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Summary 

A general framework is given for examining the role of mechanisms for treatment assignment and 
unit selection in experiments, surveys and observational studies. Conditions are established under 
which these mechanisms can be ignored for model-based inference. Examples are presented to 
show how inference can incorporate the mechanisms when the conditions do not hold. 
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1 Introduction 

Two of the most important tasks facing an applied statistician are the design and 
analysis of sample surveys, and the design and analysis of experiments. Despite the many 
apparent links between surveys and experiments identified by Fienberg & Tanur (1987), 
and the contributions to both subjects by statisticians such as Yates and Cochran, the 
theory and methods of these two subjects appear quite different. Why should this be? 

Sample survey design and analysis has grown from the need for descriptive statistics in 
the government and commercial stores. In contrast experiments use statistics analytically 
to test hypotheses for example, and are carried out most frequently in the industrial and 
scientific sectors. Government surveys are still used primarily to describe the properties of 
a finite population at a fixed point in time but many commercial surveys attempt to 
explain relationships between variables that will hold in the future, so they are 
explanatory or analytic rather than descriptive. In the analysis of an explanatory survey or 
of an experiment one aim is to find evidence for a law-like relationship, for causal 
explanations rather than descriptions. 

Wold (1967) addressed the problems of reaching causal conclusions from nonex- 
perimental data. He argued that experimental knowledge is reproducible knowledge, the 
reproducibility arising from the control exerted by the scientist over the assignment of 
treatments. It is the scientist's control over his material that is the most important 
distinction between surveys and experiments; in surveys there is control over sampling of 
units while in experiments there is control over the assignment of treatments to units. 
From this difference in control flows the difference in the approaches to the design and, 
more importantly, the analysis of surveys and experiments. 

Experiments can be carried out within surveys. Brewer et al. (1977) give examples of 
experimental designs at the pilot stage of a survey for testing questionnaire layouts, diary 
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versus recall methods and for estimating variance components. Within market research it 
is common to find a designed experiment for comparing different formulations of a 

product performed within a sample survey. In agriculture, experiments are sometimes 

performed on a representative sample of farms to see if results from an agricultural 
experimental station can be reproduced in the 'real world'. 

Sampling from within a controlled experiment is less common. In agriculture the yields 
from plots are sometimes estimated by sampling from within the plots and in variety trials 
the number of varieties is sometimes reduced by random sampling prior to testing. Often 
in social experimentation a large population is divided into subpopulations and each 

subpopulation is allocated some form of treatment. The responses within subpopulations 
are then frequently estimated by sampling. Following this theme if we enlarge the notion 
of an experiment to include observational studies, where 'nature', or some other agency, 
has allocated the treatments in an unknown manner, then in these studies sampling takes 
place within an uncontrolled experiment. The design, analysis and interpretation of 
observational studies is one of the most difficult tasks facing the applied statistician. We 
elaborate on these distinctions in ? 2 of the paper. 

In ? 3 we adopt the approach of Rubin (1976, 1978) and set up a formal structure to 

represent the sampling and assignment mechanisms. This brings out some important 
distinctions between experiments and surveys and incidentally provides a scientific role 
for randomisation. In 4 we apply our formal analysis to an observations al study of the 
relationship between two binary variables. Finally in ? 5 we analyse through a theoretical 
example the effect of incomplete covariate information on inference for an experiment 
within a survey. 

2 Experiments, surveys and observational studies 

To facilitate a unified approach to these three types of study we define a treatment to 
mean any stimulus, or set of stimuli, leading to an observable response even when there is 
no control over its assignment. Treatments are applied to units and responses are 
measured on these same units. Every unit should be capable of receiving every treatment 
and the decision as to which unit receives which treatment is determined by an assignment 
mechanism. 

The set of possible units which could receive a treatment comprises a population. In 

practice this population is finite so that the units can be listed, although sometimes only 
conceptually. From a finite population a sample of units can be selected from the list, or 
frame, using a sampling mechanism. 

We distinguish various studies by the control exerted by the scientist over the 
assignment and sampling mechanisms. 

(i) An experiment is a study in which the scientist can control the assignment of 
treatments to experimental units. 

(ii) A survey is a study in which the scientist can control the selection of units for 
which responses will be observed. 

(iii) An analytic survey is a study of the effect of treatments when there is control 
over the selection of units but no control over the assignment of treatments. 

(iv) An uncontrolled observational study is a study in which there is no control over 
either the selection of units or the assignment of treatments. 

The general term observational study refers to studies of types (iii) and (iv). Since we 
are concentrating on the role of the assignment and sampling mechanisms we have chosen 
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Table 1 

Classification of studies with treatments 

Treatment assignment 
Control No control 

Control Experiment Analytic 
within a survey 

Sample survey, or 
selection survey within 

an experiment 
No control Experiment Uncontrolled 

observational 
study 

to distinguish the two cases. In Table 1 we show these studies classified by the type of 
control exerted by the scientist. 

There are also important differences in the target populations of interest. In many 
surveys, particularly those in the public sector, the target population is the real finite 
population which exists when the survey is carried out and the targets of inference are 
finite population means, totals and other descriptive statistics. Such descriptive studies 
with no treatments have no causal objective and we do not consider this special case 
further in our unified approach. 

When treatments are present the object of analysis is the comparison of identifiable 
subgroups in the finite population which have been exposed to different treatments. 
Whether such comparisons can be called causal inferences depends on the relation 
between the real finite population and the hypothetical population given by the set of all 
possible responses to all possible treatments measured on each unit. In an experiment the 
objective is overtly causal; it is to make comparisons between hypothetical, but 
nevertheless reproducible, populations of possible responses. The reproducibility derives 
from the control exerted by the scientist over the treatment assignment mechanism. 

We define the apparent population as the set of responses to treatments actually applied 
to units, that is, the population of responses after assignment. The corresponding true 
population is the unobservable set of responses to all treatments which might have been 
applied to units whether they were applied or not. It is the population of potential 
responses prior to assignment. Causal effects are expectations defined for the population 
of interest. An apparent causal effect, or prima facie causal effect (Holland, 1986), is thus 
a comparison between the means of two or more subgroups of the finite population 
defined by the outcome of the assignment mechanism. The true population causal effect is 
a comparison between the population means which would result if all units received the 
same treatment. True causal effects are unobservable as only one treatment can be 
applied to each unit. 

There are differences too between surveys and experiments in the methods and 
approaches to inference. In descriptive surveys methods of inference are almost always 
based on the distribution generated by repeated applications of the sample selection 
mechanism. When sampling is random and the selection probabilities are known this 
generates the randomisation distribution. The randomisation distribution is clearly 
appropriate for pre-data decisions about choice of design but its use for post-data 
inference is less clear cut. The theoretical limitations of the randomisation distribution for 
conditional inference after the data are observed, and for predictive inference, have been 
discussed by, for example, Smith (1976, 1983), Royall (1976). Recently a model-based 
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theory of inference has emerged which encompasses both analytic and descriptive 
inference. 

For experiments inferences are usually based on an underlying statistical model, usually 
a linear model, and not on the distribution generated by repeated applications of the 
treatment assignment mechanism. Although randomisation inference has its advocates 
and randomisation tests are sometimes employed instead of the model-based procedures, 
the impression from outside must be that experimental inference is model-based and that 

survey inference is randomisation-based. This is one of the main perceived differences 
between surveys and experiments. We shall not pursue the reasons for this difference here 
but rather we will point out that a complete stochastic description of both surveys and 
experiments must incorporate the selection and allocation mechanisms even when a 
model-based approach to inference is adopted. Within a model-based approach the issue 
then becomes one of identifying the conditis under which the itionmechanisms do not affect 
the inference, which we consider in ? 3. 

3 A general approach to sampling and assignment mechanisms 

3.1 Introduction 

Following Rubin (1976, 1978) we examine the role of sampling and assignment 
mechanisms within a model-based framework for inference. This allows us to examine 
both controlled studies which employ randomisation and uncontrolled observational 
studies. We consider inferences from a sample of units where the responses are affected 
by a set of stimuli, the treatments. Thus we exclude simple e descriptive surveys. The ideal 
studies are experiments wihin surveys or surveys within experiments where control is 
exercised by the scientist over both treatment assignment and unit selection. But our main 
interest is in the other studies in Table 1 where nature has determined one or both of the 
mechanisms. 

We will use the word nature to personify the process of uncontrolled unit selection or 
treatment assignment. When either of these processes is controlled we shall refer to the 

person or persons exercising the control, designing the study and making the measure- 
ments as the scientist. A person concerned solely with the analysis of data will be called an 
analyst. Thus in an observational study nature assigns the treatments, the scientist makes 
the measurements and the analyst produces the results. Frequently the scientist and the 

analyst are the same person. 
The design stage of a study has two mechanisms which generate the data for analysis: 

(i) the selection of a subset, or sample s, of n units from the finite population of N 
units; 

(ii) the assignment of treatments to units. 

The specification of these mechanisms and the implicit assumptions underlying them must 
be considered by the analyst who may have much less data available than either the 
scientist or nature, as, for example, in a secondary analysis of a data set. 

Suppose there are N units in the population labelled 1, 2,..., N, and a set of T 
treatments labelled 1, 2,. . . , T. When treatment j is applied to unit i the response is the 
realised value of a random variable Y() which we assume to be observable without error. 
Only one of these T potential responses (j = 1, . . ., T) can be observed for each unit i. 
The fact that the random variable is indexed only by i and j corresponds to an assumption 
of no interference between different units (Cox, 1958), which Rubin (1980) refers to as 
SUTVA (Stable Unit Treatment Value Assumption). The N x T matrix of all potential 
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responses defines the true population 

y = (y(l) y(T)) (3.1) (3.1) 
where Y(i) is the N x 1 vector of responses if all the units in the population were to 
receive treatment j. 

Following Rubin (1978) we define the true causal effect of treatment j versus treatment 
j' for the ith unit as the unobservable difference 

yJ)- y ), (3.2) 

regardless of whether either treatment has actually been applied or not. The target 
parameter for inference is the mean of this contrast. We define the true population causal 

effect to be the finite population mean 

Y(J- y(j. (3.3) 

Other definitions could be given, for example by taking means in some marginal 
statistical superpopulation model for the responses or in a conditional model given a set 
of covariates. These alternatives are not considered here. We note that the definition of 
the relevant population is a key step in the process of examining the validity of causal 
inferences. 

Design depends on prior information. Let z be an N x q matrix of values of q 
background variables, known to both nature and the scientist for all the units in the 
population. This matrix will include labels indicating blocks, strata or clusters as well as 
quantitative variables such as size measures or covariates, and can be used by both nature 
and the scientis a the design stage; z can only be used at the analysis stage if it is known 
by the analyst. The additional data known to nature but not to the scientist is denoted 
formally by a matrix W, which contains all the hidden and unknown covariates. We 
assume that the scientist can never know the values of the variables in W; that is they are 
unobservable. Thus W excludes the response variables Y. In the terminology of Holland 
(1986) z and W are pre-exposure variables and Y are post-exposure variables. 

The specification of the two mechanisms depends on the order in which the mechanisms 
are used. In an observational study or a survey within an experiment it is assumed that 
treatments are assigned to all the N units in the population, and that the sample s is 
selected after the treatment assignment. For experiments within surveys the sample is 
selected first and then treatments are assigned only to those units in the sample. 

3.2 Inference and the ignorability of mechanisms 

In our discussion of the sampling and assignment mechanisms we have introduced three 
sets of variables, the responses Y, the known covariates z and the unknown covariates W. 
Formally we can write down a joint distribution for these variables as 

f (W I Y, z; V)g(Y | z; e)h(z; o), (3.4) 

where we assume that the parameters p4, 0, 4) are distinct, as Rubin (1976). The 
mechanisms generate observed responses, Y, say, and an analysis based on the joint 
distribution of Y, and the known covariates z but which ignores the sampling and 
assignment mechanisms is called a face value analysis (Dawid & Dickey, 1977). The face 
value likelihood is given by 

h(z;))fg(Y I z; 0e)dy, (3.5) 
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where C is the set of unobserved responses in two groups: 

(a) Yi), for j = 1, ..., T, all potential responses for unsampled units s; 

(b) Yi2s(),, for j = 1,..., T, potential responses for units in the observed (3.6) 
sample s which do not receive the treatment j, for j = 1, ..., T. 

Note that in (3.5) the unknown covariates W integrate out completely as they cannot be 
observed. A full analysis of the observed data Y,, z would employ the full likelihood 

including the sampling and assignment mechanisms, and we examine this in subsequent 
sections taking into account the order in which the mechanisms are applied. We say that 
the sampling and/or assignment mechanisms are ignorable for likelihood inference if the 
full likelihood and the face value likelihood lead to the same inference. 

In general the ignorability of the mechanisms will depend on: 

(i) the approach to inference, whether Bayes, likelihood or sampling theory; 
(ii) the target for inference, whether true population causal effect, a prediction 

problem or the estimation of some function of the unknown parameters, 0, 4; 
(iii) the population model (3.4) and its properties; 
(iv) the nature of the sampling and assignment mechanisms; 
(v) the amount of covariate information available to the analyst. 

Sugden & Smith (1984) have examined many of these conditions under sampling alone, 
with no treatment assignment. Here we extend the approach to cover more general 
classes of studies within the framework of likelihood inference. 

3.3 Assignment before sampling 

These studies include surveys within experiments, analytic surveys and observational 
studies where the treatments can be assumed to have been assigned prior to sampling. Let 
U(j) be the set of population units assigned to treatment j (j = 1,..., T). The T sets form 
a partition, or stratification, of the population. In its most general form the assignment 
mechanism is specified by the variables Y, z, W and can be written 

P(U(j), j = l,..., TI Y, W, z). (3.7) 
We define controlled assignment as a mechanism used by a scientist for a survey within 

an experiment which depends only on z and can be written as 

P(U('), j=l,..., T z). (3.8) 

The sampling mechanism for an observational study or a survey within an experiment 
frequently depends on the allocation U(j), for j = 1, ..., T, of treatments to units. If S(i) 
denotes the sample units which receive treatment j then the most general sampling 
mechanism can be written 

P(S(), j= 1, ..., T I U (j, j=, . . ., T, Y,W,z). (3.9) 
If the scientist implements a sampling mechanism, then it cannot depend on W, and so 

the analyst can write the mechanism as 

P(S(, j=1, . . ., T I U(, j=1,..., T,Y,z), (3.10) 
where the possible dependence on the response variables Y is to allow for retrospective 
studies as well as prospective studies (Breslow & Day, 1980). Note that in retrospective 
studies the sampling mechanism depends on the response variables Y only through those 
responses to treatments actually received by the units, defined below in (3.11). 
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A more restrictive form of sampling mechanism, where (3.10) additionally does not 
depend on Y, is called controlled sampling. 

For all forms of assignment, the values of U(j), for j = 1,..., T, impose an implicit 
stratification on the population. We define the apparent population as 

Yo = (Y,), j = 1, ... , T). (3.11) 
Then the apparent population causal effect of treatment j versus j' is simply the difference 
between the two subpopulation means 

u,,- yuJ). (3.12) 

It is important to realise that this may be very different from the true population causal 
effect (3.3), regardless of the sampling mechanism. In ? 4 we consider an example to bring 
out this point. 

We now return to consideration of the full likelihood. In general the assignment 
mechanism is given by (3.7) and the sampling mechanism by (3.9) and so the full 
likelihood derived from the model (3.4) is 

h(z; )fJJ P(U(i), j = 1,... , T | Y, z, W) 
x P(S(),j =l, .. ., T | Y, z, W, U(),j = l,. . ., T) 
x g(Y I z; O)f(W I Y, z; t) dy dw, (3.13) 

assuming the partitioning given by U(i), for j = 1,..., T, is known, where C is defined in 
(3.6) and the additional integration is over all W. Integrating out the unobservable 
variables W gives the likelihood 

h(z; ) f P(J ), j = 1, .. ., T | Y, z; V)P(S(j, j = 1, . . ., T Y, z, U, j = 1, .. ., T;V ) 

xg(Y Iz;0)dy. (3.14) 
The mechanisms are ignorable for likelihood inference if they can be taken outside of the 
integral in (3.14) or (3.13). Sufficient conditions for ignorability are either of type A or B. 

Conditions A. (i) U(i), j = 1, ..., TUI Y z; t; 
(ii) (j), j = 1,.. ., T UY | , U(), j = 1, . . . , T; V4. 
Conditions B. (i) U(j), j = 1,..., T U Y z, W; 
(ii) S', j = , . . . , T Y z, W, U( j= 1, . . . , T; 
(iii) YII W I z; . 

The symbol I means 'is independent of'. The conditions in B imply those in A. 
A controlled assignment mechanism (3.8) satisfies A(i), and a controlled sampling 

mechanism satisfies A(ii). 
We are now in a position to give sufficient conditions for the mechanisms to be 

ignorable for likelihood inference within three cells of Table 1. For surveys within 
experiments condition A(i) is automatically satisfied, and condition A(ii) will be satisfied 
for any sampling scheme that does not depend on the response variables Y. This excludes 
retrospective sampling but even these mechanisms may be ignorable if, for example, they 
depend only on the apparent population Yo through the observed responses Y,. These 
mechanisms will be the subject of future work. Scott & Wild (1986) give some examples 
of ignorable choice based sampling in case-control studies. In an analytic survey there is 
no control over assignment but there is over sampling. For assignment to be ignorable 
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conditions B(i) and B(iii) must be satisfied, and sampling is ignorable since A(ii) is 
automatically satisfied. Finally for observational studies with no control over either 
assignment or sampling we require conditions B(i), B(ii) and B(iii) for ignorability of the 
mechanisms. We discuss the implications of those conditions in ? 3.5. 

3.4 Assignment after sampling 

These studies include experiments, experiments within surveys, and those prospective 
observational studies where the treatment can be assumed to have been assigned after 
unit selection. The unit sampling mechanism is given in general by 

P(S I Y, z, W), (3.15) 

which can depend on the hidden covariates W as well as on the known covariates z and 
the potential responses Y. We define controlled selection as a mechanism by the scientist 
of the form 

P(S z), (3.16) 

which depends only on the known covariates, z. 
The treatment assignment mechanism assigns treatment j to a subsample S(j) of S. In 

general we represent this by 

P(S(;), j = ,..., T I S, Y, z, W). (3.17) 

If the scientist performs a 'laboratory-based' treatment assignment, we say there is 
controlled assignment and the mechanism can be written 

P(S(j), j = 1,... , T S, z). (3.18) 

In general the sampling mechanism is given by (3.15) and the assignment mechanism by 
(3.17) and the full likelihood is 

h(z; <)ffJ P(S(, = 1,... , T IS, Y, z, W)P(S IY, z, W) 
C 

x g(Y I z; )f(W I Y, z; i) dy dw, (3.19) 
where the additional integration is again over all possible W, and C is given by (3.6). 
Again the unobservable covariates W, may be integrated out from (3.19) if required. 

The mechanisms are ignorable for likelihood inference if they can be taken outside of 
the integral in (3.19). Sufficient conditions for ignorability are either type C or D. 

Conditions C. (i) S U Y Iz; p; 
(ii) SU(),j=l,..., T Y Iz, S; . 

Conditions D. (i) S Y I z, W; 
(ii) S(i),j= 1,..., TI Y z, S, W; 
(iii) YUWII z; I. 

The conditions D imply those in C. 
A controlled selection mechanism (3.16) satisfies C(i) and a controlled assignment 

mechanism (3.18) satisfies C(ii). If we now consider Table 1 conditions C(i) and C(ii) are 
automatically satisfied for experiments within surveys and so the mechanisms are 
ignorable. For an experiment condition C(ii) is satisfied and this mechanism is ignorable if 
there is no sampling, that is the experimental units represent the universe of interest. This 
is rarely the case and for most experiments sampling is ignored and conditions D(i) and 
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D(iii) are implicitly assumed to be satisfied. For prospective observational studies the 
mechanisms can be ignored if conditions D(i), D(ii) and D(iii) are all satisfied. 

3.5 Discussion 

What conclusions can we draw from the sufficient conditions that we have established for 
the ignorability of sampling and assignment mechanisms? The most obvious one is that 
controlled sampling and controlled assignment carried out by a scientist in such a way that 
they do not depend on the response variable Y will always guarantee ignorability provided 
the mechanisms are known, as we have assumed throughout. Any mechanisms which 
depend only on the design covariates z will suffice but the most acceptable are likely to be 
those based on randomisation, since they have the additional property of 'fairness', in the 
sense that every unit has some known nonzero chance of being selected for a sample and 
of being assigned a given treatment. Thus classical random sampling and random 
assignment schemes are ignorable and enable model-based inference to be carried out 
using face-value analyses. 

In practice even when random mechanisms are employed nature may intervene by 
introducing nonresponse and/or measurement errors. For a nonresponse mechanism to 
be ignorable it would have to satisfy conditions such as those in B or D, and these are not 
verifiable and so become a statement of belief. See Rubin (1976) and Little (1982) for a 
full discussion of the problems of missing values. Measurement errors which are related 
only to the units in le w the sample will affect the specification of the model, and hence the 
likelihood, but not the ignorability of the mechanisms. 

In observational studies, where nature applies the mechanisms, then conditions such as 
B or D should be assumed by the analyst for ignorability to hold. Neither of these sets of 
conditions is verifiable, since they depend on unobservable covariates, and so the 
assertion that they hold is a statement of belief. However, most analyses of observational 
studies are based on the face value distribution and implicitly assume that the ignorability 
assumptions are satisfied. We think that these conditions should be made explicitly, rather 
than remaining implicit; and we hope that the framework that we have developed will 
help in this prcess. This framework should provide a focus for the critical discussions 
which usually surround the analysis of any observational study. 

When assignment has been carried out before sampling then one assumption that 
sometimes may be verifiable on theoretical or practical grounds is that the response 
variable Y is posterior to the assignment variables W and z employed by nature. Holland 
(1986) calls this a post-exposure variable and if this is the case then Conditions B(i) and 
B(ii) are automatically satisfied and discussion can concentrate on the validity, or 
otherwise, of B(iii). 

For analytic surveys, controlled sampling means that attention centres only on the 
assignment mechanism. If Y is a post-exposure variable then again discussion will 
concentrate on B(iii) for justification of face-value analysis. For experiments the situation 
is different as controlled assignment enables valid inferences to be made provided that 
sampling is ignorable. However, the usual practice is simply to ignore sampling and not to 
discuss ignorability; thus it is implicitly assumed that Conditions D(i) and D(iii) are 
satisfied. Again we would argue that these assumptions should be made explicit so that 
the general validity of experimental results can be discussed openly. The common 
scientific practice of always trying to replicate new experimental results in different 
environments is clearly an attempt to establish D(i) and D(iii). It is to be regretted that 
this practice is not more widely employed in the social sciences. 

The above discussion points to B(iii) for studies with assignment before sampling and 
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D(iii) for studies with assignment after sampling as playing a vital role in the absence of 
controlled mechanisms. Yet these assumptions simply say that the unobserved covariates 
have no effect in the conditional distribution of the responses given the observed 
covariates. Such assumptions are basic to modelling by the analyst. If the effect of the 
unobserved covariates is small, then face-value analysis will still be approximately valid. 
This is one of the broad conclusions of Little (1982) and Smith (1983) who examine these 
issues. 

4 An example of an observational study 

In ?3 we distinguished the apparent population causal effect (3.12) from the true 
population causal effect (3.3) and noted that these two effects could be different. We now 
illustrate this by considering a simple example with a binary response, 0 (failure) or 1 
(success), and two treatments, T1 and T2. The true population of all potential responses 
(3.1) is an N x 2 matrix where each element Y(i) is either 0 or 1. The N pairs of potential 
responses (Y(l), y(2)) can take the values (0,0), (0,1), (1,0), (1,1), and the true 

population frequencies of these potential responses can be summarised as in Table 2. 

Table 2 
The true population 

Response Frequency 

(0,0) a 
(0,1) b 
(1,0) c 
(1,1) d 

N 

Thus b of the N pairs take the value (0, 1) and for any unit in this set the causal effect 
(3.2) would be Y?l)- y2)=0-1 = -1. For the whole population the true population 
causal effect is 

1)_7 2)=c+d b+d c-b 
N N N 

In an observational study all N units are assigned treatments by nature according to the 
mechanism (3.7). If N1 units are assigned to T1 and N2=N-N1 to T2 then the N 
responses which give the apparent population can be summarised in a 2 x 2 contingency 
table such as Table 3. 

The apparent population causal effect (3.12) is 

(-72) -f' M1 M2 
Y(1) 

- 
t2) 

= = P _ P2, say. (4.2) 
M1 N2 

Table 3 
The apparent population 

Response 
0 1 

Treatment T1 N1- M1 M1 N1 
T2 N2- M2 M2 N2 

N-M M N 
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Table 4 

Probability of assigning T1 to a unit 

Potential response Pr(gets T1) Pr(gets T2) 

(0,0) p 1-p 
(0,1) q 1-q 
(1,0) r 1-r 
(1,1) s 1-s 

Table 5 

Expected apparent population 

Response 
0 1 

Treatment T1 pa + qb rc + sd 
T2 (1 -)a+(1-r)c (1-q)b+(1-s)d 

N 

A general treatment assignment mechanism, such as (3.7), may produce an apparent 
effect (4.2) which is very different from the true effect (4.1). So inferences about (4.2) 
may be misleading if the true target for inference is (4.1). It is also true that the 
controlled assignment mechanism, (3.8), which depends only on the covariates z, can 
produce large differences. For example, if a covariate z is such that when z is large T1 is 
likely to give a 0 response and Ta 1 response, then nature can allocate according to z to 
produce apparent causal effects vastly different from the true effects. However, since the 
conditional model relating the responses to the covariate values is known and the 
covariate values themselves are known for all units, as is assumed in (3.13), then the 
apparent results can be adjusted to give predictions of the true results. These predictions 
will still differ from the true target (4.1) because of variation in the realisations of the 
assignment. On the average over all realisations we would obtain (4.1). Frequently it may 
be better to condition only on functions of z such as propensity scores (Rosenbaum & 
Rubin, 1983), which still leave the mechanism ignorable. 

Suppose now that the assignment is not ignorable and that the probability of assigning 
T1 to a unit depends on the potential response, Y, according to Table 4. Here the 
probabilities p, q, r, s are unrestricted. Under this mechanism we can calculate the 
expected apparent population for which Table 5 is a realisation. 

The response 0 is observed when T1 is applied either with probability p to the potential 
response (0, 0) which has frequency a, or with probability q to (0, 1) which has frequency 
b. Similar calculations lead to the other entries. 

If N is large we can equate Tables 3 and 5 disregarding the chance variation in 
treatment assignment. In the special case of a noninformative mechanism with no 
covariates, then p = q = r = s, and we find that (4.1) and (4.2) are equal. In general we 
have four equations, such as N1 - M1 =pa + qb, which constrain the possible values for 
the true population frequencies a, b, c, d, and hence constrain the true population causal 
effect (4.1). For fixed numbers in Tables 2 and 3 the necessary conditions for a solution to 
the four equations in p, q, r, s are 

N + (N2- M2) a + c N2- M2, (N- Ml)+M2> b + d> M2, 

M1+(N2-M2) c + d> Ml, N2+ (N- Ml)> a + b N1-M1. 
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Table 6 
Annual apparent deaths (all causes) 

Survive (0) Die (1) Total 

Smoking (T1) 13044 204 13248 
Non-smoking (T2) 17744 216 17960 

Total 30788 420 31208 

Table 7 

Propensities to smoke by response 

Response 
Smoking Non-smoking pr[smoking] 

Survive Survive 0-4227 = 12961/30665 
Survive Die 0-5533 = 83/150 

Die Survive 0-0909 = 4/44 
Die Die 0-5731 = 200/349 

Table 8 

Population distribution by response 

Response 
Smoking Non-smoking Frequency 

Survive Survive 30665 
Survive Die 150 

Die Survive 44 
Die Die 349 

31208 

These bounds can produce large differences between apparent and true population causal 
effects. For further discussion see Sugden (1988). 

As an example consider a highly simplified table adapted from a study on doctors and 
smoking reported by Doll & Hill (1964). Details are omitted because the example is only 
illustrative. Table 6 shows the observed data for deaths from all causes against the 
treatment T1, smoking, and T2, non-smoking. The data show a significantly higher death 
rate for smokers (0-0154) than for non-smokers (0-0120) with an apparent causal effect of 
0-0154 - 0-0120 = 0-0034. However if we assume probabilities of smoking varying with 
potential response (see Table 4) as given in Table 7, and we also assume a corresponding 
true population distribution of potential response (see Table 2) as given in Table 8, then 
the expected numbers of smokers and non-smokers with their response under the actual 
'treatment' received (see Table 5) agree exactly with Table 6. The true causal effect is 
(44 - 150)/31208 = -0-0034, a reversal of sign implying that smoking increases the chance 
of survival. Thus there exists an allocation by nature which changes the sign of the 
apparent causal effect if the true population is as in Table 8. 

A similar reversal of the sign of the true causal effect compared with the apparent 
causal effect can be shown for the data on deaths due to lung cancer and the presence or 
absence of smoking. The implication of these results is that any causal conclusions based 
on sampling from an apparent population in an observational study are open to serious 
doubt. Only if severe constraints are placed on the true population (Table 2) and in the 
assignment probabilities (Table 4) can the sign of the causal effects remain the same. This 
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raises the question whether causal conclusions can ever be inferred from an observational 
study without making strong subjective assumptions. 

5 Inference with incomplete covariate information 

The analysis of ignorability in ? 3 was based on the assumption that the entire covariate 
matrix z was known to the analyst. Frequently the analyst differs from the scientist who 
has designed the investigation, for example in a secondary analysis of survey data, and the 
analyst will only know the covariate values z, for the sample units. In this section we study 
this situation using an example considered by Sugden & Smith (1984) and Scott (1977). 

Consider a trivariate superpopulation with two treatments such that the potential 
responses y'), Yi2) and the covariate value zi form independent vectors (Yl), yi(2, ), 
for i = 1,..., N, with known distributions 

fl(y ) I z; 0())f(2Yi.) I zi; 0(2))g*(zi; A), (5.1) 

where the * distinguishes the distribution of unit values from that of the entire data matrix 
in (3.4). This model assumes that the treatment responses are conditionally independent 
given the covariate values and parameters which is an assumption commonly made in 
models for the analysis of experiments. 

The data available to the analyst is 

ds = (ys(, y)), s, s, s) (2)). (5.2) 

We also assume that both the sampling mechanism and the treatment assignment 
mechanism are of the forms 

p(s I z), p(s(), i= 1, 21s, z), (5.3) 

respectively, which include random selection and allocation as special cases. If z is known 
this leads to the full likelihood 

L op(s z)p(s(), i= 1, 2s, z)ff(y z; )g(z; A) dy5 

op(s I z)p(s(), i = 1, 2 1 s, z)g(z; A) fn f (Yl) zi; (I )) 
iEs(l 

x H f*(y(2) Zi; 0(2)) (5.4) 
xnA2)2 ,;^) (5.4) 

iEs(2) 

under the model (5.1), and the sampling and assignment mechanisms are ignorable for all 
model-based inferences. 

If the analyst only has the data ds given by (5.2), then the likelihood, to the analyst, is 

La f i( ) H f () f p(s I z)p (si), i = 1, 2 z, s)g(z; A) dz, (5.5) 
iEs(1) iEs(2) 

where z5 is the vector (zi; i i s). From (5.5) we see that 0(1) and 0(2) appear only in the 
face value likelihood 

Lf - I f(y) z; 0( ) f (yi zi; 0(2)), (5.6) 
iEs(1) iEs(2) 

and thus the sampling and assignment mechanisms can be ignored for inferences about 
functions of 0(1) and 0(2) such as the superpopulation causal effect 0(1)- 0(2). 

In this paper we have followed Rubin (1978) and defined the true population causal 
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effect as VI)- _ 2). Inferences about this effect require predictions of the unobserved 
values Y('), which in turn will depend on predictions of the unobserved values in the 
vector z,. In general the predictive distribution of () - y2) depends on the sampling and 

assignment mechanisms, unless condition 1' of Sugden & Smith (1984) holds, in which 
case p(s I z) = p(s I z,) with a similar condition for the assignment mechanism. 

In order to demonstrate the effect of selection on predictive inferences we assume that 
f (YI() Z; 0(j)) is N(f(')zi, a(J)z), for j = 1, 2, and 

Ak k- 
g*(zi; )= z-e- (i = 1,...,N) (5.7) 

F(k) 

We compare the effects for samples of size n = 2 under two sampling mechanisms. 

Scheme I. Select two units at random without replacement. 

Scheme II. Select the sample with probability proportional to 
N 

E Zi/ z Zi, 

the Lahiri sampling scheme for unbiased ratio estimation. 

We assume that the treatment assignment scheme depends only on s and z, and hence is 
of the form 

p(s(i), j = 1, 2 z,, s), 

which is true for any form of controlled assignment including random assignment. This 
form of assignment mechanism is ignorable for predictive inference. 

The predictive distribution Y(i) is given by f(yi() ds), where ds is the data (5.2). The 
mean of this distribution under the distribution (5.7) is 

E(Y) |I ds) = EZ,{E(YI) ds, zi)} = ,B()E(zi I ds), (5.8) 
where /(J) is the mean of the posterior distribution of B(J) and E(z,i d) is the mean of the 
predictive distribution of zi. Thus the predictive distribution of Y - Y2 has mean 

E(Y - Y2 ds) = (P(1) - (2))Z*, (5.9) 

where 

Z* = E(i ds), (5.10) N i=1 

is the predictive mean of the population mean Z. 
If we assume that the priors on 3(1), p(2), log a(l), log r(2), log A are independent and 

uniform then it follows that the posterior distributions of i(j) and a(), for j = 1, 2, are 
independent of the sampling mechanism and 

(y!) r(j)2\ 

f(f(Ji) I ds, (j)) N ( )2-) (i s();j = 1, 2) 

f(o) ds)= o) (j = 1, 2). (5.11) 

Note that since the effective sample size for each treatment is one the posterior 
distribution of a(i) is unchanged. 
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Under Scheme I, simple random sampling, the joint predictive distribution of 

Xi=Zi/ Zj (i S) 
Ijes 

is a symmetric inverse Dirichlet (Johnson & Kotz, 1970, p. 238) with marginal mean 
E(xi I d) = k/(2k - 1). Thus 

E(zi , d) = 2kzs/(2k - 1), 

and hence 

NZ, = 22, + (N - 2)2kz,/(2k - 1) = 2,s(Nk - 1)/(2k - 1). (5.12) 

Under Scheme II, with N 

p(sz I) cX E , 
jes I j=l 

the joint predictive density is again a symmetric inverse Dirichlet but now the marginal 
mean is E(z, I ds) = z,. Hence the prediction of the population mean is 

NZ,= Nzs. (5.13) 

Substituting (5.13) and (5.12) in (5.9) gives the predictive means of the true casual effect 
under the two mechanisms. The message is clear in that the predictive means differ 
despite the fact that the sampling mechanisms are of the form p(s I z), which is often 
termed uninformative. These mechanisms are only ignorable for predictive inferences if z 
is known. In our example the analyst only knows z,, that part of z which appears in the 

sample, and so the sampling mechanism is not ignorable in general and the inferences will 
differ for different sampling mechanisms. 

The overall conclusion of this paper is that even in a model-based analysis of data the 
analyst should always write down the full likelihood (3.13) or (3.19), which represents the 

joint distribution of the observations and of the sampling and assignment indicator 
variables. Failure to do this leads to inferences based on the face value likelihood (3.5) 
which may have no validity. In particular for observational studies where the treatment 

assignment mechanism is unknown, causal inference based on the apparent population 
has doubtful validity. When both mechanisms are under the scientist's control, then 
randomisation accompanied by complete reporting of the covariates z guarantees that the 
mechanisms can be ignored for statistical inferences based on the model (3.4). Clearly the 
scientific validity of the inferences will still depend on the validit of the underlying 
model. 

Acknowledgement 

An earlier, and shorter, version of this paper was presented at the I.S.I. Session in Amsterdam in 1985. The 
authors gratefully acknowledge the helpful comments of the referees. 

References 

Breslow, N.E. & Day, N.E. (1980). Statistical Methods in Cancer Research I: The Analysis of Case-Control 
Studies. Lyon: International Agency for Research on Cancer. 

Brewer, K.R.W., Foreman, E.K., Mellor, R.W. & Trewin, D.J. (1977). Use of experimental design and 
population modelling in survey sampling. Bull. Int. Statist. Inst., 41st Sess., Bk. 3, 173-190. 

Cox, D.R. (1958). The Planning of Experiments. New York: Wiley. 
Dawid, A.P. & Dickey, J.M. (1977). Likelihood and Bayesian inference from selectively reported data. J. Am. 

Statist. Assoc. 72, 845-850. 

179 



180 T. M. F. SMITH and R. A. SUGDEN 

Dawid, A.P. (1979). Conditional independence in statistical theory (with discussion). J. R. Statist. Soc. B 41, 
1-31. 

Doll, R. & Hill, A.B. (1964). Mortality in relation to smoking: Ten years' observations of British doctors. Brit. 
Med. J. 1964, 1399-1410 and 1460-1467. 

Fienberg, S.E. & Tanur, J.M. (1987). Experimental and sampling structures: parallels diverging and meeting. 
Int. Statist. Rev. 55, 75-96. 

Holland, P.W. (1986). Statistics and causal inference. J. Am. Statist. Assoc. 81, 945-970. 
Johnson, N.L. & Kotz, S. (1970). Distributions in Statistics, 3, Continuous Multivariate Distributions. New 

York: Wiley. 
Little, R.J.A. (1982). Models for non-response in sample survey. J. Am. Statist. Assoc. 77, 237-250. 
Rosenbaum, P.R. & Rubin, D.R. (1983). The central role of the propensity score in observational studies for 

causal effects. Biometrika 70, 41-55. 
Royall, R.M. (1976). Current advances in sampling theory: implications for human observational studies. Am. 

J. Epidemiol. 104, 463-473. 
Rubin, D.B. (1976). Inference and missing data. Biometrika 63, 593-604. 
Rubin, D.B. (1978). Bayesian inference for causal effects: the role of randomisation. Am. Statistician 6, 34-58. 
Rubin, D.B. (1980). Discussion of paper by D. Basu. J. Am. Statist. Assoc. 75, 591-593. 
Scott, A. J. (1977). On the problem of randomization in survey sampling. Sankhya C 39, 1-9. 
Scott, A.J. & Wild, C.J. (1986). Fitting logistic models under case control or choice-based sampling. J. R. 

Statist. Soc. B 48, 170-182. 
Smith, T.M.F. (1976). The foundations of survey sampling: a review. J. R. Statist. Soc. A 139, 183-204. 
Smith, T.M.F. (1983). On the validity of inferences from non-random samples. J. R. Statist. Soc. A 146, 

394-403. 
Sugden, R. A. & Smith, T. M. F. (1984). Ignorable and informative designs in survey sampling inference. 

Biometrika 71, 495-506. 
Sugden, R.A. (1988). The 2 x 2 table in observational studies. In Bayesian Statistics 3, Proceedings of the 3rd 

international meeting on Bayesian statistics, Valencia, Spain. To appear. 
Wold, H.O. (1967). Nonexperimental statistical analysis from the general point of view of scientific method. 

Bull. Int. Statist. Inst., 36th Sess., Bk 1, 391-424. 

Resume 

Un cadre g6enral est donn6 pour l'examen de r6le des mdcanismes de selection d'unites et d'allocations de 
traitements dans les experiences, enquetes et etudes d'observation. Nous donnons des conditions impliquant que 
ces m6canismes peuvent etre ignores pour des inf6rences fond6es sur les models. Nous montrons dans les 
examples comment des inferences peuvent tenir compte des mecanismes quand ces conditions ne sont pas 
satisfaites. 
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