Latin squares and lattice sampling. 
A more fundamental exception is the text by Yates (1981), which is replete with 
cross-referencing between the areas. 

To summarize, there are several basic concepts in the design and analysis of 
experiments which have exact parallels in sampling design and analysis. They include 
those in Table 1. This list is far from definitive. Similar parallels can be found in work on 
allocation and optimal design in the experimental and survey literature. We note that the 
absence of treatments in the sampling context means that there is no immediate role there 
for analogues of the factorial treatment structures that dominate much of the experimen- 
tal literature. There are, however, some less-than-immediate parallels, as we note in ? 3. 

3 More modem parallels: Restricted randomization 

Blocking and Latin squares were introduced in agricultural field experimentation in 
order to control for known heterogeneity in the plots. But for some layouts within these 
classes of designs a high proportion of contiguous plots can inadvertently receive identical 
treatments (for example, down diagonals in Latin squares). Forms of restricted ran- 
domization have been proposed to avoid this problem; see, for example, Yates (1948), 
Grundy & Healy (1950), Holschuh (1980) and Youden (1964, 1972). Through the 
consideration of a particular example, Bailey (1985) has demonstrated that restricted 
randomization can serve the role of both blocking and ordinary randomization (as 
described above) while at the same time controlling for spatial arrangements of plots. 
This notion of restricted randomization also has applicability in the sampling context, e.g. 
to control for the geographical spread of a sample or more generally to eliminate the 
possibility of 'bad' samples. Because the typical human population of interest in sampling 
is large and heterogeneous, the simple devices for restricted randomization in experimen- 
tation cannot be carried over directly. 
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In this section we focus on an innovative approach to the use of restricted 
randomization in a sampling context that relies on a different parallel with experimental 
design ideas. This approach originated in work by Chakrabarti (1963), and it relates the 
notion of the support of a sampling plan to the structure of balanced incomplete block 
designs (BIBD). The support of a sampling plan consists of those samples having positive 
probability of selection. For example, in simple random sampling (SRS), if N is the 
population size and n the sample size, the support consists of all 

(NZ 

possible samples. The research objective in this work is to develop sampling plans 
equivalent to SRS with respect to st-order and 2nd-order inclusion probabilities for each 
unit and pair of units from the population, but which have smaller support than SRS. If the 
sampling plan has lst-order inclusion probabilities equivalent to those of SRS, that is 
74i=n/N, then it will produce samples with means that are unbiased estimates of the 
population mean. If, in addition, the sampling plan has 2nd-order inclusion probabilities 
equivalent to those of SRS, that is rij = n(n - 1)/N(N - 1), then the sample means will 
have variances equal to those of sample means produced by SRS. The motivation for this 
objective comes not only from the idea of restricted randomization that eliminates 
possible samples that are not 'representative' without sacrificing the gains achieved by 
randomization, but also from the desire to reduce field expenses associated with data 
collection through an implicit trade-off between stratification and clustering. 

We recall the definition of a BIBD with bk = rt experimental units: 
(i) each of b blocks contains k units; 

(ii) each of t treatments occurs the same number of times, r, in all; 
(iii) every pair of treatments occur together, in the same block, the same number of 

times, A. 
Once we identify the similarity of pairs of treatments in a block and pairs of units in a 
sample the new parallel structure in Table 2 falls into place. 

The parallel structure here links samples with the block structure rather than with the 
treatment structure as in the case in our basic list of parallels in ? 2. The key result based 
on this new parallel was given by Chakrabarti (1963) as follows. 

THEOREM 1. A sampling plan with uniform selection probabilities over the samples in the 
support is equivalent to SRS with respect to all 1st- and 2nd-order inclusion probabilities if 
and only if it is associated with a BIBD with N = t and n = k, which has distinct blocks. 

One of the implications of this result is that, in order to develop complex sampling 
plans with smaller support than SRS, we constantly need to keep in mind the BIBD 
structure, even if we cannot write out the actual design for very large N and substantial 
sample size, n. 

Table 2 
Parallels between pairs of treatments in a block and pairs of units in a 
sample 

BIBD Sampling plan 

Blocks Samples 
Treatments Units 
Block size, k n, sample size 
# treatments, t N, # population units 
# blocks, b Support size for sampling plan 
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Wynn (1977) then showed Theorem 2. 

THEOREM 2. For any sampling plan P1, consisting of samples of size n from a universe of 
size N, there is another plan P2 equivalent to P1 with respect to all 1st- and 2nd-order 
inclusion probabilities with support size no greater than N(N - 1)/2. 

This result, however, is not constructive, i.e. it does not show us how to achieve the 
reduction. But it can be used along with the following theorem, also due to Wynn (1977), 
to set bounds on the improvement achievable using results like Theorem 1. 

THEOREM 3. There is a sampling plan with support size N, equivalent to SRS with respect 
to 1st- and 2nd-order inclusion probabilities, if and only if there exists a symmetric BIBD 
with t = b = N. No such plan exists with support size less than N. 

This result implies that the number of possible samples in the support of the sampling 
plan can be reduced from 

N 
(n 

to between 
N 

and N by careful structuring and balancing. Since N is typically very large we thus retain a 
potentially sound basis for large-sample approximations to design-based inference 
methodology. Wynn also considers convexity properties of sets of sampling plans, and 
notes the analogy of the resulting upper bounds on the minimum number of samples with 
results in theory of optimal design (Kiefer, 1961). 

Foody & Hedayat (1977) carry this parallel one step further, looking at BIBD'S with 
repeated blocks. (This removes the restriction in Chakrabarti's theorem regarding distinct 
blocks). By allowing for repeated blocks, one can select specific blocks a maximal number 
of times and thereby maximize, in the sampling context, the probability of selection of 
certain samples whle still preserving the 1st- and 2nd-order inclusion probabilities. The 
practical value of such sampling plans is especially apparent when government statistical 
agencies designing elaborate surveys need to ensure the presence of sample units in 
selected political jurisdictions that are the constituencies of elected representatives who 
must approve the budgets for the surveys. In the United States, such considerations have 
been formally built into the decennial redesign of the Current Population Survey. 

If we let b* be the number of distinct blocks (i.e. the support size), then for SRS the 
corresponding BIBD has 

When not all blocks are distinct b* < b. Foody & Hedeyat (1977) provide a necessary and 
sufficient condition for the existence of BIBD'S with the above parameters but where 
b* <b. An example of one of the consequences of their result is Theorem 4. 

THEOREM 4. Suppose there exist two BIBD'S with the same set of t treatments, the same 
block size, k, and with nonoverlapping supports of sizes b* and b?, respectively. Then 
there exists a BIBD with t' > t treatments, support size 

b* = (k)- b1 
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and total number of blocks, 

where e = A2/gcd(A1, A2) and A1 and A2 are the number of pairs of treatments occurring 
together in the original BIBD'S. 

Balanced incomplete block designs with repeated blocks meet the criteria of Theorem 
2, and are subject to a lower bound different from that of Theorem 3 as shown by Foody 
& Hedayat (1977) and Hedayat (1979). 

THEOREM 5. Consider a sampling plan whose support size b* is minimum among all 
sampling designs equivalent to SRS with respect to first- and second-order inclusion 
probabilities. Then 

By allowing for overlapping supports in the two original BIBD'S one can still reduce the 
support of the BIBD for the larger number of treatments, but not as much. To date the 
focus in the experimental design literature on the consequences of these and related 
results has been on problems with blocks of size 3, not directly applicable to large-scale 
sample surveys. Applying these ideas to the survey area is nonetheless of interest. One 
way to restrict the number of samples in the support of a sampling plan is to begin with 
some form of stratification, and then to guide selection of units within strata according to 
some additional stratification variable, but not necessarily using the 'deep' stratification 
that parallels the Latin square control structure. Goodman & Kish (1950) suggest a 
mechanism for doing this called controlled selection which is especially useful in multistage 
sampling. They use controlled selection to select a small number of first-stage sampling 
units, and would typically use clustering at the final stage. Their approach provides for an 
approximate balancing with respect to the control factors; see the recent discussion of 
controlled sampling of Causey, Cox & Ernst (1985). Yet increased stratification changes 
2nd-order inclusion probabilities and reduces the variability of estimates so that the exact 
relationship of controlled selection to the preceding theorems is unclear; see the 
discussion of Avadhani & Sukhatme (1973). There is also a link to Morris's (1979) finite 
selection model (FSM) for assigning treatments in an experiment by the 'balanced 
selection' of subjects from the finite population available for assignment, where the 
balancing is carried out with respect to a large number of covariates, and to Bellhouse's 
(1986) related approach to balancing on covariates. Bellhouse (1984b) summarizes 
criticisms of other model-based approaches to balancing. 

Other examples of new parallels emerging in the literature are closely tied to the 
concepts of optimal design. For example, Meeden & Ghosh (1983) use techniques from 
the decision-theoretic literature on the comparison of experiments to find admissible 
procedures for some sampling problems. Similarly, Cheng & Li (1983, 1985) propose a 
class of optimality criteria drawn from optimal experimental design theory to show the 
link between the minimax criterion and more traditional sampling strategies suggested by 
Rao, Hartley & Cochran (1962). For sampling units structured according to a spatial 
ordering, Bellhouse (1977, 1984a) describes a one-to-one correspondence between 
optimal designs in an experimental context and optimal randomization schemes in a 
sampling setting. Finally, lachan & Jones (1984) propose a general class of rotation 
sampling designs by relying heavily on ANOVA models and related ideas on the optimal 
search for BIBD'S. 
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Yet additional applications of experimental design approaches in a sampling setting 
include the use of linked block designs for sampling on two occasions with overlapping 
samples (Singh & Raghavarao, 1975), the use of supplemented block and BIBD designs as 
an alternative approach to the randomized response method for dealing with sensitive 
questions in a survey context (Raghavarao & Federer, 1979), and the use of com- 
binatorial design theory for the representation of general sampling measures (Srivastava, 
1985). 

4 Embedding 

The parallel concepts for control lead naturally to the notion of embedding experiments 
in sampling studies or sampling in experiments. Traditional experimental design incorpor- 
ated the idea of sampling within experimental units (for example, when interest focused 
on yield in an agricultural setting or on some characteristic of the members of a batch in an 
industrial setting) and considered sampling of experiments in order to generalize to larger 
populations. Early papers, for example by Yates & Zacopanay (1935) and Cochran 
& Watson (1936), illustrate these features of embedding in an agricultural context. 
The Cochran-Watson paper describes a Latin square experiment to determine the extent 
of observer bias (a sampling issue) in the selection of shoot-heights (studied in an 
experimental context)! These and other embedded instances present clues as to how the 
links between surveys and experiments can be made more obvious and more useful. 

While sampling to measure the outcome of an experiment was an intrinsic part of the 
teachings of Fisher and of practice in agricultural experiments, sampling yoked with 
experimental design was much more rare in other fields. Speaking of the social sciences, 
Kish (1959, p. 333) writes 

In fact, the question of sampling, of making the experimental results representative of the specified population, 
have been largely ignored in experimental design until recently. 

He cites the then recent work of Wilk & Kempthorne (1956) and of Cornfield & Tukey 
(1956), as being first steps in the introduction of sampling to experimental design. What 
Kish is referring to is the tendency of many experimenters in the social sciences to use 
groups at hand, often college sophomores, to experiment on. The implied assumption, 
that there is no interaction between type of subject and treatment, has been questioned 
frequently; for example, see Cronbach (1957) and the subsequent work in psychology 
demonstrating the existence and importance of such interactions. In response, some social 
scientists argue that, unless there is a plausible rationale leading to the theoretical 
expectation of such an interaction, an experiment conducted within a single population or 
on a few populations chosen strategically to exemplify a range of variation solves the 
problem. But the same issues of estimation of population quantities that dictate random 
selection in the sampling context should carry over to generalization of experimental 
results (Fienberg & Tanur, 1986b). It is in large-scale social experiments as carried out in 
the United States in the last several decades that these sampling considerations for 
subjects of experiments have become crucial; see Fienberg, Singer & Tanur (1985) for 
details on these experiments. 

The examples given above are primarily concerned with the contributions of sampling 
to the structuring of experimental problems. One notable example going in the opposite 
direction, due to Mahalanobis (1946), is the method of interpenetrating networks of 
samples (IPNS) which provides a built-in replication structure for validating sampling 
results. For example, in a survey on the economic conditions of factory workers in an 
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industrial area of India, Mahalanobis divided the area into 5 subareas. Instead of 
assigning each subarea to a different interviewer, he arranged for the selection of 5 
independent random samples within each subarea. Each of 5 interviewers worked in all 
subareas. This IPNS design thus provided 5 independent estimates of the economic 
conditions, and as a consequence allowed for an evaluation of the response variation 
associated with interviewers; see also Hansen et al. (1953b, Ch. 12). In the absence of 
interviewer effects, an IPNS design gives an internal estimate of variability without direct 
reference to the probability aspects of a complex sample design: a precursor to the 
modern literature on replication and jackknifing for variance estimation in surveys (Kish 
& Frankel, 1974). 

If experiments within surveys are to be of value, one must apply the experimental 
principles of local control to ensure that actual differences will be detected with high 
probability. In large-scale sampling studies it has long been recognized that one of the 
largest sources of.response error is associated with interviewer variability (Hansen et al., 
1953a, Ch. 12), and the classic model used by the U.S. Bureau of the Census to measure 
the effects of interviewers on sample estimates and the resulting mean squared errors draws 
both explicitly and implicitly on random effects models from experimental design and 
ANOVA (Hansen et al., 1951). This suggests to those familiar with the experimental 
principle of local control that a useful way to embed an experiment within a survey would 
be to use interviewers as a form of block. 

When one of us suggested this approach several years ago at a meeting on sample 
surveys, someone in the audience commented that giving an interviewer two or more 
forms of questionnaires to administer risked confusion and would result in useless 
responses. Confusion would be minimized, according to this argument, if the question- 
naires were given to different but parallel samples with different interviewers. Surely 
interviewer training and supervision must be very careful if an experimental strategy of 
blocking on interviewers is to be used, but such care should pay off richly in increased 
precision of estimates. Indeed, there is a strong oral tradition (lacking, however, 
extensive surviving written documentation) that blocking on interviewers was frequently 
done in U.S. Bureau of the Census methodological studies in the 1940's and 1950's. In 
one well documented study, for example, Waksberg & Pearl (1965) describe a 'methods 
test' conducted in 1963-64 in which 

interviewers in each area were divided into two groups with each group testing two alternative procedures 
against the standard one used in the Current Population Survey. (It was felt inadvisable to train each interviewer 
on all of the procedures to be tested.). 

Yet of the 15 split-panel tests with surviving documentation conducted by the Census 
Bureau from 1957 through 1969 the only one, according to the description of Jabine & 
Rothwell (1970), which blocked on interviewers was the methods test just described. 
Again, we seem to see the areas of sampling and experimental design moving apart. 
Nonetheless, a later study, carried out by the Census for the Committee on National 
Statistics' Panel on Privacy and Confidentiality as Factors in Survey Response (1979), 
shows the importance of blocking on interviewers for detecting differences in response 
rates to different guarantees of confidentiality. 

In response to an inquiry about the uses of embedding at the Census Bureau, Hansen 
(1984) noted: 

Although the designs of many of the test studies resemble classical experimental designs, the major objective in 
comparing alternatives was to estimate the difference in quality, cost, etc., between them, with an estimated 
sampling error, in the context of the application in mind.... Suppose it were believed that an interviewer could 
not deal adequately with more than two different versions. Then the design might look like a balanced 
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incomplete block design (with the interviewer being a block) in a cross-over experiment (half the interviewers 
who were assigned to use a given pair of alternatives starting with one of the two, and the other half starting 
with the other alternative). However, critical elements in the design would be the number of interviewers, and 
the amount of work (say, interviews) to be done by each.... The number of interviewers [would be] important 
to reduce the sampling variance of estimates of differences between procedures because of the between- 
interviewer component of variance arising from the correlated error within interviewers. This [would not be] 
simply a matter of the recovery of inter-block information as classically discussed for balanced incomplete block 
designs. 

The experimental design perspective leads naturally to the combination of local control 
within interviewer to compare alternative questionnaires with the measurement of 
interviewer differences through an IPNs-like structure (Yates, 1981, pp. 110-111). This 
suggests the use of factorial or fractional factorial designs in randomized blocks; see, for 
example, Durbin & Stuart (1951), where respondents are blocked in homogeneous groups 
and interviewers are treated as a factor within blocks, but are also linked via an IPNS 

throughout the blocks. Such designs are of greatest value as part of a special investigation 
or a pilot survey (recall the remarks of Hansen above). Other examples of the use of 
experimental designs in surveys are given by Brunk & Federer (1953), Quenouille 
(undated) and Brewer et al. (1977). 

A final illustration of the embedding of methodologies can be found in be found in the new design 
for the National Assessment of Educational Progress (NAEP) survey that was adopted in 
1983 by the Educational Testing Service (Messick, Beaton & Lord, 1983). Initiated in the 
1960's, NAEP'S primary purpose has been to measure educational competence in various 
subject areas (e.g. mathematics, reading and writing) primarily for three age groups 
(9-year olds, 13-year olds and 17-year olds) at a national level in the United States. The 
new design builds on that used for the first 14 years of the survey and has the following 
features: 

(a) a deeply-stratified three-stage sampling plan, where the third stage involves randomly selecting students 
within a school. At stage 1, primary sampling units (Psu's) are grouped into strata by geography and 
community type, with an estimate of at least 1500 youths within each PSU at each of the three 
assessment ages. At stage 2, both public and private schools are selected within psu's, and then at stage 
3, random samples of students are selected for participation. 

(b) sampling by school grade as well as by age. The meaning of grade level varies according to the age at 
which children enter school in each local school district, e.g. only about 70% of 9-year olds are in grade 
4 and only about 70% of grade 4 are 9-year olds. Thus expanding the sample (using a dual frame) to 
include students in the modal grade for each s a different perspective group gives a different perspective on performance 
level and trends. 

(c) repeated school participation in successive waves of the survey, according to a rotation schedule in 
which 50% of the PSU'S are identical in successive waves for the same subject area. The correlation 
within schools between waves yields sizable reductions in sampling errors for measures of change. 

(d) an assignment of exercises to respondents within a particular subject area using the balanced 
incomplete block spiralling variant of matrix sampling. 

In traditional matrix sampling, as originally used in NAEP, the exercise pool for a given 
age level is divided into different booklets with each respondent receiving one booklet 
(and thus a subset of the questions to answer), e.g. 5 booklets of 33 exercises each. The 
exercises appearing in one booklet do not appear in another at the same age level. The 
BIBD design superimposed upon matrix sampling introduces a restructured allocation of 
exercises. Thus in (d) above, each exercise is administered the same number of times as it 
would be in matrix sampling but each pair of exercises is also administered together in the 
same booklet a prescribed number of times. Continuing with the above example, the 
5 x 33 = 165 exercises can be combined into 15 blocks of 11 each, and these blocks can be 
permuted so that each pair of blocks appears together in at least one booklet, for a total 
of 35 booklets. Such a design not only introduces more efficient estimates, e.g. of overall 
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proportions responding correctly to an exercise, than was the case with matrix sampling 
alone, but it also allows for the estimation of other quantities of interest through the 
construction of a complete cross-products matrix for exercises because each exercise is 
located in several different booklets, each with a differing subset of the other exercises. 

5 Possible causes and curses of specialization 

We have maintained, with Kish (1965, p. 595) that '[t]he separation of the sample 
surveys from experimental designs is an accident in the recent history of science. . .' and, 
indeed, we embarked on this work to contribute to the accuracy of the prediction with 
which he continues: '... and it will diminish'. Here we speculate, without claiming 
expertise as historians, on the possible reasons for this separation. 

It seems to us that although the principles of the design of randomized experiments and 
the design of sampling studies have a common theoretical base, the evolution of thinking 
in the two areas is such the the focus of each shifted into directions that, on the surface, 
appear to overlap less and less with the other area. In particular, in the design of 
randomized experiments, focus shifted toward multiple factors and complex treatment 
structures rather than more and more complex control structures. (Here we distinguish 
between control structures, e.g. blocking, Latin squares, and the treatment structure, e.g. 
full or partial factorial layouts, which together make up the design.) It is only when one 
gets to a complex design that this distinction between treatment structure and control 
structure arises; in a simple design (say with only one factor) one can move back and 
forth with ease. Since the immediate analogues of treatments in a sampling setting are the 
samples, and since in the simplest of worlds we select only a single sample (see ? 2, 
above), the applicability of ideas from experimental design involving treatment structures 
more complex than a single factor at two levels to sampling would well have become less 
clear. Conversely, in sampling theory, where the theory began with simple random 
samples and then was elaborated with the imposition of control structures (e.g. 
stratification and clustering), real innovations arose with the consideration of whether it 
was advantageous to allow for unequal probabilities of selection. The concept of unequal 
probabilities of selection would have been one for which an experimental analogue is not 
immediately obvious; but see Cox (1956), who demonstrated the value of weighted 
randomization in designs in which a covariance adjustment is made for concomitant 
variation. 

In recalling why the design of sample surveys took a direction so different from the 
design of experiments, Madow (1981) noted three additional factors: 

(a) the heterogeneity, skewness, and mixture properties of the populations sampled; 
(b) the large sizes of samples selected in sampling from finite populations made it 

possible to draw inferences that did depend on a probability structure imposed by 
the survey designer and did not depend on assumed probability densities; 

(c) from the early work of Fisher, for example the 1925 book Statistical Methods for 
Research Workers, the simplest analysis of variance model did not permit a 
negative intraclass correlation coefficient, while cluster sampling as defined for 
finite sampling would yield a negative intraclass correlation. 

For Madow, the decisive factors that turned his work on sample surveys into new 
directions were the negative intraclass correlation and the cost-effectiveness of unequal 
probability sampling. 

Another difference in the purpose of random sampling and randomized experiments 
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that could have influenced the practitioners differentially is that historically many sample 
surveys were designed as enumerative studies while most experiments were clearly 
analytic. Thus sample surveys were designed to estimate aggregates for populations, and 
experiments were designed to explore the causal relations between variables; see for 
example, Deming (1953, 1978). In fields where experimentation is sometimes difficult 
(including, but not limited to, parts of the social sciences), however, data derived from 
sampling studies must often be used for analytic purposes. The confluence would seem to 
raise both hopes and expectations for the transfer of methodology from the experimental 
realm to the sampling realm. 

In addition to these differences in purposes, differences in the statistical problems faced 
in analysis by the two areas could well have discouraged researchers from searching for 
techniques in the literature of the opposite area. For example, because analyses of 
nonorthogonal experiments were more difficult than those based on neatly orthogonal 
designs, despite the pioneering work of Yates (1934) on unbalanced designs, many 
experiments were carefully designed to preserve orthogonality, and techniques were 
developed to mimic orthogonality in the analysis when failure to achieve it resulted from 
experimental exigencies. Surveys, on the other hand, even when used analytically, rarely 
achieve orthogonality. Indeed, when the sizes of subpopulations are disparate, ortho- 
gonality is not even an aim. Those techniques developed for analysis in orthogonal or 
almost-orthogonal designs in the experimental literature seemed, perhaps, less than 
applicable to the nonorthogonal analyses that survey researchers faced. 

Simultaneity of inference represents another difference between sampling studies and 
experiments at the analysis phase. While the number of comparisons in an experiment 
may be large, most of them can be anticipated and planned for in advance. The number 
of comparisons possible in a moderately large-scale sample survey is enormous; indeed, 
analyses are often followed by secondary analyses from archived data. Thus there is a 
temptation for a survey analyst to go on fishing expeditions within the data, and while this 
tendency has been decried and discouraged as a capitalization on chance (see, for 
example, Selvin & Stuart (1966)) nevertheless survey researchers may have been 
discouraged from consulting literature originating in the experimental field which 
visualized only small numbers of comparisons and exacted a heavy statistical penalty for 
making a multiplicity of significance tests. The solution that is advocated in the sample 
survey literature, breaking the sample into random pieces and exploring on one piece to 
develop comparisons as hypotheses to be tested on the reserved piece, seems to have no 
analogue in the experimental literature. 

There is also the common sense argument that because so many of the key figures in 
statistics in the early 20th century worked in both fields, they naturally provided rich 
cross-fertilization. But as the literature grew past the point where it could be easily 
mastered in its entirety by a newcomer to the field, and as such newcomers did indeed 
enter the field, specialization became necessary, and a convenient division of labour arose 
between those who were developing and applying techniques to sampling problems and 
those who were developing and applying (often similar) techniques in experimental 
settings. Further, the use of statistics has spread from agriculture and engineering to a 
diversity of applications in biomedical and social sciences and elsewhere. Each discipline 
in these areas seems to fasten on a particular technique for the collection of data; for 
example, psychologists often use experimental methods while sociologists tend to analyse 
sample surveys. This specialization, in turn, fosters the development of specialized and 
separate techniques for the different disciplines and encourages their exposition in 
separate textbooks. 

All of these reasons for the separation of the fields implied, it seems to us, a testable 
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hypothesis: the relatively early literature in each of the fields should show more frequent 
cross-citations to the other field, while the more recent literature should show far fewer 
cross-citations. We carried out an informal test of this hypothesis by comparing two 
arbitrarily chosen years (1948 with 1983) of the Annals of Mathematical Statistics (and the 
Annals of Statistics) and the Journal of the American Statistical Association. To our 
surprise we found no cross-citations in 1948 and only a specialized few in 1983. These 
later cross-citations occurred in the work of such authors as Meedan & Ghosh (1983) and 
Cheng & Li (1983), who are engaged in conscious programs of research to import theory 
and methods from one field to the other. What we did find in 1948, however, was authors 
such as Stephan discussing both fields in the same breath. It seems to us that the very fact 
of thinking of the fields as essentially synonomous accounts for the absence of the 
cross-citations that would flag parallels in the early years; one has to think of things as 
separate before one can think of them as parallel. 

Thus we can make no clear conclusion about the causes of the separation. We can be 
more sure, however, about the penalty both fields paid for this specialization. While 
researchers rarely re-invent the wheel, they frequently construct less perfect vehicles for 
investigation than they might if they were to take full advantage of all the theory and 
methodology in both areas. 

6 Modelling and inference 

There are possible conflicts associated with the two basically different approaches to the 
analysis of sampling and experimental data. The reporting of information from sample 
surveys often takes the form of cross-classifications of frequencies, totals, means or rates. 
Such surveys are referred to as being descriptive or enumerative rather than analytic in 
purpose (Deming, 1953, 1978). For an enumerative survey there is general agreement in 
the statistical community that the reported information should consist of weighted 
estimates of population quantities, with the weights to be applied to individual sample 
cases determined by the probabilities of selection for inclusion in the sample (and possibly 
also by noncoverage and nonresponse rates and by ratio adjustments). 

In contrast, in an analytic sample survey the primary purpose may be the comparison of 
sectors or subgroups of the population, often defined by multiple factors, with respect to 
one or more variables of interest, or some other form of comparative estimation. 
Statistical models often play an important role in the planning of analytic sample surveys. 
For example, Sedransk (1965, 1967) uses ANOVA models to illustrate how to select samples 
to achieve the maximum precision for the comparisons of interest for a specified total 
cost. He notes in particular the importance of reflecting the relevant population for 
inference in the planning model used for allocation. Thus the controversy arises, not in 
the use of models for designing surveys, but in their use for analysis; for example, see 
Hansen, Madow & Tepping (1983) and Smith (1985). 

For the analysis of designed experiments, most modern statistical texts use a 
presentation based on analysis of variance (ANOVA) models with normally distributed 
error terms, in accord with Fisher's original development (Fisher, 1925). The later 
justification for ANOVA-like procedures proposed by Fisher (1935) had less to do with a 
belief of the appropriateness of the normal error model. Rather, Fisher constructed tests 
for the effect of different treatments based solely on the random assignment of treatments 
to experimental units, and argued that such randomization justifications were the only 
valid basis for inference in experimental settings (Cochran, 1978; Finney, 1964). Yates 
(1964) suggests that Fisher did not really regard the use of randomization tests as 
reasonable and he refers to a sentence inserted in the 7th edition of The Design of 
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Experiments supporting this view. Nonetheless, Fisher's development of randomization 
tests for experiments lies at the core of the design-based approach to inference. Later 
Kempthorne (1952, 1955) and others elaborated upon Fisher's arguments to show the 
approximate validity of ANOVA and normal-theory-based inferences for complex ex- 
perimental designs. 

This happy confirmatory support for model-based approaches to inference from 
randomization theory does not carry over immediately to the sampling context despite the 
many structural parallels between experimental design and sampling design. The extent to 
which such carryover holds is part of the controversy over the use of models for 
inferences in sampling settings. It is, in fact, somewhat paradoxical that Neyman, 
Iwaszkiewicz & Kolodziejczyk (1935), in their critique of the effectiveness of Latin square 
designs, used a model-based form of inference to argue against Fisher's randomization 
analysis whereas Neyman used a randomization analysis in his 1934 paper to argue against 
a model dependent approach to sampling. 

Kalton (1983) provides an excellent and balanced review of the controversy surround- 
ing the use of models in sampling practice. Hansen et al. (1983) also review aspects of the 
dispute with an emphasis on the randomization approach and its strengths, while Smith 
(1985) does the same but with emphasis on the modelling approach and its strengths. (See 
also the special June 1984 issue of Survey Methodology devoted to different accounts of 
issues and methods for the analysis of sampling data.) What Kalton (1983) notes is that, 
whatever one's views are regarding the use of models for inference in analytic surveys, 
models are essential to dealing with nonresponse and attrition. Often there is simply an 
implicit model that we can ignore the mechanism that led to the missing data. Most 
imputation methods have imbedded within them this simple ignorable-nonresponse 
model, but within strata. Methods that 'reweight' a sample to 'adjust for nonresponse' are 
based on a similar form of model. Hiding these modelling assumptions in the cloak of 
weights makes it difficult to determine the validity of weighted analyses of the sort 
referred to above, even for enumerative surveys. See surveys. See Fienberg & Tanur (1986a) for a 
review of model-based approaches that pay special attention to the nonresponse 
mechanism. 

It seems to us that once there are unequal probabilities of selection so that the sample 
is not self-weighting, even within strata, it is no longer clear that the modelling and 
design-based inference approaches should be expected to coincide. Advocates for the 
model-based approach to survey analysis argue that aspects of the sampling design such as 
critical stratification variables and cluster effects should be incorporated into the statistical 
model, with relevance being an empirical issue. In the best of all worlds, the formulation 
of the model precedes the design of the sample and thus the design reflects the critical 
stratification variables and cluster effects rather than the design dictating what should go 
into the analysis model. If the model assumes some level of homogeneity (as reflected in 
the error term), then this assumption needs to be critically examined using standard 
diagnostic approaches. From this perspective, conventional weighting (using the inverse 
of the lst-order inclusion probabilities) to achieve 'representativeness' is a needless 
complication. 

Strong support for the modelling position comes from statistical likelihood theory via 
arguments articulated by Smith (1983) and by Hoem (1985). Smith uses an approch due 
to Rubin (1976) to show that the sample selection scheme is ignorable if the selection of 
units depends only on prior variables which are conditioned on in the statistical model. In 
the Appendix we give a version of Smith's argument on when weighting can be ignored 
from a model-based perspective and we discuss the relevance of random selection and 
ignorability both from a likelihood and a Bayesian perspective. The discussion by Rao 
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(1975) is closely related to that in Smith's paper. In the context of parallels, Smith's 
argument mirrors one given by Rubin (1978) on the role of experimental randomization 
in guarding against data poorly balanced with respect to blocking variables. The carryover 
of Rubin's approach is immediate once we recall that the sampling analogues to the 
blocking variables are the stratification variables in the explanatory structure of the 
model, and that random sampling plays a role analogous to experimental randomization 
in making various types of sampling information ignorable. Smith & Sugden (1985) 
examine many of these issues regarding inferences in sample survey settings in greater 
detail. 

While the differences between the design-based and model-based approaches to 
inference can be profitably minimized in many practical situations such as those involving 
regression models (Sarndal, 1980), in others conflicts and controversies are inevitable; 
see, for example, Godambe (1955, 1982). One way to finesse the issue is to do the 
analysis both ways in order to be sure that the conclusions are the same. For example, 
Schirm et al. (1982), in a demographic study of contraceptive failure, note that 

fortunately, our early analysis of these data revealed that the estimates of effects derived using an unweighted 
sample are approximately equal to those obtained using a weighted one; therefore, in the subsequent analysis, 
the ... weights are ignored. 

The analyses these authors describe are ones for which the weights are irrelevant (Hoem, 
1985). Yet by reporting that the results are unchanged if weighted analyses are done, they 
ensure that the focus is on their results and not on the controversy over the use of 
weights. In a similar spirit of reconciliation we would do well to keep in mind the advice 
of Rao (1975) in this regard: 

... many of the controversies could be avoided if the basic issues are clearly stated and statisticians do not insist 
on a monolithic structure for all problems of statistical inference. Much damage has been done by fashions and 
slogans in statistics introduced by theoretical statisticians who have no experience of handling live data and 
extracting information from them. 

7 The tradition continues 

In this paper we have retraced some of the history of the design and analysis of 
randomized experiments and sampling studies. Beginning with the work of Fisher and 
Neyman, we have followed some of the many intertwining and parallel paths of research 
in the two areas up to the present. Implicit in our discussion has been an answer to the 
question 'What can experts in sampling and experimental design learn from one another?' 
We find the concepts and constructs in the two areas to be so closely linked that it is 
surprising that only a few experts in sampling have already learned to draw on 
experimental design, and vice versa. 

Yet we have also noted how research and practice in experimentation and in sampling 
have grown apart, and thus efforts in one area often fail to take advantage of the theory 
and methodology in the other. The lack of cross-references in the review papers by Cox 
(1984) and Smith (1984) suggests that the specialization extends even to compartmen- 
talization within the minds and professional lives of outstanding investigators, for both 
these authors have been steeped in the tradition of parallels. (In fact, Cox mentions the 
existence of many parallels, in a single sentence, but offers no references.) To accomplish 
the transfer of theory and methodology between the two areas in the future, we need an 
understanding of the history and models of how parallels can be discovered and usefully 
applied. Three such models come to mind. 

First, consider a sampling statistician who has a new problem to solve. Such a 
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statistician ought to try to read the experimental design literature in order to find a 
parallel solution to exploit. Secondly, without an explicit practical problem, either an 
experimentalist or a sampling person might generate ideas for new methodological 
research by focusing on a feature in one of the literatures and trying to construct a 
parallel in the other. For example, someone might profitably ask what the sampling 
parallel to mixture designs might be. But from the research perspective perhaps the most 
intriguing model is to find new areas of activity, e.g. Monte Carlo analysis and simulation, 
where the methodologies from both areas can be profitably imported and used together. 
For example the experimental device of 'antithetic variates' and the method of 
'importance sampling', a version of sampling with probabilities proportional to size, are 
often used to study different aspects of larg e Monte Carlo studies but they are rarely 
effectively i integrated in the way that takes full advantage of the intertwining concepts and 
constructs in experimental and sampling design. 

We are not the first to adopt the theme of parallels or to suggest these models for 
transfer. Just over 20 years ago Dalenius & Matern (1964) adopted the same themes and 
argued for the synthesis that our models suggest. They even used the example of Monte 
Carlo procedures as a testing ground. Our goal is something short of a Grand Unified 
Theory so hotly pursued by physicists. We would simply like to ensure that the tradition 
begun by Fisher and Neyman continues. 
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Appendix: Model-based inferences for sampling 

From a model-based perspective many authors (see, for example, Basu (1969, 1978)) 
have argued that, at the data analysis stage, the survey analyst need not be concerned 
with the sample design, and thus notions such as the sampling distribution, design- 
unbiasedness, and sample-based weights are irrelevant. In particular Godambe (1966) 
argued that the likelihood principle implies that inferences should be independent of the 
distribution generated by the sampling design. These statements are not quite correct, 
and an appropriate argument for when they are correct has been developed independ- 
ently by Smith (1983) and Hoem (1985). In the Appendix, we present a version of their 
basic result using Smith's notation and provide some commentary on it. 

Following the notation in ? 2, we denote by s the sample and by A, the sample selection 
function whose components are the indicator variables 

=1 (i es). (A.1) 

Corresponding to each unit ui in the universe U, there is a vector of unknown values or 
measurements, Yi; and a vector of prior information, Zi. The sampling scheme or 
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selection mechanism is given by the probability density function 

f(As I Z, Y; ), (A.2) 
when Z is the matrix of prior information, Y is the he matrix of measurement variables, and 
* is a possibly unknown parameter vector characterizing the selection process. Note that 
in this specification we allow for a dependence of the selection on the outcomes of 
interest, Y. Hoem (1985) gives several examples of selection mechanisms that appear to 
involve forms of 'random selection' but which in fact reflect such dependence. For 
example, in sample surveys involving retrospective interviews the sample is usually drawn 
from a frame representing 'survivors', i.e. dead individuals are unavailable for sampling. 
Now if mortality is related to the outcome measurements in some selective fashion, the 
sampling mechanism will depend on Y as in (A.2). 

Next, we introduce the superpopulation model of interest which links the measurement 
values Y to the prior information via the conditional distribution with probability density 
function 

f(Y Z; 0). (A.3) 

We would like to make inferences about 0. Now we can partition Y into two components 
Ys and Yf depending on whether the units are in s or are not in s, respectively. Then the 
observed data consist of 

d= (Ys, As), (A.4) 

an observation that can be found in the earlier literature, for example, Basu (1978), and 
the probability density function of the observed data is given by 

f(ds I Z; 0, )) = ff(Ys, YI | Z; O)f(As I Ys, Y%, Z; o)dY. (A.5) 

This is the likelihood function and it clearly depends on the probability distribution 
associated with the selection mechanism. 

Suppose that the selection scheme in (A.2), depends on Z but not on Y, i.e., 

f(As I Y, Z; 9) =f(As I Z; ). (A.6) 

This is where randomization enters into the argument for those who believe in 
model-based inferences. If a randomization design has been employed whereby all units 
of the universe have positive probability of selection, i, and these probabilities do not 
depend on the Yi's, then (A.6) holds. It follows that 

f(Ys, As I Z; 0, 9) =f(As l Z; <)4f(Ys, YV | Z; 9)dYN =f(As I Z; 9)f(Ys I Z; 0). (A.7) 

Provided that 0 and 4( are distinct, the likelihood function in (A.7) separates into two 
components, one for 0 and one for <, and inferences about 0 based on (A.7) will be 
equivalent to those based on 

f(Ys I Z; 0) = ff(Ys, Y | Z; 0) dY (A.8) 

Expression (A.8) is often taken to represent the likelihood function. 
For the sampling plan to be ignorable, in the sense that inferences about 0 are the 

same from (A.7) and (A.8), we need not assume that there has been a formal use of 
randomization in the selection scheme. Any selection plan for which (A.6) holds will do, 
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but the standard forms of random selection remove the need for further justification. 
Thus randomization plays the role of removing selection bias. 

The preceding argument is extremely simple but it is applicable quite broadly and can 
be extended to include both selection and allocation mechanisms, the latter being relevant 
for experiments, as well as allowing a separate look at nonresponse. Several additional 
comments and observations may be of value as follows. 

(i) The form of the superpopulation model in (A.3) hides a multiplicity of complexities 
that possibly relate to the sample design. For example, suppose that the model takes the 
form 

Y= 0Z+E. (A.9) 

Then, Z would be likely to reflect important stratification variables that would also go 
into the design and the covariance structure of E would reflect dependencies among units 
due to clustering; see the related discussion in ? 6. 

(ii) The result that inferences from (A.7) and (A.8) are equivalent does not depend on 
proper specification of the superpopulation model (Hoem, 1985). It is for this reason we 
have a difficult time understanding the robustness arguments raised by Hansen et al. 
(1983), Kalton (1983) and others. This comment should not be interpreted as implying 
that model misspecification is not an issue. Rather we would argue that it is the same 
issue in a sampling context as in any other statistical problem. 

(iii) Simple sampling estimation problems, such as heterogeneity across strata, are 
easily represented within the general superpopulation specification of (A.3) and can result 
in likelihood-based estimates of quantities such as population means that are similar to 
the traditional weighted design-based estimates. Post-stratification models also fit easily 
within this broad framework. 

(iv) We need to distinguish between sampling plans that are informative and those that 
are ignorable. Condition (A.3) corresponds to Rubin's technical notion of ignorability. 
Survival as a condition for observation in a sample makes a plan informative, but if 
survival is nonselective then the sampling plan is still ignorable; see Hoem (1985) for a 
more elaborate discussion of this issue. 

(v) The argument above is presented from a likelihood perspective, but it is virtually 
identical to one relevant to the Bayesian. The separability of the likelihood in (A.7) is not 
sufficient to allow the selection mechanism to be ignored. In addition, the Bayesian 
requires that 0 and q be a priori independent, although, as Smith (1983) notes, this allows 
a somewhat weaker condition in the relationship between Y and A,; see also Rubin 
(1976). 

(vi) From the perspective of comment (v), the easiest way for a Bayesian to justify 
basing inferences solely on (A.8) and the prior distribution for 0 is to use careful 
randomization in the selection process; see Rubin's (1978) argument for why a Bayesian 
should randomize in an experimental context. 

(vii) The Bayesian who chooses to use randomization gains the simplicity of the 
likelihood in (A.8) at a price. An informative and nonignorable sample plan can produce 
a po istribution for 0 that is tighter than that resulting from (A.8). This loss of 
information can be substantial if n is small, but we conjecture that it tends to zero in some 
stochastic sense as n tends to N, for large values of N. 
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Resume 

Les plans et l'analyse des expdriences au hasard et des enquetes par sondage al6atoire sont suivis a partir du 
travail de Fisher, Neyman, et Tchuprov dans les annees 1920 et 1930, quoique des precurseurs apparaissent 
beaucoup plus tot. Cet etude examine quelques d6veloppements qui decoulent de leur travail, soulignant les 
paralleles entre les deux methodologies. Apres un examen des paralleles conceptuels fondamentaux entre les 
plans d'experiences et ceux de sondages, nous passons en revue une nouvelle classe de paralleles liant les formes 
restreintes de sondage a la litterature sur les plans d'experience portant sur les structures de traitement, telles 
que le BIBD. Ces paralleles entre les deux domaines nous conduisent naturellement a discuter la facon 
d'incorporer les experiences aux sondages, et vice versa. Les auteurs meditent sur les raisons pour la separation 
de ces deux domaines, et resument les controverses paralleles entre les deux modes d'inference, celui fonde sur 
les plans et celui fonde sur les modeles, qui sont utilises, 6galement dans la litterature sur les plans 
experimentaux et sur les enquetes par sondages. En r6sume, l'etude propose comment des iddes et explications 
nouvelles peuvent paraitre a l'avenir et enrichir la pratique future. 
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