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Ignorable and informative designs in survey sampling 
inference 

BY R. A. SUGDEN 
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SUMMARY 

The role of the sample selection mechanism in a model-based approach to finite 
population inference is examined. When the data analyst has only partial information on 
the sample design then a design which is ignorable when known fully may become 
informative. Conditions under which partially known designs can be ignored are 
established and examined for some standard designs. The results are illustrated by an 
example used by Scott (1977). 

Some key words: Bayesian predictive inference; Face-value likelihood; Finite population; Model-based 
inference; Partial design information; Regression through the origin; Secondary analysis; Selection 
mechanism. 

1. INTRODUCTION 

In a model-based approach to survey sampling inference the role played by the survey 
design is not completely clear. Some authors such as Godambe (1966) and Basu (1971) 
have asserted that the randomization distribution has no role in a purely model-based 
approach. Others, such as Ericson (1969), Royall & Pfeffermann (1982), Little (1982) and 
Smith (1983), recognize that random sampling schemes may have desirable robustness 
properties in a model-based approach but that other designs, such as balanced samples, 
may be better for some purposes. 

Scott (1977) and Scott & Smith (1973) examine the conditions under which any survey 
design can be ignored for Bayesian inference. If these conditions are not satisfied then 
averages over subsets of the randomization distribution may be necessary for valid 
Bayesian inference. Rubin (1976), in a fundamental paper on missing values, interprets 
sampling as a special case of missing values and establishes conditions under which the 
selection method can be ignored for model-based inferences from the Bayesian, 
likelihood or sampling theory viewpoints. Little (1982) extends Rubin's results to 
nonresponse and Smith (1983) to nonrandom designs such as quota sampling which 
depend on response variables. 

The key to understanding the role of survey design is to follow Scott (1977) 
and introduce the idea of design variables, known to the sampler before the sample is 
drawn, in addition to the response variables measured in the survey. For a finite popula- 
tion of N units we define these as follows. 

Response variables, y = (u,. ..., yN)T, known only for those units observed in the sample, 
s, which is a subset of n units from N. 
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Design variables, z = (z1, ..., ZN)T, known for all units in the population, which may 
include label information such as cluster or stratum indicator variables which determine 
group membership, other group variables and quantitative variables such as measures of 
size. 

In a model-based approach the matrix of values y is viewed as the realization of a 
random matrix Y. The degenerate case when Y = y is fixed is used in the classical 
randomization approach to survey sampling inference. The design variables z can also be 
regarded as a realization of a random matrix, or they can be regarded as fixed in the 
conditional distribution of Y given z. 

Drawing a sample partitions the labels into two sets, s and s, defining submatrices 
ys) y, and zs, z,. The selection of the observed sample, s, is the final part of the design stage 
of a sample survey and in probability sampling designs takes place according to a set of 
chosen selection probabilities 

[{s,p(s)}, s E f], (1-1) 

where J is the set of feasible samples. The choice of design is often an ill-defined process 
involving the determination of strata, size of cluster, measure of size of sampling units, 
overall sample size, sample allocation and method of unequal probability sampling. 
Frequently cost and administrative constraints dominate the choice rather than 
considerations of statistical inference. Nevertheless, we suppose that the selection 
process can be modelled by a sample selection scheme which depends on the design 
variables z and may depend also on the response variables y and a vector of para- 
meters /. We write this scheme as 

P(sjly,-z; i/), s e so. (1.2) 

This is the discrete distribution of the sample indicator variable S which takes the value 
one for sampled units and zero otherwise. The realized value of S is also denoted by s. For 
surveys with nonresponse, or for quota samples, the selection may depend on y and a as 
well as on z; see Little (1982) and Smith (1983). 

In this paper we concentrate on designs which depend only on the design variable z. 
Such designs, which include all random sampling designs, can be written 

p(slz), se?9. (1.3) 

All designs of the form (1P3) satisfy the basic design assumption of Scott (1977), that 

S 11 YIZ, (1.4) 

where the symbol 11 means independent as employed by Dawid (1979). Thus the sample 
indicator, S, and the response variable, Y, are conditionally independent given the value 
of the design matrix Z for all the N units in the population. When z is known (1 4) implies 
both of the conditions of Rubin (1976), missing at random and observed at random, for 
the ignorability of the process causing missing values. Sampling is regarded as a case 
where units are intentionally missing, or missing by design. 

Formally, let A. denote the event S= s. Then missing at random corresponds to 

As 11 Y3 ys8z (.5) 

Similarly observed at random can be written 



Ignorable and informative dessigns 497 

where the conditional independence condition must hold for all values of the missing 
data, Y,. Conditions (1-5) and (1-6) are together weaker than (1-4). This is true even if 
they hold for all z, s E Sf and (1I5) holds also for all possible data sets y,. A sufficient 
condition for (1I4) is that in addition Y, 11 Y.1 z for all z. For the examples considered in 
Table 2 in ?4 the schemes satisfy (1 4) and can all be written in the form (1 3). 

The object of this paper is to consider situations in which there is only partial 
knowledge of the values in the matrix of design variables z. The person drawing the 
sample, the sampler, is assumed always to know the values in z, and so can ignore the 
sample selection scheme in making model-based inferences (Scott, 1977; Rubin, 1976). 
Frequently, however, the survey data are analysed by a research worker or statistician, 
the analyst, who is different from the sampler. If the sampler has not included the values 
of z in the data then the analyst must make inferences about Y based on the knowledge 
of z gleaned from the sample and its selection mechanism, together with other auxiliary 
information. 

Our basic question is under what circumstances can the analyst ignore the sample 
selection scheme? In ? 2 we define various types of partial information. In ? 3 we develop 
some general model-based theory for inference based on partial information and 
establish conditions for the ignorability of the sample selection scheme. In ? 4 we 
examine some standard probability designs to see to what extent they satisfy the 
conditions for ignorability. In ? 5 we look at some models for suvey data in the light of 
our previous results. 

2. PARTIAL DESIGN INFORMATION 

When the analyst of survey data is not the sampler the values in z for all N units of the 
population may not be known. In this case knowledge of the selection probabilities in 
(1 -1) may carry information about the unknown values of the design variables z and this 
information may be useful in a statistical analysis. For example, the selected units may 
suggest that the sample is unexpected in that the inclusion probabilities of the units in s 
are all below expectation. The data in (1-1) may then be used by the analyst to correct 
this possibly misleading or unrepresentative sample. 

Let the data available to the analyst be 

es = (s, YS) ds), (2.1) 

where d. is data derived from knowledge of the selection mechanism (12) and from 
values of the selection probabilities (1-1) if these are available, and also from any known 
values or functions of z. When z is the realized value of a random matrix Z we write 
Ds = D,(Z) as the random quantity with realized value ds = Ds(z) for fixed s. 

The case where labels s are not available is not covered; see Scott & Smith (1973). 
D. B. Rubin, in an unpublished conference paper, considers the special case where d, 
consists of a single variable observed for all units of the population. His model in a 
Bayesian framework has joint exchangeability for both response and design variables, 
so that s carries no information in addition to data (y8, zs). 

The design information ds may take many forms depending on the knowledge of z 
available to the analyst. It is convenient to introduce the idea of a proxy design variable 
which is a function of z summarizing this information. 

Definition. A proxy design variable w = W(z) is a vector function of the design 
variables z. We write W = W(Z) as the random variable with realized values w and w. the 
subvector for a sample 8 as for Zs. 
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In a stratified population the formation of strata may have been based on knowledge 
of quantitative variables z, for example by ordering the population on the values of a 
component of z or by grouping the population into fixed ranges of a component variable. 
If the analyst knows stratum membership only, then ds corresponds to a proxy design 
variable w = W(z) which determines the stratum indicator variables. Many designs such 
as stratifed random sampling permit the determination of w from the selection 
probabilities (11). For poststratification, however, the membership of strata may be 
known only for sampled units so that w, alone is known to the analyst. 

For probability proportional to size sampling when all the inclusion probabilities are 
known, a vector w can be inferred for the whole population. If the probabilities are 
known only for sampled units then ds is of the form w.. In general the size measures z 
cannot be deduced from w unless the population mean z is known and the sample size n is 
fixed. If both w. and z. are known, then z can be deduced from the proportionality of wi 
and zi. 

For inference by the analyst we consider six cases of design information, case (i) 
corresponding to complete design information and cases (ii)-(vi) to partial design 
information. In all cases (s, y8) is assumed to be known. The design information in ds in 
each case is given in Table 1. 

Table 1. Design information in d8 

Case ds Case ds 

(i) z (iv) Ws) ZS 
(i) w, Zs (v) Zs 

(iii) W (vi) ws 

In ? 3 we show that a key condition for the ignorability of selection for inference given 
the design information is as follows. 

Condition 1. The relation A. 11 Z I D holds. 

Various designs are examined in ? 4 in the light of this condition which is equivalent to 
the assertion that D. is sufficient for z in the model p(s 8 z). For case (i), where ds = z, 
Condition 1 is always satisfied. 

Note that in the above we are assuming that the analyst knows the selection 
mechanism which is part of his statistical model. For example he knows that stratified 
random sampling has been employed, the rule by which strata are formed and also the 
sample size allocation rule, but not necessarily the strata themselves or equivalently the 
selection probabilities (1L1). An unknown selection mechanism, as for example in quota 
sampling (Smith, 1983), requires further assumptions. 

3. MODEL-BASED INFERENCE 

3d1. Introduction 

We suppose that the analyst can formulate a model, or family of distributions, for the 
variables Y, Z in the population which we write 

f(Y,Z; 0,0) =f(yIZ; 0)g(Z; 0), (3.1) 
where 0 and 0 are distinct in the sense of Rubin (1976). The analyst may be interested in 
making inferences about 0 or or about functions of 0 and 0 such as parameters in the 
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marginal distribution of Y. Predictive inferences may also be made about the unob- 
served random variables, Y,, when the target of interest is a descriptive statistic such as 
a finite population total or mean. Such descriptive inferences however, may be 
parametric rather than predictive for models based on, say, finite exchangeability 
(Sugden, 1979) or the 'classical model' (Royall, 1968). 

If selection is ignored then model-based inferences are usually made from the joint 
distribution of Y, and DS holding s fixed (Rubin, 1976). This joint distribution is found 
by integrating (3d1) over the z's that could have generated d, for the fixed s, that is 

fs(ys, ds; 0,4)) = f fs(ys I z; 0) g(z; 4) dz, (3 2) 
s 

where -9' = {z: Ds(z) = ds}. We use the subscript s for notational clarity to denote 
densities derived from (3d1) for the fixed s. The likelihood function based on (3 2) is called 
the face-value likelihood by Dawid & Dickey (1977). However, the full distribution of the 
data es in (21) is 

f (s, ys, ds; 0,) = fs(ys I z; 0) g(z; )) p(s I z) dz, (3*3) 

and the full likelihood is based on this distribution. The analyst can ignore the effects of 
selection if inferences based on (3-2) are equivalent to those based on (3 3), and this will 
depend on the type of inference, Bayesian, likelihood or sampling theory, and on the 
target of inference 0, 4 or Y,. The choice of target may suggest the conditioning of (3 3) 
or (3-2) under a sampling theory or likelihood approach. 

3-2. Likelihood/Bayesian inference on 0 and 4) 
If the selection mechanism satisfies Condition 1 for the observed ds then Condition 1' is 

satisfied. 

Condition 1'. The relation As 1 Z I Ds(Z) = ds holds. This implies that p(s 8 z) = p(s 8 ds) 
for any z in Qs 

Equation (3 3) now becomes 

f (es; 0, 4) = pp(s I ds) fs(ys) ds; 0, 4)) (3*4) 

where p(s I ds) is not generally equal to p(s) in (1 1). 
We conclude that under Condition 1', Bayesian or likelihood inference on 0 and 4 leads 

to identical results with either (3-2) or (3-3), that is the design is ignorable. 

Remark 1. Condition 1' is equivalent to, in an obvious notation, the statement 

pr(AsIz) = pr(AsIds). 

D. B. Rubin, in his unpublished conference paper, would say that ds is an 'adequate' 
summary of z. However his partial design information is a special case of ours. 

Remark 2. The design is ignorable whatever the sample outcome if Condition 1 holds 
for all s. 
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If Condition 1' is not satisfied, the design may still be ignorable for inferences on either 
0 or 0 if one of two conditions on the model are true. 

(i) For 0 alone, suppose that D, is sufficient for 4 in the marginal model g(z l 4) for the 
fixed s; that is Condition 2. 

Condition 2. The relation Z 11 D, holds. 

Then (3 3) can be written in the form 

h(8, Y, I d,; 9) g, (d,; ) (3 ) 

where the first term depends only on 0 and incorporates selection effects and the second 
term is the marginal distribution of D8 = D,(Z) for the fixed s. Similarly (3 2) becomes 

f, (y, Ids; 0) q,(d.s; ),(3-6) 

where the first term does not depend on 0 because of Condition 2. 
Comparing (3 5) and (3 6) we conclude that, under Condition 2, likelihood/Bayesian 

inferences on 0 satisfy ignorability but not those on 0. 
(ii) For 0 alone, alternatively suppose that the conditional distribution of the 

responses of sampled units s depends only on z through the design information d,; that is 
Condition 3. 

Condition 3. For all 0, Ys 11 Z I Ds; 0. 

Then the term f8(y8 I z; 0) is constant over z in p9S and (3 3) becomes 

fs(yI I ds; 0) p(3 I z) g(z I 4) dz. (37) 

Similarly (3 2) reduces to (3 6). 
Comparing (3 6) and (3 7) we conclude that, under Condition 3, likelihood/Bayesian 

inferences on 0 satisfy ignorability but not those on 4. 

Remark. If both Conditions 2 and 3 hold, for example when D. includes both a 
sufficient statistic for 4 and at least z5, then the full likelihood from (3 3) reduces to (3 6). 
The design is therefore ignorable for likelihood/Bayesian inference on either 0 or 4 or 
indeed functions of 0 and 4. This conclusion is equivalent to that when only Condition 1' 
holds. However, the factorization of (3 3) in (3 6) shows that in this case 0 and 4 are a 
posteriori independent. 

3-3. Predictive inference 
Under a Bayesian approach the predictive distribution of Y, is the conditional 

distribution of Y, given the full data (2-1). When Condition 1' holds we have that 

f (y,8s, ds; 0, 4) = p(sI ds) f.(y, ds; 0,) ). (3 8) 

Integration out of 0, 4 over their joint prior gives 

f (y, 8, d8) = p(s l d8) f8(y, d8). (3*9) 
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Now 

f (yIs,d) = 
f 8, ds) = p( 

I ds d = fs(y I ds). (3d10) 

Thus for the predictive distribution when Condition 1' holds 

f (Y8 I YS5 8, ds) = f (yd)= f)ls(y I ys ds) (311) 

and selection can be ignored. A similar conclusion has been reached by D. B. Rubin who 
considers the special case of exchangeable priors in the unpublished conference paper 
mentioned above. In this case the suffices s, 8 on our densities can be dropped. 

Remark. Neither Condition 2 nor 3 is sufficient to give ignorability for prediction. 
Even if both conditions hold predictive inferences still depend on the design through a 
term of the form h(s, y5, ds; 0). 

3-4. Sampling theory inference about 0 and 0 
In a model based approach, sampling theory inference refers to inference under the 

model (3 3) and not simply to either the randomization distribution p(s 8 z) or the model 
(3 2). A problem in this approach is to determine how the inferences should be 
conditioned. In particular can we examine the distribution of y. conditional on either s, ds 
or both? This usually requires an appeal to some form of ancillarity. 

For the data es = (s, ys, d) and under Condition 3, (3 3) reduces to (3 7) and the 
conditional distribution is 

f (ys 1,3,d.; 0, ) = fs(ys,I ds; 0). (3.12) 
The factorization (3 7) suggests that for inferences about 0 the design can be ignored 

and that the analyst should employ (3d12) for the observed 8. 

For inferences about (0, 4) jointly, Condition 1 must hold for ignorability. We then 
find that the conditional distribution is 

f (Ys 1 s, ds; fJ, 0) = fs(y S5 ds; 0}, O)lgs(ds; 0), (3.13) 

which shows that the design can be ignored and that again the analyst should condition 
on d8. If in addition Condition 2 holds with D. sufficient for 4, then the conditional 
distribution further reduces to (3 12) and the design is again ignorable for 0 and inference 
on 4 can be made through the sufficient statistic D, In general however the design is not 
ignorable unless Condition 1 holds and in addition p(s I ds) = p(s) for all 8. 

4. IGNORABLE DESIGNS 

In this section we consider some examples of common probability sampling designs 
and purposive designs and discuss whether they satisfy the main condition for 
ignorability, Condition 1: 

As 11 ZIDS, 

for all 8 in each of the cases of design information listed in ? 1. The results are summarized 
in Table 2. 
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Example 1: Simple random sampling. Here 

p(8]z)=l 01) 

for all z whenever I 81 = n, and is zero otherwise. 
This design is independent of any variable, design or response, so certainly satisfies 

Condition 1. Scott (1977) regards this as the only uniformly noninformative design. 

Example 2: Stratified random sampling. Assume that there is a single design variable, 
a measure of 'size', which is used to construct size strata U1, U2, ..., UH, subsets of the 
labels, or equivalently a stratum indicator variable w = W(z), where wi = h (i E Uh). 

Two methods of forming strata are considered. 
Method A: fixed endpoints, random sizes. For real numbers 

O = aO < al < ... < aH-1 < aH = 00, 

define wi = h if zi E [ah-1, ah). 

Method B: fixed sizes, random endpoints. Let the H strata be of sizes N1, ..., NH. Form 
the strata by ranking, where Z(1) < ... < Z(N) are the order statistics of z, and define wi = h 
if ZiE [z(~Mh+1),z(Mh+l)], where Mh= XNj, with the sum overj = 1, ...,h-1. The sample 8 
is now selected according to 

p(8I z)l h(fl ) 
/h=1 

( 
nh) 

whenever I 8 n Uh I = nh (h = 1, ..., H) and zero otherwise, where the sample allocation 
n = (nl, n2, ..., nH) is fixed. 

Note that there is a one-to-one correspondence for this design between the selection 
probabilities (I 1) and the indicator w. This implies that whenever w or (I 1) is included 
in the design information then Condition 1 holds. When the analyst knows only the 
strata to which sampled units belong, that is ws alone is observed, then the fixed stratum 
sizes in method B imply that Condition 1 is satisfied but not for method A where the sizes 
are unknown. If zs only is available then Condition 1 is not satisfied even for B. 

When the known sample allocation rule is such that different sampling fractions are 
used in each stratum, the inclusion probabilities 7i = nh/Nh (i E Uh) or equivalently the 
propensity scores, by Rosenbaum & Rubin (1983) and by D. B. Rubin in his conference 
paper, are also in one-to-one correspondence with the indicator w. Thus Condition 1 is 
satisfied when the whole vector of propensity scores is known. In general of course 
knowing the inclusion probabilities for all units is not sufficient for DS to satisfy 
Condition 1. 

Example 3: Probability proportional to size sampling. Let the design variable again be 
a measure of size and let the proxy design variable wi = (nzi)/(Nz) be the inclusion 
probability for unit i, where z is the population mean of the design variable and n is the 
sample size. 

Two methods of achieving these probabilities are considered. 
Scheme 1. For conditional Poisson sampling (Haijek, 1981, p. 132), 

p(8I z) oc flHwil (1-wi), 
ies ios 

if 8 contains n distinct units, zero otherwise. 
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Scheme 2. For the Sampford-Durbin rejective scheme: 
(i) select first unit with drawing probabilities {win, i = 1, ..., N}, and then replace it; 

(ii) select subsequent units with probability proportional to wj/(l - wi) with replace- 
ment, j * i; 

(iii) if achieved 8 contains n distinct units accept it, otherwise start again. 
Knowledge of the wi's for all units is sufficient to satisfy Condition 1 using both 

methods as the inclusion probabilities determine the joint inclusion probabilities and 
also p(8). This is not true in general for all probability proportional to size schemes so the 
conclusion of D. B. Rubin in his conference paper that the inclusion probabilities are 
propensity scores which form an adequate summary must be tempered by the condition 
that the scheme is of a similar type to scheme A or B. 

These propensity scores are often used as inverse probability weights attached to 
sampled units to obtain approximately unbiased estimators with respect to the 
randomization distribution. When they are known only for sampled units, that is ws is 
known, then Condition 1 is no longer satisfied for either A or B. The value of p(s I z) 
depends also on the inclusion probabilities for unsampled units. 

Example 4: Purposive sampling. The simplest form is a nonrandomized design 

p(8s lz) = { = (),(4 1) 0 otherwise, 

where 80(.) is a known indicator function. 

(a) Consider for example the population of patients arriving in a doctor's waiting- 
room. Let zi be the time of arrival for the ith patient and let W be a proxy design variate 
denoting order of arrival so that w is a vector of ranks. The sampling scheme selecting the 
first n patients to arrive is purposive with 

80(z) = {i: 1 < wi(z) < n}. 

A similar and mathematically identical example occurs when the n largest units are 
selected with probability one in order to achieve optimality for estimation under a 
regression model through the origin (Royall, 1970). 

(b) Other forms of purposive sampling, such as balanced sampling (Royall & Herson, 
1973), may sometimes involve some element of randomization. A particularly simple 
case is where the sample s is selected at random from a set of feasible samples Y"O(z), 
assumed to be nonempty for all z, which satisfy the conditions of balance, thus 

51/ 
) lk(z) 8 c- f0(z), 42 

p(81z) =0 otherwise, (42) 

where k(z) is the number of feasible samples. 
As an example, consider again a regression model where zi is the 'size' of the ith unit. A 

simple balanced sampling scheme which may be adopted for robustness (Royall & 
Herson, 1973) is given by 

So(z) = {s: 1s n, Zs =Z, 

where Zs is the sample mean. If there is a unique balanced sample, so that kc(z) = 1 for 
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all z, then the scheme is of type (4 1), otherwise of type (4 2). Note that the condition k(z) 
positive for all z may place a severe restriction on the space of design populations. 

Whether Condition 1 is satisfied or not depends on the amount of design information 
Ds available for each observed 8. 

We require for all s in fi, whenever Ds(z) = Ds(z), 

p(s1 z) = p(s1 z'). (4*3) 

For example (a) this is clearly satisfied when w or even only ws is available but not 
when zs only is observed, case (v). 

Example (b) is considerably less straightforward. If only ranking information is 
available, the condition is clearly not satisfied. 

When Ds(z) = zs, case (v), we require z to be known and fixed before sampling, or else z' 
can differ from z even though z and z' agree on the subset s. Alternatively if Ds includes 
the observed value of z, such that z = Zs for an observed 8, then (4 3) is satisfied. This 
continues to hold if Zs rather than zs is available. These statements are however only true 
if the assumption that there is a unique 'balanced' sample holds so that the scheme is of 
form (41). Otherwise the value of k(z) may carry information. If k(z) is constant over 
all z, for example if the possible design populations are permutations of each other so the 
complete set of order statistics are known, then the selection scheme carries no 
information in the sense that (4 3) is satisfied. If k(z) is not constant then the design 
information Ds should include -ZS z and the value of k(z) itself or equivalently p(s 1 z) for 
the observed 8, in order to satisfy (4 3) and hence Condition 1. Face-value likelihood 
inferences using (3 2) may become quite complex. 

In summary, Table 2 shows whether the ignorability Condition 1 is satisfied or not. 

Table 2. Satisfaction of ignorability Condition 1 

Design 
4: purposive 

Data 1 2: STRS 3: PpS a b b 
Case set SRS a b a b (z known) 

(i) S, ys) WIv vA 
(ii) s, Y w ZS d x v x v 
(iii) S,ys,W N' N ' ' N x x 
(iv) 85YS N Z x N' x N' x 

(v) s, YS5 zs x x x x x 
AX 

(vi) s, YsN Ws x N' x N'/ x x 

SRS, simple random sampling; STRS, stratified random sampling; Pps, probability 
proportional to size sampling. 

Before embarking on an analysis of survey data collected by others an analyst must 
examine his data set and his knowledge of the selection mechanism carefully to see if 
Condition 1 is satisfied or not. If not, then the design forms an explicit part of the model- 
based inference, and is 'informative' (Scott, 1977). 

5. AN EXAMPLE: BIVARIATE SUPERPOPULATION 

Suppose ( Ye, ZL) (i = 1, ..., N) are independent, each with known distribution 

f * (Yi I zi; 0) g* (zi; 0) (5.1) 

This model applies when all the information about the structure of the finite population 
as it relates to Y is contained in the values of Z and interest centres on the regression 
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relationship between Y and Z. We assume that data are available on sampled units only 
so that ds = ZS, case (v). It follows immediately from the model that Condition 3 is 
satisfied and the design is ignorable for inferences about 0 which therefore use the face- 
value likelihood 

H f*(Yi I zi; 0). (5-2) 
iES 

This likelihood is appropriate for examining the regression relationship between Y and Z 
with linear regression being a special case. The model extends to multivariate Y, Z in an 
obvious way. 

In general Bayes/likelihood inferences about 4 in the marginal distribution of z will 
depend on the design. However, if the strong Condition 1' is satisfied, for example by 
simple random sampling, then the design can be ignored and inferences made using 

HU g*(zi; b) (5-3) 

Alternatively if the data are augmented by a sufficient statistic for 0 then Condition 2 is 
satisfied and the design can again be ignored. 

When both Conditions 1' and 2 hold predictive inferences about Y, can be made from 
the posterior distribution f (yS-, z- I ej) ignoring the design. If in addition 0, b are a priori 
independent then the posterior distribution factorizes and predictions can be made in a 
two-stage process by predicting zi (i 0 s) if we use the posterior distribution of k derived 
from (5-3), and then predict Yi for the predicted zi using the posterior distribution of 0 
derived from (5-2). 

Consider a very simple example (Scott, 1977), with a single design variate measuring 
size related to the response variate by a regression through the origin. Specifically 

f (Yi I zi; 0) = N(fBzi; c2 Zi), 0 = (/3, U)T 

* = Ak Zk- e-z 

Thus the sizes of the units in the finite population are a random sample of size N from a 
gamma distribution, y(k, A) with known index k and unknown scale parameter A. 

We compare the effects of three schemes for selecting one unit: 
Scheme 1: select the unit at random, 
Scheme 2: select the largest size unit with probability one, 
Scheme 3: select the unit with probability proportional to size. 
If we assume great prior uncertainty, with independent constant prior densities for /3, 

log a and log il, the posterior distribution of /B is 

P(/ I a, Y ZS) - N(ys/zs; u2/Zs), 

for any selection scheme since ds = zs and Condition 3 is satisfied. Similarly, the posterior 
distribution of u is unchanged since there is no scale information in a sample of size one. 

The joint predictive density of z, is most simply expressed in terms of xj = zj Zs-1 (j ? s) 
as follows. 

Scheme 1. Here 

p(XSz8) = NN(N) xj-1/(l + Xj)Nk (X > ), 
aivt Di e distriF(k)}N1 J 
an inerte Dirchle disribuion Johso & otzs90 p3) 
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Scheme 2. Here 

p(xt z8) NF(Nk) xj /(l+xj)Nk (O < Xj <1) 
{F(kc)jNs12!s 

a truncated inverted Dirichlet distribution. 
Scheme 3. Here 

p(xs lz8) =SF(Nk /1) Hx (l?Zi)Nk +l 
1 

(xj > O), 
{F(1k)} F(k ? 1) .osjo 

also an inverted Dirichlet distribution. 
The distributions are different and so the conclusion is clear; although the sampling 

schemes can be ignored for inferences about ,B they cannot be ignored for predictive 
inferences about the finite population total. This shows that those who adopt a 
superpopulation approach to inference from sample surveys cannot in general ignore the 
way in which the sample has been selected. 

The work of T. M. F. Smith was supported by a grant from the Social Science Research 
Council. 
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