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SUMMARY

The validity of design-based inference is not dependent on any model assumption. However,
it is well known that estimators derived through design-based theory may be inefficient for
the estimation of population totals when the design weights are weakly related to the variables
of interest and have widely dispersed values. We propose estimators that have the potential to
improve the efficiency of any estimator derived under the design-based theory. Our main focus is
limited to the improvement of the Horvitz–Thompson estimator, but we also discuss the extension
to calibration estimators. The new estimators are obtained by smoothing design or calibration
weights using an appropriate model. Our approach to inference requires the modelling of only one
variable, the weight, and it leads to a single set of smoothed weights in multipurpose surveys. This
is to be contrasted with other model-based approaches, such as the prediction approach, in which
it is necessary to postulate and validate a model for each variable of interest leading potentially
to variable-specific sets of weights. Our proposed approach is first justified theoretically and then
evaluated through a simulation study.

Some key words: Extreme weight; Generalized design-based inference; Horvitz–Thompson estimator; Model-based
inference; Multipurpose survey; Smoothed estimator; Smoothed weight.

1. INTRODUCTION

The validity of design-based inference, sometimes called randomization-based inference, is not
dependent on any model assumption. However, it is well known that estimators derived through
design-based theory may be inefficient for the estimation of population totals when the design
weights are weakly related to the variables of interest and have widely dispersed values. For the
Horvitz–Thompson estimator, this fact was already recognized by Rao (1966) and Basu (1971),
if not even earlier.

In the design-based framework, the above problem can be approached by reducing the vari-
ability observed in the design weights through some function (Beaumont & Alavi, 2004). For
instance, winsorizing the largest design weights is common in practice (Potter, 1990; Elliott
& Little, 2000). These weight modification methods usually require making a compromise be-
tween minimizing the design bias and the design variance of estimators by a suitable choice
of a tuning constant. Unfortunately, this choice is not so straightforward in multipurpose sur-
veys, since an appropriate tuning constant for one variable of interest may be inappropriate for
another.

In this paper, we propose estimators that have the potential to improve the efficiency of any
estimator derived under the design-based theory without requiring the specification of a tuning
constant. Gains in efficiency are achieved at the expense of introducing a model for the survey
weights. The approach to inference that we consider is thus a type of model-based inference.
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Nevertheless, its basic principles remain close to those of design-based inference in the sense that
it is conditional on the population values of the variables of interest and not conditional on the
sample inclusion indicators. Such an approach to inference is called generalized design-based,
as what is known as design-based inference in the literature is just a special case. Although
the proposed approach is, to our knowledge new, the idea of modelling survey weights is not.
It has been employed for the more efficient estimation of model parameters in Pfeffermann &
Sverchkov (1999) and for the prediction of nonsampled units in Sverchkov & Pfeffermann (2004),
who considered the estimation of finite population parameters.

The approach that we consider requires the modelling of only one variable, the survey weight,
and it leads to a single set of smoothed weights in multipurpose surveys. This is to be contrasted
with other model-based approaches, such as that proposed by Elliott & Little (2000) or the
prediction approach of Royall (1970), where it is necessary to postulate and validate a model for
each variable of interest, which may then lead to variable-specific sets of weights. Although these
model-based approaches may be appealing from the viewpoint of statistical efficiency, they may
be practically inconvenient when there are many variables of interest.

2. PRELIMINARIES AND THE BASIC PROBLEM

We consider the problem of estimating the vector of finite population totals Ty = ∑
k∈U yk ,

where yk is the vector of variables of interest for population unit k and U is the finite population of
size N . We denote by Y the N -row matrix containing y′

k in its kth row. We assume that a sample s
of size n is selected, from the finite population U , according to a probability sampling design
p(I | Z , Y ) = p(I | Z ), where Z is an N -row matrix containing z′

k in its kth row, zk is the
vector of design variables for population unit k and I ′ = (i1, . . . , iN ) is a vector of sample
inclusion indicators; that is, ik = 1 if population unit k is selected in the sample s, and ik = 0
otherwise.

We define generalized design-based inference as any inference that is conditional on Y but
not on I . The reason for conditioning on Y is to avoid modelling the multiple variables of
interest. In § 5, we will consider inference with respect to the distribution FI,Z | Y , which is a
special case of generalized design-based inference. Design- or randomization-based inference
is another important special case in which inference is made with respect to the conditional
distribution FI | Z ,Y . With this type of inference, only I is viewed as being random. In the design-
based theory, the natural estimator of Ty is the Horvitz–Thompson estimator T̂ HT

y = ∑
k∈s wk yk ,

where wk = 1/πk is the design weight of unit k and πk = E(ik | Z , Y ) = E(ik | Z ) is its selection
probability, which is assumed to be strictly greater than 0. The Horvitz–Thompson estimator is
design-unbiased, E(T̂ HT

y | Z , Y ) = Ty .
A sampling design can usually be implicitly, or even explicitly, justified by a model for the

conditional distribution FY | Z . If this model has high predictive power in the sense that the design
variables z, and potentially the design weight variable w, are strongly related to the variables
of interest y, then the sampling design is expected to lead to an efficient Horvitz–Thompson
estimator T̂ HT

y of Ty . For instance, a vector z strongly related to y can be used to construct strata
that are very homogeneous with respect to y, which makes the Horvitz–Thompson estimator
efficient. However, such a vector of design variables may not be available. Also, design variables
are usually chosen by making compromises in multipurpose surveys, since design variables that
are strongly related to one variable of interest are not necessarily related to another. Moreover,
practical considerations often play a major role in the choice of a sampling design, especially in
household surveys. For the above reasons, the vector of design variables z and the design weight
variable w are often only weakly related to the variables of interest y. This may lead to quite
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an inefficient Horvitz–Thompson estimator, especially when the design weights wk have widely
dispersed values, which is not uncommon in practice.

3. THE SMOOTHED HORVITZ–THOMPSON ESTIMATOR

To deal with the inefficiency of the Horvitz–Thompson estimator, we first consider the
smoothed random variable

T̃ SHT
y = E

(
T̂ HT

y

∣∣ I, Y
) = E

(∑
k∈U

wkik yk
∣∣ I, Y

)
=

∑
k∈s

w̃k yk,

where w̃k = E(wk | I, Y ) is a smoothed weight for unit k ∈ s. The basic idea underlying T̃ SHT
y is

to reduce the variability of the design weights, or, in other words, remove their noise by taking
their conditional expectation. The reason for conditioning on I , when taking the expectation of
the Horvitz–Thompson estimator, is to ensure that T̃ SHT

y does not involve the unknown non-
sample portion of Y . This can be seen if we note that E(wkik yk | I, Y ) = E(wk | I, Y )ik yk = 0
for nonsample population units k ∈ U − s. By removing conditioning on I , we would have had
E(wkik yk | Y ) = E(ikwk | Y )yk = yk for both sample and nonsample units.

The smoothed random variable T̃ SHT
y is not an estimator, since it depends on the unknown

smoothed weights w̃k , for k ∈ s. To solve this problem, we suggest modelling the design weights
wk , which allows us to obtain an estimator ŵk of w̃k = E(wk | I, Y ). We can then construct
the smoothed Horvitz–Thompson estimator T̂ SHT

y = ∑
k∈s ŵk yk . An obvious unbiased estimator

of w̃k = E(wk | I, Y ) is ŵk = wk , which leads to the Horvitz–Thompson estimator. The unbi-
asedness property of ŵk = wk does not require specification of a model for the design weights;
this estimator is thus robust in that sense. However, it is also inefficient as it uses only a single
observation to estimate w̃k . More efficient methods of estimating w̃k are discussed in § 4, while
some theoretical properties of the smoothed Horvitz–Thompson estimator are given in § 5.

4. ESTIMATION OF THE SMOOTHED WEIGHT w̃k

The smoothed Horvitz–Thompson estimator requires estimation of the smoothed weight w̃k =
E(wk | I, Y ) only for sample units k ∈ s. We assume that, for k ∈ s, w̃k = gs(yk), where the
subscript s indicates that the function gs(yk) could vary from one sample to another. To simplify
the notation, we do not use subscripts s when describing Models 1 and 2 below.

There may be a certain number of models that can be appropriate for modelling real survey
data. We propose two such models below, but do not claim that they are appropriate in every
practical scenario; they are given only to illustrate the theory and to give examples of possi-
ble useful models. For instance, we could consider the following linear model, which we call
Model 1, wk = h′

kβ + v
1/2
k εk , for k ∈ s, where εk given I and Y are random errors independently

and identically distributed with E(εk | I, Y ) = 0 and var(εk | I, Y ) = σ 2, β and σ 2 are unknown
model parameters and the vector hk as well as vk > 0 are known functions of yk . With Model 1,
the smoothed weight is given by w̃k = h′

kβ and is estimated by ŵk = h′
k β̂, where

β̂ =
(∑

k∈s

hkh′
k

vk

)−1 ∑
k∈s

hk

vk
wk (1)

is an estimator of β obtained using the generalized least-squares method. The design weights must
not be used as weights to obtain β̂, for example, using the weighted generalized least-squares
method as in Binder (1983), because we are interested in modelling the conditional relationship
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between the design weight and the variables of interest only for sample units, so that Model 1
is only applicable to sample units k ∈ s. As a result, classical model selection and validation
techniques can be used to determine an appropriate model.

Two extreme special cases of Model 1 are of interest. First, if the design weights are independent
of the variables of interest, conditionally on the sample s, Model 1 can be written as wk = β + εk ,
i.e. hk = 1 and vk = 1, and the estimated smoothed weight reduces to the average of the design
weights: ŵk = N̂/n, where N̂ = ∑

k∈s wk . This is the ultimate smoothing in which the variability
of the design weights is entirely removed. This solution is quite intuitive, since the design weights
provide no information about the variables of interest when the above model is true. This model
leads to the ultimate smoothed Horvitz–Thompson estimator, T̂ SHT-U

y = N̂
∑

k∈s yk/n.
The second special case occurs when the variables of interest are perfect predictors of the

design weight, if, for instance, z is included in y so that Model 1 has no random error term and
can be written as wk = h′

kβ. In this case, ŵk = w̃k = wk and the smoothed Horvitz–Thompson
estimator is exactly equal to the Horvitz–Thompson estimator with no smoothing at all and thus
with no efficiency gain. In practice, we may expect it to lie somewhere in between these two
extreme special cases. On the one hand, gains in efficiency should usually be achieved by using a
model with a small number of parameters. On the other hand, it is important not to exclude from
the model y-variables that are predictive of the design weight to avoid large biases. Classical tools
may thus be quite useful for determining variables that should enter into the model, so that the
bias is kept small without unduly sacrificing efficiency by avoiding the inclusion in the model of
too many unnecessary variables.

The estimated smoothed weights ŵk = h′
k β̂ can be obtained alternatively by finding the weights

ωk , for k ∈ s, that minimize
∑

k∈s (ωk − 1)2/vk subject to the constraints

∑
k∈s

ωk
hk

vk
=

∑
k∈s

wk
hk

vk
, (2)

provided that there exists a vector δ such that h′
kδ = 1; that is, an intercept is implicitly or explicitly

included in hk . The proof that the above minimization leads to ωk = h′
k β̂ is straightforward and

is thus omitted. This is a minimization problem very similar to that considered in a prediction-
model-based framework (Chambers, 1996). The only difference is that we perform an internal
calibration, i.e. calibration is on a vector of design-based estimators, the Horvitz–Thompson
estimators

∑
k∈s wkhk/vk , whereas calibration is on a vector of known external benchmarks in a

prediction-model-based framework.
Model 1 is one of the models used by Pfeffermann & Sverchkov (1999) in their empirical

study. Beaumont & Rivest (2008) considered an analysis-of-variance model, which is a special
case of Model 1, to deal with the problem of stratum jumpers in a typical business survey. Their
empirical study illustrates that design weights can be successfully modelled in practice, resulting
in a smoothed estimator that can be significantly more efficient than its unsmoothed version.
Nevertheless, Model 1 may not always hold for real data. One issue with this model is that it
may lead to estimated smoothed weights ŵk smaller than 1, which does not make sense, given
that wk � 1. A solution to this problem is to use a model which ensures that w̃k = gs(yk) � 1.
One possible model that satisfies the constraint is wk = 1 + exp(h′

kβ + v
1/2
k εk), for k ∈ s, where

hk , β, vk and εk are defined as in Model 1. This model, which we shall call Model 2, is slightly
different from the exponential model used by Pfeffermann & Sverchkov (1999), who considered
a model with additive errors for which gs(yk) > 0. The smoothed weight is thus

w̃k = E(wk | I, Y ) = 1 + exp
(
h′

kβ
)
E

{
exp

(
v

1/2
k εk

) ∣∣ I, Y
}
, k ∈ s.
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Replacing the expectation in the previous equation by an average over the sample, we obtain
the following approximation for the smoothed weight w̃k of a sample unit k ∈ s:

w̃a
k (β) = 1 + exp(h′

kβ)
∑

l∈s

exp
{
v

1/2
k εl(β)

}
n

� w̃k, (3)

where the random error εl(β) ≡ εl = {log(wl − 1) − h′
lβ}/v1/2

l is viewed as a function of β

and is obtained from Model 2. Since the model errors εk are identically distributed, we have
E{w̃a

k (β) | I, Y } = w̃k . To obtain an estimator ŵk of the smoothed weight w̃k , it simply suffices to
estimate β in equation (3), which can be achieved by using the generalized least-squares method
and by noting that log(wk − 1) = h′

kβ + v
1/2
k εk . We thus have

β̂ =
(∑

k∈s

hkh′
k

vk

)−1 ∑
k∈s

hk

vk
log(wk − 1)

and ŵk = w̃a
k (β̂). Again, we note that the design weights must not be used as weights to obtain

β̂. Also, if hk = 1 and vk = 1, equation (3) reduces to w̃a
k (β) = N̂/n and the smoothed Horvitz–

Thompson estimator still reduces to T̂ SHT-U
y .

The above models were given as examples and may not hold in some contexts. In particular,
the assumption that the model errors εk are independent conditional on I and Y may not be
valid with some sampling designs. Conditions for achieving asymptotic independence of the
model errors εk under various sampling designs have been given by Pfeffermann et. al (1998).
One assumption underlying their result in our context is that the model errors are independent
conditional on Y alone. Whether or not this condition is approximately satisfied may depend on
the sampling design. With multi-stage sampling designs, one may argue that this condition does
not always hold. Nothing in our theory precludes modelling this dependence or enhancing the
proposed models in any way, if it is believed to be important. For instance, a referee pointed out
that each stage of sampling leads to its own set of weights in multi-stage sampling designs and
suggested that each set of weights be modelled separately as the independence may hold within
each stage. Our estimator β̂ remains model-unbiased for β, i.e. E(β̂ | I, Y ) = β, even when the
independence assumption does not hold so that our smoothed estimator remains valid, although
possibly less efficient, under this type of model failure. In this context, it may be useful to consider
a robust variance estimator, such as our design-based estimator (11), which does not depend on
the validity of the independence assumption.

5. THEORETICAL PROPERTIES OF THE SMOOTHED HORVITZ–THOMPSON ESTIMATOR

Unlike the Horvitz–Thompson estimator, the smoothed Horvitz–Thompson estimator is not
necessarily design-unbiased for every Z and Y . To evaluate properties of this smoothed estimator
and to make inferences, we thus remove conditioning on Z and use the distribution FI,Z | Y ; i.e.
we consider the joint distribution induced by the sampling design and the model.

We first evaluate some properties of the Horvitz–Thompson estimator under the distribution
FI,Z | Y before considering in turn those of T̃ SHT

y and T̂ SHT
y . We note that the Horvitz–Thompson

estimator remains unbiased and we thus have

E
(
λ′T̂ HT

y

∣∣ Y
) = λ′E

{
E

(
T̂ HT

y

∣∣ Z , Y
)∣∣Y } = λ′Ty, (4)

for any vector λ of constants. Moreover, we assume an asymptotic set-up similar in spirit to that
in Isaki & Fuller (1982), for instance, with a sequence of units containing values of the variables
of interest and defining a sequence of nested populations of increasing size. However, in contrast
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to Isaki & Fuller (1982), not only are samples randomly selected according to a sequence of
sampling designs with increasing sample size, but also design variables are randomly generated.
Under such an asymptotic set-up, we assume that, as both n and N increase to infinity, the
following condition holds.

Condition 1. E{var(λ′T̂ HT
y | Z , Y )|Y } = O(N 2/n).

Using Condition 1 and result (4), we obtain the following additional result, the proof of which
is straightforward:

var
(
λ′T̂ HT

y

∣∣ Y
) = O(N 2/n). (5)

The Horvitz–Thompson estimator is consistent since, from results (4) and (5), we have λ′T̂ HT
y −

λ′Ty = Op(N/n1/2). We now turn to the properties of T̃ SHT
y . Using result (4) and the Rao–

Blackwell theorem, we have

E
(
λ′T̃ SHT

y

∣∣ Y
) = λ′Ty, var

(
λ′T̃ SHT

y

∣∣ Y
)
� var

(
λ′T̂ HT

y

∣∣ Y
)
. (6)

This means that T̃ SHT
y is unbiased and is not less efficient than T̂ HT

y for estimating Ty . Using
results (5) and (6), we have λ′T̃ SHT

y − λ′Ty = Op(N/n1/2), and thus T̃ SHT
y is also consistent.

In practice, we expect that the smoothed Horvitz–Thompson estimator T̂ SHT
y inherits properties

of T̃ SHT
y . For instance, if Model 1 holds then we have

E
(
λ′T̂ SHT

y

∣∣ Y
) = λ′Ty, var

(
λ′T̂ SHT

y

∣∣ Y
)
� var

(
λ′T̂ HT

y

∣∣ Y
)
. (7)

The proof of (7) is given in the Appendix. A parallel can be drawn with the result in (6). It
means that the smoothed Horvitz–Thompson estimator is unbiased and not less efficient than the
Horvitz–Thompson estimator under Model 1. Note that the vector of constraints (2) gives the
condition under which λ′T̂ SHT

y = λ′T̂ HT
y for any given sample. Thus, if Model 1 holds, weight

smoothing leads to gains in efficiency only for variables λ′y that are not implicitly or explicitly
included in the constraints (2). Finally, using (5) and (7), we have λ′T̂ SHT

y − λ′Ty = Op(N/n1/2),
which shows the consistency of the smoothed Horvitz–Thompson estimator.

The result in (7) has been obtained under the assumption that Model 1 holds. Under nonlinear
models, provided some additional regularity conditions are satisfied, we may still expect to obtain
a similar result, although it will generally hold only asymptotically.

6. VARIANCE ESTIMATION

Under the proposed generalized design-based approach to inference, the total variance of
λ′T̂ SHT

y can be approximated as

var
(
λ′T̂ SHT

y

∣∣ Y
)

� E
{

var
(
λ′T̂ HT

y

∣∣ Z , Y
)∣∣Y }

+ E
[{

var
(
λ′T̂ SHT

y

∣∣ I, Y
) − var

(
λ′T̂ HT

y

∣∣ I, Y
)}∣∣Y ]

, (8)

whose proof is given in the Appendix. It requires the validity of the following condition.

Condition 2. E(λ′T̂ SHT
y | I, Y ) = λ′T̃ SHT

y + op(N/n1/2).

Under Condition 2, we write E(λ′T̂ SHT
y | I, Y ) � λ′T̃ SHT

y since it was shown in § 5 that λ′T̃ SHT
y −

λ′Ty = Op(N/n1/2). This condition is satisfied if λ′y is bounded and E(ŵk | I, Y ) = w̃k +
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(N/n)op(n−1/2). For Model 1, we can replace ‘ � ’ by ‘=’; that is, we have E(ŵk | I, Y ) = w̃k

and E(λ′T̂ SHT
y | I, Y ) = λ′T̃ SHT

y for this model.
If the variances on the right-hand side of equation (8) were known, one could estimate

var(λ′T̂ SHT
y | Y ) unbiasedly by simply omitting the expectations in (8). Since these variances

are unknown, we suggest the following estimator of the total variance var(λ′T̂ SHT
y | Y ),

V̂
(
λ′T̂ SHT

y

∣∣ Y
) = V̂

(
λ′T̂ HT

y

∣∣ Z , Y
) + {

V̂
(
λ′T̂ SHT

y

∣∣ I, Y
) − V̂

(
λ′T̂ HT

y

∣∣ I, Y
)}

, (9)

where V̂ (λ′T̂ HT
y | Z , Y ) is a consistent estimator of var(λ′T̂ HT

y | Z , Y ) under the sampling design,

while V̂ (λ′T̂ SHT
y | I, Y ) and V̂ (λ′T̂ HT

y | I, Y ) are consistent estimators of var(λ′T̂ SHT
y | I, Y ) and

var(λ′T̂ HT
y | I, Y ), respectively, under the model for the design weights.

Standard design-based variance estimators can be used to estimate the first term on the right-
hand side of (8). The estimation of the second term must take into account the model for the
design weights. For instance, if Model 1 holds, it is obvious from (A5) in the Appendix that
var(λ′T̂ SHT

y | I, Y ) − var(λ′T̂ HT
y | I, Y ) can be estimated by

V̂
(
λ′T̂ SHT

y

∣∣ I, Y
) − V̂

(
λ′T̂ HT

y

∣∣ I, Y
) = −σ̂ 2

∑
k∈s

vk

(
λ′yk − h′

k

vk
�̂

)2

,

where σ̂ 2 is a consistent estimator of σ 2 under the model and

�̂ =
(∑

k∈s

hkh′
k

vk

)−1 ∑
k∈s

hk(λ′yk).

For nonlinear models, Taylor linearization or the bootstrap technique are natural choices for
the estimation of var(λ′T̂ SHT

y | I, Y ) and even var(λ′T̂ HT
y | I, Y ). Since these variances are not

taken with respect to the sampling design, classical bootstrap methods can be used to generate
bootstrap design weights and estimate the variance of λ′T̂ SHT

y and λ′T̂ HT
y . For instance, if we use

Model 2, bootstrap design weights could be generated as follows.

Step 1. Generate the bootstrap model error ε∗
k by randomly selecting a unit l ∈ s and letting

ε∗
k = εl(β̂). Alternatively, ε∗

k is generated using a parametric model. For instance, ε∗
k could be

generated using the normal distribution N (0, σ̂ 2), where σ̂ 2 is a consistent estimator of σ 2 under
Model 2. This process is then repeated independently for each unit k ∈ s.

Step 2. Obtain bootstrap design weights w∗
k = 1 + exp(h′

k β̂ + v
1/2
k ε∗

k ) for each k ∈ s.

Step 3. Repeat Steps 1 and 2 a large number of times, R say, to obtain R sets of bootstrap
design weights.

The Horvitz–Thompson and smoothed Horvitz–Thompson estimates can then be computed
for each set of bootstrap design weights and standard bootstrap variance estimates can simply
be obtained from the variability among these estimates. In the case of the smoothed Horvitz–
Thompson estimator, the estimation of β must be repeated for each set of bootstrap design
weights in order to obtain sets of bootstrap smoothed weights. Ideally, the procedure used to
select explanatory variables in the model is also repeated.

Although variance estimator (9) was always positive in our simulation study described in § 7,
it seems difficult to prove this. Its validity depends on the general validity of the model for the
design weights and, in particular, on the independence assumption for the model errors. If it is
desired to avoid this dependence for variance estimation, there is an alternative. It is obtained by
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first writing the total mean-squared error of λ′T̂ SHT
y as

E
{(

λ′T̂ SHT
y − λ′Ty

)2∣∣Y } = E
[
E

{(
λ′T̂ SHT

y − λ′Ty
)2∣∣Z , Y

}∣∣Y ]
= E

[{
var

(
λ′T̂ SHT

y

∣∣ Z , Y
) + B2(λ′T̂ SHT

y

∣∣ Z , Y
)}∣∣Y ]

, (10)

where B(λ′T̂ SHT
y | Z , Y ) = E(λ′T̂ SHT

y − λ′Ty | Z , Y ) is the design bias of λ′T̂ SHT
y . Equation (10)

could be estimated unbiasedly by omitting the expectation on the right-hand side of the second
equality if the design variance and the squared design bias were known. Since they are unknown,
they must be estimated. The variance var(λ′T̂ SHT

y | Z , Y ) can be estimated by V̂ (λ′T̂ SHT
y | Z , Y ) us-

ing standard design-based variance estimation techniques. Since λ′T̂ SHT
y may have a complicated

form, the bootstrap technique (Rao & Wu, 1988) is a natural candidate.
The squared design bias in (10) could be estimated by (λ′T̂ SHT

y − λ′T̂ HT
y )2. However, this is a

biased estimator of B2(λ′T̂ SHT
y | Z , Y ). We consider the following estimator, which is constructed

similarly to the squared bias estimator proposed by Gwet & Rivest (1992) in the context of
outlier-robust estimation

B̂2 = max
{

0,
(
λ′T̂ SHT

y − λ′T̂ HT
y

)2 − V̂
(
λ′T̂ SHT

y − λ′T̂ HT
y

∣∣ Z , Y
)}

,

where V̂ (λ′T̂ SHT
y − λ′T̂ HT

y | Z , Y ) is a consistent variance estimator for the design variance

var(λ′T̂ SHT
y − λ′T̂ HT

y | Z , Y ). Again, the bootstrap technique is a natural candidate for estimating
this variance.

To achieve more stability when estimating (10), it may be desirable to ensure that the resulting
mean-squared error estimator is not greater than V̂ (λ′T̂ HT

y | Z , Y ), since we expect the smoothed
Horvitz–Thompson estimator to be in general not less efficient than the Horvitz–Thompson
estimator unless the postulated model for the design weights is not satisfactory. This leads to our
proposed design mean-squared error estimator of (10),

MSED
(
λ′T̂ SHT

y

) = min
{

V̂
(
λ′T̂ SHT

y

∣∣ Z , Y
) + B̂2, V̂

(
λ′T̂ HT

y

∣∣ Z , Y
)}

. (11)

7. SIMULATION STUDY

7·1. Description of the simulation experiment

We conducted a simulation study to evaluate the performance of the smoothed Horvitz–
Thompson estimator when the assumed model for the design weights is misspecified. First, a
population U of 50 000 units was generated. One design variable zk was drawn independently
for each population unit k from an exponential distribution with mean 30, to which we added
0·5. This means that the smallest value zk can take is 0·5. Then we generated three variables of
interest according to the simple linear regression model

y(i)
k = β0 + β(i)zk + ε

(i)
yk (i = 1, 2, 3), (12)

where β0 = 30 and ε
(i)
yk , for k ∈ U , are independent normal random variables with mean zero and

variance 2000. The correlation ρ
(i)
yz between y(i) and z under model (12) depends on β(i). The

constants β(1), β(2) and β(3) were thus chosen to yield ρ
(1)
yz = 0, ρ(2)

yz = 0·011/2 and ρ
(3)
yz = 0·81/2,

respectively. Finally, 10 000 samples of size 500 were selected from the population with selection
probabilities proportional to z using Sampford’s method, which is implemented in the procedure
SURVEYSELECT of SAS. This is a design-based simulation experiment.
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Table 1. Relative bias and relative efficiency of the Horvitz–Thompson and
smoothed Horvitz–Thompson estimators

Estimators Variable y(1) Variable y(2) Variable y(3)

RB (%) RE (%) RB (%) RE (%) RB (%) RE (%)
HT 0·03 100 0·15 100 −0·06 100
SHT-U −0·82 45·19 12·05 143·02 73·33 43301·07
SHT-1 −9·07 76·54 −5·72 58·51 8·34 686·36
SHT-5 −6·09 64·65 −4·37 57·59 0·18 83·59

RB, relative bias; RE, relative efficiency; HT, Horvitz–Thompson.

Four estimators were of primary interest in the simulation study; Horvitz–Thompson, HT, SHT-U,
SHT-1 and SHT-5. The last three estimators are smoothed Horvitz–Thompson estimators obtained
using different versions of Model 2 with vk = 1; results for Model 1 are not reported here, since
Model 2 fitted the data better and gave better results. For the SHT-U estimator, we used hk = 1,
which leads to the ultimate smoothing discussed earlier. The SHT-1 estimator uses hk = yk with
y′

k = (y(1)
k , y(2)

k , y(3)
k ) and the SHT-5 estimator uses h′

k = (y′
k, (y∗2

k )′, (y∗3
k )′, (y∗4

k )′, (y∗5
k )′), where

y∗ j
k , for j = 2, 3, 4, 5, is similar to the vector yk , except that each component of yk is raised to

the power j . This polynomial model of order 5 brings some robustness if the model underlying
the SHT-1 estimator does not hold. For the SHT-1 and SHT-5 estimators, a stepwise regression was
performed for each selected sample in order to choose the important variables to be included in
the model. None of the above assumed models is in perfect agreement with the true model in this
experiment. This allows us to evaluate the proposed approach in a realistic context.

Two measures were estimated from the 10 000 samples for each estimator; namely the relative
bias as a percentage, RB, and the relative efficiency as a percentage, RE. The values of RB and RE

for an estimator T̂ (i)
y of T (i)

y = ∑
k∈U y(i)

k are

RB
(
T̂ (i)

y

) = 100E
{(

T̂ (i)
y − T (i)

y
) ∣∣ Z , Y

}
T (i)

y

, RE
(
T̂ (i)

y

) = 100
E

{(
T̂ (i)

y − T (i)
y

)2 ∣∣ Z , Y
}

E
{(

T̂ (i),HT
y − T (i)

y
)2 ∣∣ Z , Y

} ,

where T̂ (i),HT
y is the Horvitz–Thompson estimator of T (i)

y . Both measures were approximated by
replacing the expectations in the previous two equations by averages over the 10 000 selected
samples.

7·2. Simulation results

Table 1 contains simulation results. As expected from the theory, the SHT-U estimator is es-
sentially unbiased and most efficient for variable y(1). This is not surprising, since this variable
does not depend on z, so that the SHT-U model holds if we only consider this variable. However,
the relative bias of the SHT-U estimator is not negligible for the other variables and it is the least
efficient, mainly because of its bias. This is true even for variable y(2), which is very weakly
correlated with z.

For variable y(1), the estimators SHT-1 and SHT-5 are both more efficient than the HT estimator
and less efficient than the SHT-U estimator. They both have a small but nonnegligible bias. It is
somewhat difficult to explain this bias since, for this variable, we would expect a relative bias
close to the relative bias of the SHT-U estimator. For variable y(2), the estimators SHT-1 and SHT-5
are more efficient than both the HT and SHT-U estimators and less biased than the SHT-U estimator.
This is an indication that their underlying model better fits the data than does the SHT-U model,
even if the correlation between z and y(2) is weak. The improvement of the SHT-5 estimator over
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the SHT-1 estimator is quite small for this variable. For variable y(3), the SHT-1 estimator performed
poorly in terms of efficiency, although better than the SHT-U estimator, even though its relative
bias is not too large. The SHT-5 estimator corrects the deficiencies of the SHT-1 estimator and is
the most efficient of all the estimators. In § 7·3, it will become clear by analyzing in greater depth
a particular sample why the SHT-1 estimator performed so badly and why the SHT-5 estimator did
not have these problems. Overall, the SHT-5 estimator performed better than the SHT-1 estimator
in terms of both relative bias and relative efficiency for all three variables. It also performed
better than the HT estimator in terms of relative efficiency for all variables. The SHT-5 estimator
was more efficient than the Horvitz–Thompson estimator even for variable y(3), which is strongly
correlated with the design variable.

7·3. Analysis of a particular sample

The bad performance of the SHT-1 estimator for variable y(3) may appear disappointing at first
glance. However, we illustrate in this section that, by a careful analysis, one is able to detect
easily the deficiencies of this estimator in a particular sample and favour the SHT-5 estimator.
We analyzed a few samples but only report results for the first selected sample, since the main
conclusions were the same for all the samples analyzed.

We examined graphs of residuals εk(β̂) for the SHT-U, SHT-1 and SHT-5 models, plotted against
y(1), y(2) and y(3). Some of these graphs are shown in Fig. 1. The solid curves have been obtained
using the nonparametric regression procedure TPSPLINE of SAS, which is based on penalized
least-squares estimation.

Figures 1(a) and (b) show that there is a clear association between the residuals and variable
y(3) for the SHT-U and SHT-1 models; this explains the inefficiency of the SHT-U and SHT-1 estimators
observed in Table 1 and their large bias for this variable. The situation is much better for the
SHT-5 model, although Fig. 1(c) shows that there seems to be a problem of heteroscedasticity.
Nevertheless, this model misspecification is not important enough to make the SHT-5 estimator
inefficient for variable y(3). The nonnegligible bias and the inefficiency of the SHT-U estimator for
variable y(2) is not that clear from Fig. 1(d). It seems to be more difficult to detect this type of
slight model misspecification from graphs alone, so that other diagnostics and model selection
tools, such as stepwise regression, are necessary. There is no anomalous pattern in the remaining
plots, not shown, which correspond to cases where the smoothed Horvitz–Thompson estimators
were more efficient than the Horvitz–Thompson estimator.

7·4. Simulation results for the comparison of mean-squared error estimators

In this section, we compare the model-dependent variance estimator (9) to the design mean-
squared error estimator (11). The former is obtained using the parametric bootstrap method
described in § 6. In the latter, the Rao–Wu bootstrap method (Rao & Wu, 1988; Rao et al. 1992)
is used to estimate design variances with the assumption that sampling was conducted with
replacement. This assumption is reasonable, given the small sampling fraction in the simulation
study. The Rao–Wu bootstrap method is also used to estimate the design variance of the Horvitz–
Thompson estimator. It is implemented as in Rao et al. (1992) by selecting n − 1 units with
replacement for each bootstrap replicate. It is worth mentioning that, for both estimators (9) and
(11), the stepwise selection procedure was repeated for each of the 500 bootstrap replicates.

For computer-time considerations, only 1000 samples were used for the comparison. Three
different measures were estimated using these samples for each mean-squared error estimator:
the relative bias, RB, as a percentage; the coverage rate, CR, as a percentage of confidence intervals
with 95% nominal confidence level obtained using the normal approximation; and the average
length, AL, of these confidence intervals, in thousands. The relative bias of a mean-squared error
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Fig. 1. Plots of residuals for (a) the SHT-U model against y(3), (b) the SHT-1 model against y(3), (c) the SHT-5 model
against y(3) and (d) the SHT-U model against y(2). The solid curves are nonparametric regression fits.

Table 2. Comparison of variance estimator (9) and mean-squared error estimator (11)

Variance estimators Variable y(1) Variable y(2) Variable y(3)

RB (%) CR (%) AL RB (%) CR (%) AL RB (%) CR (%) AL

HT: Rao–Wu −4·95 93·7 816 6·16 94·8 825 4·42 93·6 809
SHT-5: (9) 54·71 94·0 804 76·40 94·9 813 25·08 95·7 806
SHT-5: (11) 11·64 89·8 689 19·36 91·6 680 5·26 94·5 747

RB, relative bias; CR, coverage rate of confidence intervals; AL, average length of confidence intervals; HT, Horvitz–
Thompson.

estimator is defined similarly to the relative bias of an estimator of a population total given in
§ 7·1, with the true design mean-squared error estimated using 1000 samples. Results are given
in Table 2. The variance estimator (9) and mean-squared error (11) were computed only for the
SHT-5 estimator, since it is the least biased of the three smoothed Horvitz–Thompson estimators
evaluated. Also, the SHT-U and SHT-1 estimators would not be considered in practice if it were
desired to use a single set of smoothed weights for estimating totals of all three variables. Results
for the Horvitz–Thompson estimator are also presented.
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From Table 2, we see that variance estimator (9) is significantly positively biased because of
incorrect specification of the model. As a result, it has only a slight advantage in terms of average
length of confidence intervals when compared to the design-based confidence intervals associated
with the Horvitz–Thompson estimator. However, it leads to the best coverage rates, which are
very close to 95%. In this simulation study, the incorrect specification of the model did not lead
to underestimation of the true mean-squared error, so that the resulting confidence intervals using
variance estimator (9) did not have coverage rates far below 95%. As expected, the design mean-
squared error estimator (11) was significantly less biased than (9) but still positively so. This led
to average lengths of confidence intervals that are much smaller than the corresponding intervals
associated with the Horvitz–Thompson estimator. However, the coverage rate of these intervals
is slightly below 95% for variables y(1) and y(2) because of the bias of the SHT-5 estimator for
these variables, which was noted in Table 1.

7·5. Simulation results discussion

Our simulation results illustrate that it is possible to obtain inferences more efficient than
design-based inferences by using our proposed generalized design-based approach. If the mean-
squared error estimator (11) is chosen, the validity of the model for the design weights is required
to obtain valid inferences but only to the extent that the bias of the smoothed Horvitz–Thompson
estimator is kept small. The use of variance estimator (9) requires a more appropriate specification
of the model underlying the smoothed Horvitz–Thompson estimator. Therefore, the mean-squared
error estimator (11) may be preferred to the variance estimator (9) in practice, since it is more
robust to model misspecifications. However, if the model is properly specified, the latter may
lead to more precise variance estimates than the former so that no estimator can be claimed to be
always better than the other.

One could argue that, in the context of this simulation study, a better alternative to the Horvitz–
Thompson estimator would have been a model-assisted estimator such as a generalized regression
estimator or, at least, the Hajek estimator T̂ H

y = (N/N̂ )
∑

k∈s wk yk . Although this may be true,
depending on which model-assisted estimator is used, we would like to emphasize again that
the ideas developed in this paper are not restricted to the Horvitz–Thompson estimator and
can be applied to any design-based estimator. Therefore, we could also smooth a generalized
regression estimator to make it more efficient. This is discussed in § 8 for calibration estimators,
which contain generalized regression estimators as a special case. The main point illustrated
in this simulation study is that it is possible to obtain estimators that are more efficient than
design-based estimators by smoothing.

8. SMOOTHED CALIBRATION ESTIMATORS

In the design-based framework, a vector x of calibration variables is often used at the estimation
stage of a survey to construct a calibration estimator T̂ CAL

y = ∑
k∈s wc

k yk of Ty (Deville & Särndal,
1992). The calibration weights wc

k minimize a distance between the calibration and design
weights, D = ∑

k∈s dk(wc
k, wk), for some function dk(·, ·), subject to the calibration constraint∑

k∈s wc
k xk = Tx . The quantity Tx = ∑

k∈U xk is the vector of known benchmarks associated with
x . We denote by X the N -row matrix containing x ′

k in its kth row.
In this context, we still define generalized design-based inference as any inference that is

conditional on Y but not on I . Here, design-based inference is the special case where inference
is made with respect to the conditional distribution FI | Z ,X,Y . The calibration estimator T̂ CAL

y is
consistent and asymptotically unbiased for Ty under this distribution (Deville & Särndal, 1992).

By analogy with § 3, we consider the smoothed random variable T̃ SCAL
y = E(T̂ CAL

y | I, Y ) =∑
k∈s w̃c

k yk , where w̃c
k = E(wc

k | I, Y ) is a smoothed calibration weight for unit k. Then we obtain
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a consistent estimator ŵc
k of w̃c

k by modelling the calibration weights wc
k and we construct the

smoothed calibration estimator T̂ SCAL
y = ∑

k∈s ŵc
k yk . To evaluate properties of this estimator

and to make inferences, we remove conditioning on Z and X , and use the distribution FI,Z ,X | Y .
Results similar to those in § 5 can be obtained when calibration is used. In particular, the smoothed
calibration estimator T̂ SCAL

y is not less efficient than the calibration estimator T̂ CAL
y under a linear

model for the calibration weights; that is, var(λ′T̂ SCAL
y | Y ) � var(λ′T̂ CAL

y | Y ). This can be proven
following a development very similar to the proof of equation (7) given in the Appendix.

An appropriate model for the calibration weights may perhaps be more difficult to find than an
appropriate model for the design weights. Also, the smoothed calibration estimator T̂ SCAL

y does
not necessarily satisfy the calibration constraint

∑
k∈s ŵc

k xk = Tx , which may be annoying for
some users. To deal with these issues, one option is to use the smoothed calibration estimator,
T̂ SCAL∗

y = ∑
k∈s ŵc∗

k yk . It is obtained by minimizing the distance D∗ = ∑
k∈s dk(ŵc∗

k , ŵ∗
k ) subject

to the calibration constraint
∑

k∈s ŵc∗
k xk = Tx . The smoothed weight ŵ∗

k is an estimate of w̃∗
k =

E(wk | I, X, Y ) obtained using a model for the design weights wk . With T̂ SCAL∗
y , we simply

consider x as additional variables of interest and we smooth the design weights, as in § 3, before
applying calibration. To evaluate properties of this estimator and to make inferences, we thus
use the distribution FI,Z | X,Y . The estimator T̂ SCAL∗

y is expected to be less efficient than T̂ SCAL
y ,

especially when many design variables are included in x . However, it respects the calibration
constraint. Further research is needed on the properties of T̂ SCAL∗

y .

9. DISCUSSION

We have proposed an approach to weighting that extracts the useful portion of design-
based estimation weights by removing their noise through an appropriate model. The main
disadvantage of the resulting smoothed estimators in comparison with their corresponding design-
based estimators is that the validity of a model is required to obtain valid inferences. Diagnostic
tools for assessing the validity of the model, such as plots of residuals, may thus be quite useful.

An additional diagnostic would be a statistic for testing the null hypothesis that the conditional
bias under the model is zero, i.e. a statistic for testing H0 : E(λ′T̂ SHT

y | I, Y ) − λ′T̃ SHT
y = 0. This

null hypothesis can be written equivalently as H0 : E{(λ′T̂ SHT
y − λ′T̂ HT

y ) | I, Y } = 0. A significant
model bias is an indication that the model does not hold. It is not essential for the estimator to
be exactly unbiased to achieve gains in efficiency. The goal of this diagnostic, as for other model
diagnostic tools, is simply to avoid highly biased estimators that may result in inefficient smoothed
estimators.

Although a suitable model can sometimes be found (Beaumont & Rivest, 2008), this may
not always be possible. Nonparametric methods for the estimation of smoothed weights could
thus be useful to avoid relying on a misspecified model without, one hopes, sacrificing too
much efficiency. More investigation is needed about the use of such methods in this context.
The good performance of the SHT-5 estimator in the simulation study is encouraging and makes
nonparametric methods look promising.
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APPENDIX

Proofs

Proof of (7). Under Model 1, ŵk = h′
k β̂ with β̂ given in equation (1). It is straightforward to show

that E(ŵk | I, Y ) = w̃k . It follows that E(λ′T̂ SHT
y | I, Y ) = λ′T̃ SHT

y and that E(λ′T̂ SHT
y | Y ) = λ′Ty , which

shows the first part of the result. Also, we have

var
(
λ′T̂ HT

y

∣∣ Y
) = var

{
E

(
λ′T̂ HT

y

∣∣ I, Y
)|Y} + E

{
var

(
λ′T̂ HT

y

∣∣ I, Y
)∣∣Y}

= var
(
λ′T̃ SHT

y

∣∣ Y
) + E

{
σ 2

∑
k∈s

vk(λ′yk)2

∣∣∣∣Y
}

, (A1)

var
(
λ′T̂ SHT

y

∣∣ Y
) = var

{
E

(
λ′T̂ SHT

y

∣∣ I, Y
)∣∣Y} + E

{
var

(
λ′T̂ SHT

y

∣∣ I, Y
)∣∣Y}

= var
(
λ′T̃ SHT

y

∣∣ Y
) + E

{
σ 2

∑
k∈s

h′
k(λ′yk)

(∑
k∈s

hkh′
k

vk

)−1 ∑
k∈s

hk(λ′yk) | Y

}
.

(A2)

As a result, var (λ′T̂ SHT
y | Y ) � var (λ′T̂ HT

y | Y ) since, for all s,

∑
k∈s

h′
k(λ′yk)

(∑
k∈s

hkh′
k

vk

)−1 ∑
k∈s

hk(λ′yk) �
∑

k∈s
vk(λ′yk)2. (A3)

The validity of (A3) follows directly from the application of a vector form of the Cauchy–Schwarz
inequality by noting that it can be written as∑

k∈s
akb′

k

(∑
k∈s

bkb′
k

)−1 ∑
k∈s

akbk �
∑

k∈s
a2

k ,

where ak = v
1/2
k (λ′yk) and bk = hk/v

1/2
k . This shows the second part of the result.

The inequality var(λ′T̂ SHT
y | Y ) � var(λ′T̂ HT

y | Y ) can also be shown to hold by noting from (A1) and

(A2) that it is verified if var(λ′T̂ SHT
y | I, Y ) � var(λ′T̂ HT

y | I, Y ) for all s. From (A1) and (A2) the latter can
be verified since we have, after some straightforward algebra, that

var
(
λ′T̂ SHT

y

∣∣ I, Y
) − var

(
λ′T̂ HT

y

∣∣ I, Y
) = −σ 2

∑
k∈s

vk

(
λ′yk − h′

k

vk
�̂

)2

� 0,

where

�̂ =
(∑

k∈s

hkh′
k

vk

)−1 ∑
k∈s

hk(λ′yk).

�

Proof of (8). Under Condition 2, we have var{E(λ′T̂ SHT
y | I, Y ) | Y } � var(λ′T̃ SHT

y | Y ). As a result, the

total variance of λ′T̂ SHT
y can be approximated by

var
(
λ′T̂ SHT

y

∣∣ Y
)

� var
(
λ′T̃ SHT

y

∣∣ Y
) + E

{
var

(
λ′T̂ SHT

y

∣∣ I, Y
)∣∣Y}

. (A4)

We also note that

var
(
λ′T̂ HT

y

∣∣ Y
) = var

(
λ′T̃ SHT

y

∣∣ Y
) + E

{
var

(
λ′T̂ HT

y

∣∣ I, Y
)∣∣Y}

= E
{

var
(
λ′T̂ HT

y

∣∣ Z , Y
)∣∣Y}

. (A5)

The second equation of (A5) follows because var{E(λ′T̂ HT
y | Z , Y ) | Y } = 0. From (A5), we thus have

var
(
λ′T̃ SHT

y

∣∣ Y
) = E

{
var

(
λ′T̂ HT

y

∣∣ Z , Y
)∣∣Y} − E

{
var

(
λ′T̂ HT

y

∣∣ I, Y
)∣∣Y}

. (A6)
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Equation (8) is obtained by replacing var(λ′T̃ SHT
y | Y ) in (A4) by the right-hand side of

equation (A6). �
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