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The Calculation of Posterior Distributions by

MARTIN A. TANNER and WING HUNG WONG*

Data Augmentation

The idea of data augmentation arises naturally in missing value prob-
lems, as exemplified by the standard ways of filling in missing cells in
balanced two-way tables. Thus data augmentation refers to a scheme of
augmenting the observed data so as to make it more easy to analyze.
This device is used to great advantage by the EM algorithm (Dempster,
Laird, and Rubin 1977) in solving maximum likelihood problems. In
situations when the likelihood cannot be approximated closely by the
normal likelihood, maximum likelihood estimates and the associated
standard errors cannot be relied upon to make valid inferential state-
ments. From the Bayesian point of view, one must now calculate the
posterior distribution of parameters of interest. If data augmentation can
be used in the calculation of the maximum likelihood estimate, then in
the same cases one ought to be able to use it in the computation of the
posterior distribution. It is the purpose of this article to explain how this
can be done.

The basic idea is quite simple. The observed data y is augmented by
the quantity z, which is referred to as the latent data. It is assumed that
if y and z are both known, then the problem is straightforward to analyze,
that is, the augmented data posterior p(6 | y, z) can be calculated. But
the posterior density that we want is p(6 | y), which may be difficult to
calculate directly. If, however, one can generate multiple values of z
from the predictive distribution p(z | y) (i.e., multiple imputations of z),
then p(6 | y) can be approximately obtained as the average of p(6 | y,
z) over the imputed 2’s. However, p(z | y) depends, in turn, on p(6 | y).
Hence if p(6 | y) was known, it could be used to calculate p(z | y). This
mutual dependency between p(6 | y) and p(z | y) leads to an iterative
algorithm to calculate p(6 | y). Analytically, this algorithm is essentially
the method of successive substitution for solving an operator fixed point
equation. We exploit this fact to prove convergence under mild regularity
conditions.

Typically, to implement the algorithm, one must be able to sample
from two distributions, namely p(@ | y, z) and p(z | 6, y). In many cases,
it is straightforward to sample from either distribution. In general,
though, either sampling can be difficult, just as either the E or the M
step can be difficult to implement in the EM algorithm. For p(6 | y, z)
arising from parametric submodels of the multinomial, we develop a
primitive but generally applicable way to approximately sample 6. The
idea is first to sample from the posterior distribution of the cell proba-
bilities and then to project to the parametric surface that is specified by
the submodel, giving more weight to those observations lying closer to
the surface. This procedure should cover many of the common models
for categorical data.

There are several examples given in this article. First, the algorithm
is introduced and motivated in the context of a genetic linkage example.
Second, we apply this algorithm to an example of inference from incom-
plete data regarding the correlation coefficient of the bivariate normal
distribution. It is seen that the algorithm recovers the bimodal nature of
the posterior distribution. Finally, the algorithm is used in the analysis
of the traditional latent-class model as applied to data from the General
Social Survey.

KEY WORDS: Bayesian inference; Monte Carlo sampling; Imputation;
Correlation coefficient; Latent class analysis; Convergence results;
Dirichlet sampling.
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1. INTRODUCTION

This article introduces an iterative method for the com-
putation of posterior distributions. The method applies
whenever the data can be augmented in such a way that
(a) it becomes easy to analyze the augmented data and
(b) it is easy to generate the augmented data given the
parameter. Let y denote the observed data whose distri-
bution depends on a parameter vector §. Suppose that
there is a way to augment y with latent data z (unobserved)
so that the augmented data, x = (y, 2), is straightforward
to analyze [i.e., the augmented data posterior density,
p(0]x), is of known form]. The method consists of iterating
the following two steps: (a) Given the current guess of the
posterior distribution of § given y, generate a sample of
m > ( latent data patterns from the predictive distribution
of z given y. (b) Update the posterior of 8, given y, to be
the mixture of the m augmented data posteriors.

The sample size m can change from iteration to itera-
tion. If m is always taken to be very large, then the al-
gorithm can be interpreted as the method of successive
substitution for solving a fixed point problem character-
izing the true posterior distribution. The updated posterior
at the end of the iterations can then be taken to be a close
approximation of the true posterior distribution. When m
is small, however, we will need to pool over the latent
data patterns generated near the end of the iterations to
get a reasonable approximation to the true posterior dis-
tribution.

The plan of the article is as follows. In the remaining
part of this introduction, we discuss data augmentation as
a general tool for the analysis of data in complex models.
At the same time, we will review relevant literature. In
Section 2, we motivate and present the basic algorithm
and illustrate the steps of the algorithm in the context of
a simple example. In Section 3, we apply the method to
the problem of inference on the covariance matrix of the
multivariate normal distribution with missing values. In
Section 4, we introduce the Dirichlet sampling procedure
as a way to facilitate the approximate sampling from the
posterior distribution in complex models of multinomial
data. In Section 5, this procedure is applied to the study
of social survey data modeled by a log-linear model with
a latent variable. We also use this example to illustrate

-and discuss issues of identifiability in Bayesian modeling.

In Section 6, we return to the study of the basic algorithm.
We will discuss the uniqueness of the fixed point charac-
terization that motivates the basic algorithm and will pre-
sent convergence results for the algorithm. The reader who
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is interested in applications, rather than theoretical details,
may skip Section 6 without loss of continuity. In Section
7, variations of the basic algorithm will be presented and
issues in its practical implementation will be discussed.

We now turn to the idea of data augmentation. In well-
designed experiments, it often happens that, if not for the
presence of missing values, the estimation of parameters
will be straightforward. In currently popular terminology,
the observed data are called the incomplete data. The
complete data refer to the set of missing and observed
values. Through the work of many authors, a large body
of iterative techniques for maximum likelihood estimation
from incomplete data has recently emerged, all of which
exploit the simple structure of the complete data problem.
This area is elegantly synthesized and further developed
in the influential paper of Dempster, Laird, and Rubin
(1977), in which references to earlier research can be
found. Briefly, based on a current estimate of the param-
eter value, the method seeks to compute the expected
value of the log-likelihood of the complete data and then
maximizes the log-likelihood to obtain the updated pa-
rameter value. Dempster et al. called this approach the
EM algorithm because of the expectation and maximiza-
tion calculations involved. Although the details of the EM
algorithm are not of direct interest for the present article,
the aspect of Dempster et al. (1977) that is most important
for our purpose is the impressive list of examples, which
includes missing data problems, mixture problems, factor
analysis, iteratively reweighted least squares, and many
others. In each example, enough detail is presented to
show how the EM algorithm can be applied. By these
examples, the authors make it clear that even in cases that
at first sight may not appear to be an incomplete data
problem, one may sometimes still profit by artificially for-
mulating it as such to facilitate the maximum likelihood
estimation.

It seems that the potential usefulness of this problem
formulation is still not fully appreciated by some practi-
tioners, possibly because their problems appear to have
little to do with missing values or incomplete data. For
this reason, we will use the terms observed data (denoted
by y) and augmented data (denoted by x), instead of in-
complete data (y) and complete data (x). We will also use
the term latent data (z) to denote the unobserved supple-
mentary data needed for the augmentation of y so that
the augmented data, x = (y, z), is straightforward to
analyze. '

In general, this data augmentation scheme is used for
the calculation of maximum likelihood estimates or pos-
terior modes. For making inferential statements, the
validity of the normal approximation is assumed and the
precision of the estimate is given by the observed Fisher
information. In most cases, however, it is not possible to
obtain the Fisher information directly from the basic EM
calculations and one must do further calculations to obtain
standard errors [see the discussion following Dempster et
al. (1977); see also Louis (1982)]. Except in simple cases,
it is difficult to obtain an indication to the validity of the
normal approximation.
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In the present article, we are interested in the entire
likelihood or posterior distribution, not just the maximizer
and the curvature at the maximizer. The method we pro-
pose exploits the simplicity of the posterior distribution of
the parameter given the augmented data, just as the EM
algorithm exploits the simplicity of maximum likelihood
estimation given the complete data. Even in large sample
situations, when the normal approximation is expected to
be valid, it would still be comforting to note that the ob-
tained posterior is consistent with the picture given by the
maximum likelihood analysis. In small sample situations,
the pitfalls of maximum likelihood estimation are well
known, and the present method will provide a way of
improving inference based on the entire posterior distri-
bution (or the entire likelihood). The examples presented
in this article will illustrate that a few steps of the iterative
algorithm will provide a diagnostic for the adequacy of the
normal approximation for the maximum likelihood esti-
mate.

In practice, one is often interested in the marginal dis-
tribution of various parameters of interest. Even if one
can evaluate the joint posterior distribution, obtaining the
marginal distribution can be difficult and is a topic of cur-
rent interest (Smith, Skene, Shaw, Naylor, and Dransfield
1985; Tierney and Kadane 1985; Zellner and Rossi 1984).
In the data augmentation setup, one is faced with the
additional complication that the posterior distribution
given the observed data may not be expressible in closed
form. Ideally, one would want to choose the augmentation
such that the posterior given the augmented data can be
sampled from with ease. In cases where this cannot be
done, one would have to resort to approximate sampling
methods. The Dirichlet sampling scheme discussed in Sec-
tion 4 provides a simple approach for approximate sam-
pling in the case of multinomial data. Moreover, the recent
works on marginalization referred to previously may po-
tentially be helpful in this regard.

We wish to draw the reader’s attention to the concurrent
and independent work of K. H. Li (1985a,b), who has
devised an algorithm for doing multiple imputation of
missing values that is very similar in its formal structure
to our method. Whereas the main goal in the present
article is to exploit the data augmentation formulation in
the Bayesian inference of parameters, in Li’s work, the
initial focus, as well as sources of examples, have been the
imputation of missing values. Thus the essential difference
is that Li’s method exploits the simplicity of the distri-
bution of one component of the missing values given both
the observed data and the remainder of the missing values,
whereas our method relies on the simplicity of the pos-
terior distribution of the parameter given the augmented
data. Upon completion of both works, it was realized that
when one identifies the unknown parameters as part of
the missing values, then the two algorithms become es-
sentially the same.

Our present results are, to a considerable extent, antic-
ipated in the work of Rubin. In particular, the two key
concepts of data augmentation and multiple imputation
have been advocated and studied by Rubin in a series of
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papers on inference in the presence of incomplete data
(Dempster et al. 1977; Rubin 1978, 1980).

2. THE BASIC ALGORITHM

The algorithm is motivated by the following simple rep-

resentation of the desired posterior density:

p@|y) = L p@ |z y)p(z|y) dz, (2.1)
where p(6 | y) denotes the posterior density of the param-
eter 0 given the data y, p(z | y) denotes the predictive
density of the latent data z given y, and p(0 | z, y) denotes
the conditional density of # given the augmented data x
= (z,y). The predictive density of z can, in turn, be related
to the desired posterior density by

Pl = [pelop@ln) b @)
In the above equations, the sample space for the latent
data z is denoted by Z and the parameter space for 0 is
denoted by ©. (From this point on the range of integration
will be omitted from the expressions, as it will be specified
implicitly by the differentials dz or d¢.) Substituting (2.2)
into (2.1) and interchanging the order of integration, we
see that p(6 | y) must satisfy the integral equation

80) = [K(@, 9)g(9) o,
where K(0, ¢) = fp(ﬁ |z, Y)p(z | ¢, y) dz. (2.3)

Let T be the integral transformation that transforms any
integrable function f into another integrable function Tf
by the equation

156) = [K©, $)59) do. @.4)
The method of successive substitution for solving (2.3)
thereby suggests an iterative method for the calculation of

p(0]y). Namely, start with any initial approximation 80(0)
to p(0 | y), and successively calculate

8i+1(60) = (Tg:)(0). (2.5)

In Section 6 we will show that under mild conditions the
g:’s calculated this way will always converge to the desired
posterior p(6 | y).

If the integral transform (2.5) can be calculated analyt-
ically, then the implementation of this method is straight-
forward. Unfortunately, this is seldom the case. In typical
cases, the integration in (2.1), (2.2), and (2.5) is difficult
to perform analytically. It is often possible, however, by
the Monte Carlo method, to perform the integration.
Equation (2.1) then motivates the following iterative
scheme: Given the current approximation g; to p(8 | y),

(a) generate a sample z, . . . , z™ from the current
approximation to the predictive density p(z | y)
(b) update the current approximation to p(6 | y) to be
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the mixture of conditional densities of 6 given the
augmented data patterns generated in (a), that is,

gin(0) = m=' X p(0| 29, y).
j=1

In the above, we must either be able to calculate p(@ | z,
y) for any augmented data (z, y) or we must be able to
sample numerically from this distribution. This is a pre-
requisite for the data augmentation scheme, and we will
assume that it is true for the remainder of this discussion.
Now consider step (a), that is, the generation of the latent
data from p(z | y). Given that the current approximation
to p(0 | y) is g(6), (2.2) then suggests that z can be gen-
erated from the current predictive distribution in two
steps:

(al) generate 6 from g,(6).
(a2) generate z from p(z | ¢, y), where ¢ is the value
obtained in (al).

Clearly, when m is large, the two steps (a) and (b), where

(a) may be implemented by (al) and (a2), will provide a

close approximation to one iteration of (2.5). Further-

more, as we will see in Sections 6 and 7, even when m is

as small as 1, the iteration is still “in the right direction”"
in the sense that the average of p(6 | x) over the augmented

data patterns generated across iterations will converge to

the p(@ | y). It is noted that m need not be held fixed from

iteration to iteration, and in Section 7 comments on how

m should be adaptively varied are presented.

Step (a) requires the generation of multiple values of
the latent data z by sampling from the conditional density
of z given y. This process is termed multiple imputation
by Rubin (1980), who first introduced it as a method for
handling nonresponse in sample surveys and in censuses.
Thus step (a) can be referred to as the “imputation” step.
Step (b) requires the computation (or sampling) of the
posterior distribution of 6 based on the augmented data
sets. We will call this step the “posterior” step. The al-
gorithm consists of iterating between the imputation and
posterior steps.

The usefulness of the algorithm depends to a large ex-
tent on the ease of implementation of the imputation and
posterior steps. In general, neither step is guaranteed to
be easy. There is a parallel limitation on the EM algorithm;
namely, that in general both the E and M steps may be
difficult to implement. There remains, however, a rich
class of problems, especially those connected with expo-
nential families, for which there are natural ways to carry
out these steps. This is illustrated by the examples here
and the examples in Dempster et al. (1977).

Linkage Example

To illustrate the basic algorithm, we consider an ex-
ample that was presented in Rao (1973) and reexamined
in Dempster et al. (1977) and Louis (1982). In particular,
from a genetic linkage model, it is believed that 197 ani-
mals are distributed multinomially into four categories,
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y = (¥1, Y2» Y3, Ya) = (125, 18, 20, 34), with cell proba-
bilities specified by

<1+g(1—9)(1—0)g>
2 4 4 4 4)

To illustrate the algorithm, y is augmented by splitting
the first cell into two cells, one of which having cell prob-
ability 3, the other having cell probability 6/4. Thus the
augmented data set is given by x = (x1, X, X3, X4, Xs),
where x; + x, = 125, x3 = y,, X4 = ¥3, and x5 = y,. The
likelihood is of the form

p(y|0) « (2 + 6)r(1 — Gy=*r0",
and the augmented likelihood is of the form
p(x | 0) o g5 (1 — Q=+,

Thus, in this example, the augmented likelihood has a very
simple form.

The implementation of our algorithm is then given as
follows:

(a) I Step (Imputation Step).

(al) Draw 6 from the current estimate of p(6 | y).
(a2) Generate x, by drawing from the binomial dis-

tribution with parameters (125, 6/(6 + 2)).
Repeat steps (al) and (a2) m times.

(b) P Step (Posterior Step). Set the postérior density of
6 equal to the mixture of beta distributions, mixed
over the m imputed values of x,; that is,

1 & )G
PO 1) = - 3 Bes?, 40)(0),

531

where

VO = xP 4+ xs + 1,y = x5 + x4 + 1,
and
F'(v + w)
I (v) T(w)
zg til)is step, the prior for € is assumed to be uniform in

Figure 1 presents the posterior density estimates of 6
for this example. In particular, the normal approximation
with 2 = .63 and 6 = .05 (solid line) is plotted along with
the true posterior distribution (dotted line)

p(0]y) = (2 + 6yr (1 — Gy2+ng,

and the estimated posterior (dashed line) obtained by plot-
ting the mixture of the beta distributions at the final it-
eration in which m = 1,600. In the density scale, all three
estimates are congruent. In the log-scale, however, even
in this large sample situation a departure of the true pos-
terior from the quadratic approximation at the mode is
evident (Fig. 2).

Alternatively, we consider a second version of the data
in which the sample size is reduced by a factor of 10,
though the cell proportions are approximately unchanged;
that is, y = (13, 2, 2, 3). The resulting posterior density
estimates are plotted in Figure 3. In this case, although
the true posterior density and the estimated posterior den-
sity are congruent, the validity of the normal approxi-
mation may be in doubt, even when viewed on the density
scale. An even more dramatic illustration is given in Figure
4, where y = (14, 0, 1, 5). In cases with such a dramatic
departure from normality, one or two iterations of our

Be(vy, v,)(0) = 011 — g)» L

Bensity
4
T

Theta

Figure 1. Posterior Density of 6 for Data (125, 18, 20, 34). The solid, dashed, and dotted lines represent the normal approximation, the estimated
posterior distribution, and the true posterior, respectively. The dashed and dotted lines are superimposed.
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Density - Log Scale
5

-1.5 -1.0 -0.5

. S5 0. 60

0. 65 0. . 7S

Theta

Figure 2. Log-Posterior Density of 8 (same data and legend as in Fig. 1).

algorithm would indicate the inadequacy of the normal
approximation.

3. FUNCTIONALS OF THE MULTIVARIATE NORMAL
COVARIANCE MATRIX

In this section, the posterior distribution of the corre-
lation coefficient from the bivariate normal distribution
will be investigated. To illustrate, suppose that the data
in Table 1 (Murray 1977) represent 12 observations from
the bivariate normal distribution with x4, = u, = 0, cor-
relation coefficient p, and variances ¢% and 6. Before pro-
ceeding to the formal analysis, we note that in the four
pairs of observations, two pairs have correlation 1 and the
remaining two pairs have correlation —1. Thus we can

o

expect a nonunimodal posterior distribution for p in this
data set. In such a case, the maximum likelihood estimate
and the associated standard error will clearly be mislead-
ing. Furthermore, we point out that the information re-
garding o7 and o} in the eight incomplete observations
cannot be ignored because information regarding ¢3 and
o3 is of use in making inference regarding p.

The implementation of the algorithm in this problem is
straightforward. Given the covariance matrix 2, the unob-
served data is generated as follows:

1. If x, is known, then generate the unobserved obser-
vation from

N(p%cl, (1 - pZ)).

o

Density
T

Thata

Figure 3. Posterior Density of 6 for Data (13, 2, 2, 3) (same legend as in Fig. 1). The dashed lines and dotted lines are superimposed.



Tanner and Wong: Data Augmentation

533

n

Density

Theta

Figure 4. Posterior Density of 0 for Data (14, 0, 1, 5) (same legend as in Fig. 1). The dashed and dotted lines are superimposed.

2. If x, is known, then generate the unobserved obser-
vation from

N(P ':_—:xz, oi(l - Pz))-

The covariance matrix 2 is then generated from the cur-
rent guess of the posterior distribution p(2 | y). At the
first iteration, p can be generated from U[—1, 1] and o?
and o3 can be generated from weighted y2 distributions.
At succeeding iterations, the updated posterior p(2 | y)
is a mixture of inverted Wishart distributions. This last
point follows from the fact that p(Z | x) is an inverted
Wishart distribution (Box and Tiao 1973, p. 428) when
the prior of X is given as

p(S) « (S0,

where p is the dimension of the multivariate normal dis-
tribution. Thus, in the second step of the algorithm, we
generate m observations from this mixture of inverted Wis-
hart distributions and compute the associated correlation
coefficient for each observation.

Regarding the implementation of the algorithm, it is
noted that the algorithm of Odell and Feiveson (1966) can
be used to generate observations from the inverted Wis-
hart distribution. The amount of computation in this al-
gorithm is not extensive, since the computation is of order
p(p + 1)/2, which does not depend on the sample size.

In Figure 5, we plot the histogram of the imputed cor-
relation coefficients based on pooling the tenth through
fifteenth iterations (m = 6,400). In addition, the true pos-

Table 1. Twelve Observations From a Bivariate Normal Distribution

11 -1

-1 2 2 -2 -2 * * *x =
1 -1 1 ’

-1 s v 2 2

* Value not observed (missing at random).

terior of the correlation coefficient, which is proportional
to [(1 — pH)*S]/[(1.25 — p?)¥], is also plotted. As is evident
from the plot, the estimated posterior distribution recovers
the bimodal nature of the true distribution.

Finally, it is noted that the algorithm presented in this
article can be used to examine the posterior distribution
of any functional of the covariance matrix. For example,
the posterior distribution of the largest eigenvalue of the
covariance matrix (Tiao and Fienberg 1969) may be ex-
amined by simply computing the largest eigenvalue of each
of the observations from the inverted Wishart distribution
computed in the second step of the algorithm.

4. THE DIRICHLET SAMPLING PROCESS

In the linkage example of Section 2, the augmented
posterior distribution p(@ | x) is a beta distribution. Thus
it is a trivial matter to carry out the P step. In more com-
plicated models, the sampling of # from p(@ | x) may not
be so simple. We now present a primitive but generally
applicable procedure, based on a Dirichlet sampling pro-
cess, which can be used to approximately sample from the
posterior distribution of parametric models for multinom-
ial data. In this section, we develop and illustrate the pro-
cedure using the linkage example. Further uses will be
illustrated in Section 5.

In the linkage example, conditional on the augmented
data, the distribution of the last four cell probabilities (P,
Ps, P,, Ps) is equal in distribution to that of (v,/2, w/2,
v4/2, vs/2), where (v, vs, V4, ¥s5) has the Dirichlet distri-
bution

F(x2-+ X3'+ X4'+ x5-+ 4)
F(x2 + 1)F(X3 + I)F(X4 + l)F(xS + 1)

VR VP Ve vE,

5
>Sv=1, (41)
i=2
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Density

0.0

Rho

Figure 5. Posterior Density of the Correlation Coefficient. The solid and dashed lines represent the true and estimated posterior, respectively.

which will be denoted by D(x,, x3, x4; x5). It is a trivial
matter to generate observations from such a Dirichlet dis-
tribution. Our model, however, is not a saturated multi-
nomial model. In fact, the linkage model specifies that
(P,, P, P,, Ps) must lie on a linear parametric curve,

061 61 6280
C = {(Z,Z - Z,Z - Z,z).@E[O, 1]}
The posterior distribution p(6 | x) will only induce a dis-
tribution of (P,, Ps;, P4, Ps) on the curve C. How is this

induced distribution related to the Dirichlet distribution
(4.1)? The answer is simple:

Lemma. The distribution induced by p(@ | x) on the
curve C is the same as the conditional distribution induced
by the Dirichlet distribution (4.1) on C (through the re-
lationship P = $v).

Proof. To verify the lemma, it is sufficient to check that
the ratio of the densities evaluated at any two points on
C is identical under either distribution.

Density

Theta

Figure 6. Posterior Density of 6 for Data (3, 2, 2, 3). The dotted, dashed, and solid lines represent the estimate based on 10,000 values, the
estimate based on 3,000 values, and the true posterior distribution, respectively.
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This lemma suggests a simple two-stage algorithm: (a)
generate observations from the Dirichlet distribution (4.1)
and (b) accept only those points lying relatively close to
the parametric curve C.

To be specific, observations are drawn from D(x,, X3,
x4; x5) and for each of these observations, we find the 6
that gives cell probabilities (p,, Ps, Ps, Ps) closest to the
observed Dirichlet observation (p,, ps, s, ps). Given the
functional dependencies of each of the probabilities on 6:

= 0/4, P, = 1/4 — 6/4, P, = 1/4 — 6/4, and P;s

= /4, the least squares solution yields § = 2(p; + ps)-
The approximate posterior distribution for 6 is then ob-
tained by forming the histogram of those § values whose
corresponding (p,, Ps, P4, Ps) vector is within an e-neigh-
borhood of (p,, ps, ps, Ps), that is, such that

(22 (pi — f’i)z) <e.

According to the above lemma, if ¢ is sufficiently small,
then the 6 values obtained in this way will have a dis-
tribution approximately equal to p(@ | x).

In practice, the value of ¢ is selected by plotting a se-
quence of estimated posterior distributions of § corre-
sponding to a sequence of decreasing ¢ values. The curves
tend to converge as the value of ¢ is decreased. The afore-
mentioned procedure is generally applicable to parametric
models for multinomial data if the cell probabilities are
linear in @ or if the posterior distribution is relatively con-
centrated in comparison with the curvature of the para-
metric surface. Otherwise, the raw histogram of § must
be multiplied by some adjustment factor.

To test the procedure in the linkage example, assume
that the augmented data vector is given by (3, 2, 2, 3). To
obtain the posterior distribution of 8, we begin by drawing
10,000 observations from the Dirichlet distribution cor-
responding to this data vector. For each of these Dirichlet
observations, the value of 6 that gives the closest (B,, ps,
Pa, Ds) vector is found using least squares. The resulting
histograms of the @ values (using 10,000 initial values and
3,000 accepted values) and the true posterior distribution
are presented in Figure 6. An examination of this figure
reveals that the estimated distribution of 6 based on the
restricted set of § values is quite similar to the true dis-
tribution.

5. THE TRADITIONAL LATENT-CLASS MODEL

The data in Table 2 represent the responses of 3,181
participants in the 1972, 1973, and 1974 General Social
Surveys, as presented in Haberman (1979). The partici-
pants in these surveys are cross-classified by the year of
the survey and their responses to each of three questions
regarding abortion. Thus the cell entry #,,, represents the
number of subjects who in year D = d give responses a
to question A, b to question B, and c¢ to question C.
Regarding question A, subjects are asked, “Please tell me
whether or not you think it should be possible for a preg-
nant woman to obtain a legal abortion if she is married
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Table 2. White Christian Subjects in the 1972—-1974 General Social
Surveys, Cross-Classified by Year of Survey and Responses to
Three Questions on Abortion Attitudes

Response Response Response Observed
Year (D) toA toB toC count
1972 Yes Yes Yes 334
Yes Yes No 34
Yes No Yes 12
Yes No No 15
No Yes Yes 53
No Yes No 63
No No Yes 43
No No No 501
1973 Yes Yes Yes 428
Yes Yes No 29
Yes No Yes 13
Yes No -No 17
No Yes Yes 42
No Yes No 53
No No Yes 31
No No No 453
1974 Yes Yes Yes 413
Yes Yes No 29
Yes No Yes 16
Yes No No 18
No Yes Yes 60
No Yes No 57
No No Yes 37
No No No 430

Source: Haberman (1979, p. 559).

and does not want any more children.” In question B, the
italicized phrase is replaced with ““if the family has a very
low income and cannot afford any more children,” and in
question C it is replaced with ““if she is not married and
does not want to marry the man.” For these data, Ha-
berman (1979) considered several models, one of which
is the traditional latent-class model. [See Goodman
(1974a,b), Haberman (1979), or Clogg (1977) for an ex-
position of this model.] In this example, the traditional
latent-class model assumes that the manifest variables (A4,
B, C, D) are conditionally independent, given a_dicho-
tomous latent variable (X). In other words, if the value
of the dichotomous latent variable is known for a given
participant, then knowledge of the response to a given
question provides no further information regarding the
responses to either of the other two questions. Haberman
used the EM and scoring algorithms to obtain maximum
likelihood estimates of the cell probabilities.

One parameter of interest associated with this model is
the conditional probability of a response a to question A,
given that X = 1 (which will be denoted as 7¥). In con-
junction with 74*, the magnitude of this conditional prob-
ability indicates the accuracy of the response a to question
A in identifying the latent classification X = 1, since the
ratio nA%/n4¥ is the likelihood ratio for identifying X based
on an observation of A. In the present example, Haberman
estimated n{¥ to be .892. The estimated standard error
can also be obtained using the delta method, though Ha-
berman did not include this value in his presentation.

To obtain the posterior distribution of zf¥, the IP al-
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gorithm is implemented as follows. In the initial iteration,
the odds of being in the latent class X = 2 (which will be
denoted as 6,,,) is taken to be 3 for all values of a, b, c,
and d. The unobserved cell counts (s,.4,) are imputed by
noticing that conditional on both 6,,., and the observed
cell counts n,.4, the posterior distribution of 7, follows
a binomial distribution with parameters n,,, and 1/(1 +
Ou5ca)- The posterior distribution of n{ is then obtained
by drawing from the mixture of augmented posterior dis-
tributions. In particular, for a given augmented data set,
a vector of probabilities {P,.4} is drawn from the Dirichlet
distribution D(n11111, - - - , Moya1; Mamz) and some of the
observations are discarded using the Euclidean distance
criterion, as discussed in the previous section. The odds
of being in the latent class X = 2 given that A = a, B =
b, C = ¢, and D = d is updated using the maximum
likelihood estimate (under the conditional independence
model)

2 Dabeaz 2 Dabeaz Z Dabeaz
b,cd a,c,d ab,d

Z Dabear Z DPabear

a,c,d a,bd

3
2 Dabcaz 2 Pabear
d

ab,c a,b,c,

Z Dabear Z Dabcdaz

a,b,c a,b,c,d

Z Pabear
b,c,d

and the algorithm cycles until convergence is achieved.
For each augmented data set, the conditional probability
of interest is calculated from the equation

2 Pivcar

b,c,d
i =

B Z Pabear ’

a,b,c,d

In Figures 7a and 7b, the estimated posterior distribu-
tion of n{{¥ is presented, where the values from the fif-
teenth through the twentieth iteration are pooled (m =
1,600) to form the histogram in these figures. As can be
seen from the figures, the posterior distribution appears

Left Mode

40 60 80

Density

20

0.02 0.03 0.04 0.05 0.06 0.07

Conditional Probability
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to be bimodal, with one mode occurring at about .039 and
the other mode occurring at about .886. The reason for
this bimodality stems from the unidentifiability inherent
in the problem. In the latent-class model, the data analyst
has the choice of identifying a positive attitude toward
abortion with the condition that X = 1 or with the con-
dition that X = 2. The mode occurring at .039 occurs if
one identifies a positive attitude with X = 2; the second
mode occurs if a positive attitude is identified with X =
1. In this regard, it is important to note that the modes
are well separated. Thus, for the present data set, the
conditional probability is, in the Bayesian sense, locally
identifiable.

Conditioning on the identification of a positive attitude
toward abortion with X = 1, that is, examining the right
mode, we find that our point estimate for n{{¥ is close to
the maximum likelihood estimate (.886 versus .892). (Such
an identification is reasonable given the nature of the ques-
tion.) In addition, there is little evidence of a departure
of the normal approximation from the posterior distri-
bution. Comparing the estimated density to the normal
curve with matching mean and standard error (.009), an
overall concordance is observed (Fig. 7b). A similar con-
clusion is reached by examining the corresponding rankit
plot (Fig. 8). Regarding the lower mode (Figs. 7a and 9),
some evidence against the normal approximation (4 =
.039, & = .006) is noted. In particular, the posterior dis-
tribution is slightly skewed to the right.

6. THEORETICAL DEVELOPMENT

In this section, we return to the study of the algorithm
motivated and outlined in Section 2. In previous examples,
it was seen that the algorithm converged to the true pos-
terior. The results in this section will explain why the al-
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Figure 7. Posterior Density of nf}. The solid and dashed lines represent the estimated and true posterior density, respectively. (a) Left mode.

(b) Right mode.
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gorithm should converge and at what rate it does so. For
simplicity we will first assume that © is a connected subset
of RP. The theory is essentially the same for discrete O,
as discussed briefly at the end of this section. Let L, be
the space of (Lebesque) integrable functions of § € O,
and |fl = [ |f(6)| d6 for f € L,. Let g(6), K(6, ¢), and
T be defined as in (2.3)-(2.5). Clearly, T is a bounded
linear operator on L;. Let us denote the true posterior
density by g«(6). Then according to (2.3), g« is a fixed
point under T; that is, Tgy = gx.

The main results of this section are, roughly, (a) g« is
the only density that satisfies the fixed point equation and
(b) for essentially any starting value, the iteration (2.5)
converges linearly to gy, that is, the deviation in the L,
norm decreases at a geometric rate. These statements hold

under some regularity conditions [Condition (C), given
subsequently].

The first theorem shows that the L, distances from the .
true posterior are nonincreasing in the iterations.

Theorem 1. ||giv1 — g+l < g — 8xll.

Proof. The proof will make use of the following ele-
mentary facts: (a) [ K(0, ¢) df = 1; thus if f(6) = 0 for
all @, then ||Tf|| = |fl. (b) If £(6) = g(6) for all 6, then
Tf(6) = Tg(0) for all 6. To prove the theorem, let f = g;
— gx. Then

Tf = 8i+1 — 8x%»

1Tl = f ITf(0)] do < f (Tf)(6) 46 = ITIlI = Il
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Can the distances from the truth be strictly decreasing?
Is g« the only density that satisfies the fixed point equa-
tion? To obtain positive results, we must impose some
regularity conditions. '

Condition (C). K(0, ¢) is uniformly bounded and is
equicontinuous in §. For any 6, € O, there is an open
neighborhood U of 6,, so K(0, ¢) > 0 for all 6, ¢ € U.

The second part of this condition says that if § and ¢
are close, then it is possible to generate some latent data
pattern z from p(z | ¢, y) such that p(@ | z, y) is nonzero,
which is a reasonable condition.

Lemma 1. Under Condition (C), any density g that is
a fixed point of 7 must be continuous and strictly positive.

Proof. By hypothesis, g(d) = 0, g(0) = [K(0, $)g(¢)
dé. Hence |g(0)) — g(0) < [ |K(6:, ¢) — K(6, 9)| g(#)
d¢, which tends to 0 as 6, — 6, by dominated convergence.
This proves continuity of g. To prove positivity, consider
A = {0 € 06:g(0) > 0}. If A # O, then there must be a
0, € O that is also on the boundary of A. By Condition
(C), there is a neighborhood U of 6, such that K(0, ¢) >
0 for all 4, ¢ € U. Since 6, is on the boundary we must
have g(¢) > 0 for some open subset of U. Hence 0 =
g(6) = [y K(0o, ¢)g(¢) dp > 0, a contradiction. Hence
A= 0.

Lemma2. Under Condition (C), if f € L, is a function
so that neither its positive part f* nor its negative part f~
are identically 0, then | Tf] < |If]l-

Proof. By connectedness of © and Condition (C), we
must have support of Tf* D support of f*, and support
of Tf~ D support of f~. Note that the inclusions are strict.
It follows that

(support of Tf*) N (support of Tf~) 6.1)

is nonempty. Now
I(THO)| = ITf*(6) — Tf(O),
(TIf)@®) = Tf*(6) + Tf(6).

Hence under (6.1) we must have
f I(TF)(O)| 46 < f (T|f))(0) do.

Corollary. Under (C), the distance of g to gy is strictly
decreasing.

Now we are ready to state and prove the main theorems.
Theorem 2 guarantees the uniqueness of the solution to
the fixed point equation. Theorem 3 gives the rate of con-
vergence of the iteration (2.5) in terms of L, distances.

Theorem 2. Under Condition (C), the posterior den-
sity g is the only density that satisfies Tg = g.

Proof. The fact that g, satisfies the fixed point equation
was derived in Section 2. Suppose that gy is a different
density satisfying Tg = g. Let f = g4« — Z«x, then f must
be continuous by Lemma 1. In addition, since [ f(6) d
= 0 and f # 0, neither f* nor f~ can be identically 0.
Hence, by Lemma 2, ||Tf|| < ||f]. But on the other hand,
Tf = Tgy — Tgux = 8« — &+ = [, a contradiction.
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Theorem 3. Suppose that Condition (C) holds and that
the starting value g, satisfies supy (g0(6)/g«(6)) < «. Then
there exists a constant o (0 < a < 1), such that

lgis1 — gxll < eligo — gxll.

Proof. The proof proceeds in five steps:

(a) For any M > 0, if (g,(6)/g«(0)) < M for all 0 € O,
then (g;(6)/g+«(6)) < M for all i, for all § € ©.

(b) For any M > 0, the set {f € L, : |f(0)/g«(0)| < M
for all 6} is weakly sequentially compact in L;.

(c) Let fi = & — g« and let & = sups; (ITfll/Ifl))-
There exists a subsequence { f;} such that || Tf;||/||f:]| = «,
and f; converges to some f, weakly in L.

(d) Since the set {f;} is bounded and equicontinuous,
we must actually have f; converges to f, strongly in L,
and f, can be chosen to be continuous.

(e) Hence a = Wim(|Tf:A/|Ifl) = ITF4l/If «l. But [£4(6)
df = 0; hence by Lemma 2, 0 < a < 1. From this, the
theorem follows directly.

It remains to establish statements (a)—(e). Statement (e)
needs no proof, statement (a) follows from elementary
manipulation, and statement (b) is a well-known property °
of L, spaces (see, e.g., Dunford and Schwartz 1958, p.
294). To prove (c), let {f;} be a subsequence of {f;} such
that | Tf|/|f+]| = «. Now by (a) and (b), {f;} is weakly
sequentially compact, so there must exist a further sub-
sequence {f;} of {fi} convergent weakly in L. This es-
tablishes (c). Finally, (d) can be established by standard
analytical arguments.

Remark 1. One of the conditions of Theorem 3 requires
that gy(6)/g«(0) be uniformly bounded. For a compact
parameter space O, this condition is automatic if Condition
(C) holds, since under (C), g« is continuous and strictly
positive. For an unbounded parameter space, we need to
make sure that the decay of g,(f) when |§] — « is not
slower than that of g.(6). This suggests using g, of bounded
support.

Remark 2. Theorem 3 says that the convergence rate is
linear. Unfortunately, the rate a is dependent on the initial
value g,. If © is compact, it can be shown that the supre-
mum of a over all possible g is still less than 1; that is,
we get a linear rate independent of the starting values. If
O is unbounded, however, « can be arbitrarily close to 1,
depending on the starting value. This seems to be an in-
trinsic limit imposed by an unbounded parameter space
and should not be regarded as a weakness of the method.

Remark 3. The whole theory can be developed in the
same way for finite or countable ©. The simplest replace-
ment for Condition (C) is to require K(6, ¢) > 0 for all
0, ¢ € O. Weaker conditions exist but they are cumber-
some to state.

Remark 4. 1t is clear from properties (a) and (b) in the
proof of Theorem 1 that T is a Markov transition operator.
However, a search through standard references, including
Doob (1953), does not produce results directly suitable
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for our use. Especially, the L, convergence rate in Theo-
rem 3 seems to be new.

Remark 5. Similarly, there is a vast literature on fixed
point operator equations and the method of successive
substitution (see, e.g., Rall 1969, pp. 64-74). Again, we
have not found results directly usable here.

7. PRACTICAL IMPLEMENTATION OF
THE ALGORITHM

As indicated in the introduction, if the sample size m is
taken to be large in each iteration, then the algorithm can

be interpreted as the method of successive substitution for
solving a fixed point problem. In practice, however, it is
inefficient to take m large during the first few iterations
when the estimated posterior distribution is far from the
true distribution. Rather, it is suggested that m initially
be small and then increased with successive iterations. In
addition, we have found it helpful to monitor the progress
of the algorithm by examining selected percentiles of the
estimated posterior distribution, for example, the 25%,
50%, and 75% percentiles.

To illustrate these ideas, let us return to the linkage

Density

Theta

Figure 11. The Posterior Density of 6. The dashed and solid lines represent the estimated and true posterior, respectively.
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example, where the observed data is taken to be (13, 2,
2, 3). At the initial iteration, m is taken to be 20. The
algorithm then runs through 40 iterations, at which point
it appears (see Fig. 10) that the process has become sta-
tionary. The sample size is then increased to 400 and the
algorithm proceeds through 20 further iterations. From
Figure 10, we see that the effect of increasing m has been
to reduce substantially the system variability. The final 10
iterations are run with m = 1,600, and the estimated pos-
terior distribution is then obtained by pooling the imputed
theta values from the final iterations. Figure 11 is obtained
by pooling the results of iterations 67-70.

For obvious reasons, the statistical fluctuations exhib-
ited in iterations 20-40 cannot be reduced by further it-
erations without increasing the sample size m (for the
sample of augmented data). Typically, graphical displays,
such as Figure 10, will give a good idea of how m should
be varied. A more formal procedure can be obtained by
comparing the within-iteration variance to the between-
iteration variance.

Another point illustrated in the linkage example is the
possibility of pooling among iterations. For example, in
iterations 20-40 we see that the process has stabilized.
These samples are then pooled to form a combined sample
of 400 to initialize the new iteration with m = 400. This
pooled sample should not be regarded for all purposes as
a random sample because the values from different iter-
ations are dependent. If the process has reached equilib-
rium, however, then the histogram constructed from
the sample will give the correct shape. Thus, for exam-
ple, let m, 6,,, and s denote, respectively, the sample size,
mean, and standard deviation of the pooled sample. It
then follows that ¢,, will be a consistent estimate (as m —
«) of the posterior mean of 6, but the standard error of
this estimate will typically be larger than s/Vm. To see
this, consider the extreme case in which m = 1, so that
iteration i produces only one value 6(i). In this case, 6(i)
(#=1,2,...) forms a Markov process with transition
function equal to K(6, ¢), as defined in (2.3). Under the
regularity conditions of Section 6, this is an ergodic Mar-
kov process with an equilibrium distribution satisfying the
fixed point equation given in (2.3). Hence 6,, will converge
to the mean of this equilibrium distribution, which is iden-
tical to the mean of the posterior distribution.

Finally, it is noted that the computation in Section 2.1
(10 iterations with m = 1,600) required 13 minutes on a
VAX 750, whereas the computations in Section 3 (15 it-
erations with m = 6,400) and Section 5 (15 iterations with
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m = 1,600) required 23 minutes and 171 minutes, re-
spectively, on a VAX 750.

[Received April 1985. Revised October 1986.]
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A. P. DEMPSTER*

Comment

The article by Tanner and Wong is a notable achieve-
ment because it combines theoretical elegance and insight
with an important contribution to the emerging field of
practical Bayesian statistics. I believe that Bayesian sta-
tistics is fundamentally a computational theory whereby
the implications of a set of statistical data are understood
by constructing a probability model and computing a set
of relevant probabilities and expectations. There is little
need for the traditional mathematical studies of properties
of statistical techniques that dominate statistical journals.
There is a great need for better understanding of the prin-
ciples of model construction, criticism, and revision, and
for studies of sensitivity of inferences to model change as
a function of features of the data. Such studies depend
critically on the availability of sophisticated Bayesian com-
puting tools, especially for realistically complex data sys-
tems. The data augmentation idea seems destined to greatly
facilitate the handling of complexity, so that situations that
recently were computationally intractable now appear fea-
sible. I look forward to much further development, both
of related algorithms and of implementations for specific
models, now that Tanner and Wong have shown us the
way.

For example, hierarchical models with several levels of
Gaussian randomness have a long history and many im-
portant applications. Standard practice in this area has
been to replace the unknown hyperparameters (i.e., vari-
ance components) by point estimates, and then to report
posterior distributions for interesting quantities, assuming
that the point estimates are known true values. Standard
methods for adjusting these posterior distributions to re-
flect increased variability due to inaccuracy of the point
estimates of the hyperparameters do not exist. For a
Bayesian such standard methods are necessarily dubious
in principle, in the sense that second-level variability typ-
ically has relatively small sample size so that dependence
on specific choices of hyperpriors is practically meaningful.
The immediate task is to implement methods for con-
structing and computing with genuine hyperpriors, and
then to study the results of applying the methods to data
sets with specified features. Data augmentation methods
(EM algorithms) have in recent years facilitated the im-
plementation and study of methods based on maximum
likelihood estimation of hyperparameters. I now expect
parallel developments for logically more satisfying
Bayesian methods.

I believe that Tanner and Wong might have helped read-
ers unfamiliar with the problem of Bayesian computing by
presenting an outline of the range of currently available
methods and of their strengths and weaknesses in various

settings. These include exact analytic expressions, analytic
approximations and expansions, numerical integration
procedures, and Monte Carlo methods, especially impor-
tance sampling. The basic idea of data augmentation ex-
hibited in Tanner and Wong’s formula (2.1) is to depend
on numerical mixing via p(z | y) of the analytically tractable
complete data posteriors p(0 | z, y), where the relative
contributions.of each part to posterior variability depends
on the fraction of missingness inherent in the adopted
model. The numerical mixing operation could in principle
draw on any of the approximate methods listed previously,
and opportunities exist for developing algorithms along
many different lines.

Tanner and Wong do not use any of the standard ap-
proximate methods, but instead adopt an ingenious iter-
ative scheme based on successive substitution. The result
is that the Tanner and Wong method has two striking
parallels to the EM algorithm, namely, (a) dependence on
the analytic simplicity of the likelihood function given aug-
mented data, and (b) use of an iterative process with a
monotone convergence property. Although the iterative
scheme is mathematically very appealing, its use in the
actual numerical problem may be somewhat unnatural,
because Monte Carlo approximation is typically used for
each successive iterate g;(6), whereas it seems to me that
if Monte Carlo is needed it might more efficiently be ap-
plied directly to approximating g(@).

A problem with direct use of Monte Carlo for numerical
mixing is that available algorithms generally permit only
sampling from approximate posteriors, whence impor-
tance sampling weights are required for the direct use of
(2.1). Two desiderata for importance sampling are (a) it
should be easy to compute the weights, and (b) the weights
should be as constant as possible. The feasibility of (a)
depends on the model. For the hierarchical Gaussian mod-
els mentioned previously, simulation of z produces the
likelihood /(@) as a byproduct so that weights depending
only on 6 may be used. For other models, more variable
weights based on (0, z) pairs may be necessary. There
would still be a role for successive iterates g;(6) for suc-
cessive stages of sampling, in order to stabilize the im-
portance sampling weights, but the iterates themselves would
involve weights and so would differ from the Tanner and
Wong iterates. My central point is that there are many
options for using Monte Carlo in conjunction with the
basic data augmentation principle (2.1), whence oppor-
tunities for studying and comparing them need to be pur-
sued.

* A. P. Dempster is Professor, Department of Statistics, Harvard Uni-
versity, Cambridge, MA 02138. This work was facilitated in part by
National Science Foundation Grant DMS-85-04332.
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C. N. MORRIS*

Comment

Simulation in Hierarchical Models

1. SIMULATION FOR GENERAL
HIERARCHICAL MODELS

Hierarchical Bayes models and related empirical Bayes
models are suited ideally for analysis by Tanner and Wong’s
data augmentation algorithm. The following amplifies on
the general approach and examines the case of normal
means in particular.

In the usual three-stage hierarchical setting, assume
known forms of densities: p;(y | 6) for observed data y
(stage I'in the hierarchy); p,(0 | @) for unknown parameters
0 (stage II), given the unknown hyperparameter «; and
D3(a) (stage IIT) for a. The joint distribution is

p(y, 0, 0) = p1(y | )p2(6 | @)ps(@).  (1.1)

This can be rewritten in two alternative forms:

q1(»)q2(0 | y)gs(e | 6)
n(r@ | o, y)r(aly),

with the g; and r; densities derived from p,, p,, p;. Of
course q1(y) = ri(y). Note the useful simplifying fact that
the conditional probability of « given 6 and y does not
depend on y and hence is gs;(e | 6).

Tanner and Wong obtain a sample 6O, . . . , 0 of size
m from gq,(0 | y), the posterior density, or a jointly dis-
tributed sample (9, a¥) (j = 1, . .., m) from

1.2)
(1.3)

r(y, 0, a)

P, aly) =p(y, 0, @)/q:(). (1.4)

Their method accomplishes the latter objective, and hence
the former, by ignoring the a). A sample of size m is
drawn from (1.4) by iterating two steps, the imputation
and posterior steps. The imputation step (I step) imputes
missing data, which in this model are taken to be values
of the unknown hyperparameter a. Given an initial sample
6Y, ..., 0™, impute a®, . .., a™ independently:

a) ~ q3(a | 0(j)), ] = 1, BRI (Y (15)

Then, given o, . . . , o, the posterior step (P step)
simulates a new sample 0%, . . . , 6™ according to

6D ~ ry(6 | 2, y) (1.6)

independently forj = 1, . . . , m. Iterating (1.5) and (1.6)
many times, beginning with any starting point, produces

* C. N. Morris is Professor, Department of Mathematics, and Direc-
tor, Center for Statistical Sciences, University of Texas, Austin, TX
78712. Support for this research was provided by National Science Foun-
dation Research Grant DMS-8407876. This comment was written while
the author was a Visiting Fellow at the University of Warwick, England.
The author extends his appreciation to Don Rubin for key discussions
on this topic.

a final sample (69, a®) (j = 1, . . . , m) from the desired
distribution p(f, « | y), even if the initial sample is not
distributed as p.

In some important hierarchical problems the P step is
conducted easily whenever p,(0 | ) is a conjugate prior
distribution relative to p;(y | 6), because then r,(0 | a, y)
takes the same form as p,(6 | @). For example, inferences
about the usual parameters § when p, is a normal, Poisson,
gamma, binomial, or negative binomial distribution and
P is conjugate to p;, only require normal, gamma, or beta
variates to sample from r,. The I step is simplified in all
hierarchical models, because g;(a | 6) does not depend on
¥, and is simplified further when p;(a) is chosen as con-
jugate to p,(6 | @). Thus simple forms for g5 and r, often
can be chosen for the iterations (1.5)—(1.6).

2. EXAMPLE: INFERENCES ABOUT NORMALLY
DISTRIBUTED OBSERVATIONS

Suppose that k£ population means 8 = (6;, . .., 6;)’
are to be estimated after observing independent normally
distributed sample means y = (y;, . . . , yx)’ with

yil X NGO, V), i=1,...,k (21

and V; = var(y; | 6)) known. The conjugate prior distri-
bution p,(6 | @) is assumed for each 6; independently with
a = A > 0 unknown and

iid

0| A X NO,A), i=1,...,k (2

Further assume that p;(e) has the conjugate (relative to
p») form

p3(A) = cA~1-92 exp(— .54/ A) 2.3)

for known g > —k/2 and A = 0. These choices lead to
proper posterior densities, but proper prior densities re-
quire ¢ > 0 and 4 > 0, in which case A is distributed as
A2,

Lqet initial values A®, . . . , A be given. The posterior
distribution of 6 given (y, A) is normally distributed and
the P step samples

09 X N((1 ~ B?)y,, V(1 = BY))  (2.4)

@G=1,...,k j=1,..., m) independently, with
BO=V/Vi+ AD) (i=1,...,kj=1,...,m).
Next, given values 9 = (69, . . ., 8) from (2.4), (2.2),

and (2.3) imply a reciprocal chi-squared distribution for
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A. The I step (1.5), therefore, samples new values A®,

..., A™ according to

A+ 10O
2

Xk+q

AD ~ , Jj=1,...,m, (2.5)
with 2, , sampled independently for each j, 6|7 denoting
sum of squares. The final iteration yields m independent
samples (6, . . ., 09, AD) (j =1, ..., m), distributed
as p(6, a|y).

There can be ambiguities in the use of these data. Es-
timation of the posterior mean (1 — B;)y;, for example,
is achieved by averaging either the (1 — B{)y, values or
the %) values forj = 1, . . . , m, but these values will not
agree precisely.

The preceding can be expanded straightforwardly to en-
compass an unknown prior mean so that a = (u, A), 4
= E§,, or to include regression forms Ef; = f'x; with
= (By,...,B,A) = (B, A) and each x; a known vector,
assuming a normal or a flat prior distribution is used for
porp.

The simulations described here will be costly when sub-
stantial accuracy is required, because that usually neces-
sitates large m and many iterations. The number of iter-
ations will be reduced dramatically, however, if a good
starting approximation to the distribution r;(a | y) is avail-
able. Assuming the model (2.1)-(2.3), a suggestion fol-
lows, based on Morris (1987).

Let /(A) denote the logarithm of the modified posterior
density A - r;(A | y), and let I'(A), I"(A) be its first two
derivatives.

543

(a) Find A > 0 a (usually unique) value satisfying [ "(A)
= 0, with

k
2(A) = —(k + @A™ + A2 + D yH(V; + A)>
1

(2.6)
(b) Define
p = (—24%"(A))12, (2.7)
(c)Forj=1,...,m,letu; = (j — .5)/m, and set
AD = A(w;/(1 — u))P. (2.8)

The values (2.8) are approximations to the expected order
statistics from the posterior density r;(A | y).

Tanner and Wong are to be congratulated for offering
this approach to Bayesian simulation. Perhaps this note
helps to expand further the usefulness of their method and
to emphasize that their “missing data” concept can be used
to include unknown parameters or latent data. Promising
as their data augmentation method is, however, much still
must be learned about affordable accuracy in large prob-
lems, about criteria for stopping the iterations (1.5)—(1.6),
and whether simulation times are feasible in high-dimen-
sional problems.

ADDITIONAL REFERENCE
Morris, C. N. (1987), “Empirical Bayes Interval Estimation,” Technical

Report 42, The University of Texas at Austin, Center for Statistical
Sciences.
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A Noniterative Sampling/Importance Resampling Alternative to the Data
Augmentation Algorithm for Creating a Few Imputations When Fractions
of Missing Information Are Modest: The SIR Algorithm

DONALD B. RUBIN*

Tanner and Wong are to be congratulated for this fine
addition (henceforth, TW) to modern statistical theory and
practice, which makes heavy use of current computational
capabilities to draw inferences using simulation tech-
niques. I firmly believe (Rubin 1985, sec. 2.5) that given
today’s computing environments, obtaining inferences in
applied problems using simulation is often highly desir-
able because of the resultant flexibility of matching models

* Donald B. Rubin is Professor, Department of Statistics, Harvard
University, Cambridge, MA 02138. This comment was written while the
author was visiting the University of Warwick, England, and was also
partially supported by National Science Foundation Grants SES-8311428
and DMS-8504332.

to data without tedious and tangential mathematical anal-
ysis.

I expect that TW will simulate a variety of interesting
efforts involving inference via simulation. For instance, it
is easy to imagine a major article or sequence of articles
providing details of the data augmentation algorithm in
the series of EM examples outlined in Dempster, Laird,
and Rubin (1977), and explicated and extended in sub-
sequent literature. Similarly, more technical articles on
this algorithm concerning rates of convergence, choices of
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A. The I step (1.5), therefore, samples new values A®,

..., A™ according to

A+ 10O
2

Xk+q

AD ~ , Jj=1,...,m, (2.5)
with 2, , sampled independently for each j, 6|7 denoting
sum of squares. The final iteration yields m independent
samples (6, . . ., 09, AD) (j =1, ..., m), distributed
as p(6, a|y).

There can be ambiguities in the use of these data. Es-
timation of the posterior mean (1 — B;)y;, for example,
is achieved by averaging either the (1 — B{)y, values or
the %) values forj = 1, . . . , m, but these values will not
agree precisely.

The preceding can be expanded straightforwardly to en-
compass an unknown prior mean so that a = (u, A), 4
= E§,, or to include regression forms Ef; = f'x; with
= (By,...,B,A) = (B, A) and each x; a known vector,
assuming a normal or a flat prior distribution is used for
porp.

The simulations described here will be costly when sub-
stantial accuracy is required, because that usually neces-
sitates large m and many iterations. The number of iter-
ations will be reduced dramatically, however, if a good
starting approximation to the distribution r;(a | y) is avail-
able. Assuming the model (2.1)-(2.3), a suggestion fol-
lows, based on Morris (1987).

Let /(A) denote the logarithm of the modified posterior
density A - r;(A | y), and let I'(A), I"(A) be its first two
derivatives.
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(a) Find A > 0 a (usually unique) value satisfying [ "(A)
= 0, with

k
2(A) = —(k + @A™ + A2 + D yH(V; + A)>
1

(2.6)
(b) Define
p = (—24%"(A))12, (2.7)
(c)Forj=1,...,m,letu; = (j — .5)/m, and set
AD = A(w;/(1 — u))P. (2.8)

The values (2.8) are approximations to the expected order
statistics from the posterior density r;(A | y).

Tanner and Wong are to be congratulated for offering
this approach to Bayesian simulation. Perhaps this note
helps to expand further the usefulness of their method and
to emphasize that their “missing data” concept can be used
to include unknown parameters or latent data. Promising
as their data augmentation method is, however, much still
must be learned about affordable accuracy in large prob-
lems, about criteria for stopping the iterations (1.5)—(1.6),
and whether simulation times are feasible in high-dimen-
sional problems.
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addition (henceforth, TW) to modern statistical theory and
practice, which makes heavy use of current computational
capabilities to draw inferences using simulation tech-
niques. I firmly believe (Rubin 1985, sec. 2.5) that given
today’s computing environments, obtaining inferences in
applied problems using simulation is often highly desir-
able because of the resultant flexibility of matching models
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to data without tedious and tangential mathematical anal-
ysis.

I expect that TW will simulate a variety of interesting
efforts involving inference via simulation. For instance, it
is easy to imagine a major article or sequence of articles
providing details of the data augmentation algorithm in
the series of EM examples outlined in Dempster, Laird,
and Rubin (1977), and explicated and extended in sub-
sequent literature. Similarly, more technical articles on
this algorithm concerning rates of convergence, choices of
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number of replications at each iteration, methods for
speeding convergence, and so forth certainly should be
forthcoming.

1. RELEVANCE OF THE DATA-AUGMENTATION
ALGORITHM TO THE CREATION OF
MULTIPLY-IMPUTED DATA BASES

TW should also stimulate related work concerning the
use of simulated complete data sets—multiply-imputed
data sets—to draw inferences. I have been deeply involved
in this topic in recent years [work now summarized in
Rubin (1987)], although my efforts have been primarily
focused on cases with only a few (e.g., m = 2-10) draws
from the posterior predictive distribution of the missing
values, p(z | y) in TW’s notation, where z is the missing
data and y is the observed data. This focus has arisen from
the desirability of supplementing an incomplete public-use
data base with a few imputations for each missing value
so that the resultant multiply-imputed public-use data base
can be analyzed using standard complete-data methods
applied to each of the m data sets completed by imputa-
tion. Such complete-data analyses can be easily combined
to form one posterior distribution that is conditional on
the output of the m complete-data analyses rather than on
y (Rubin 1987, chap. 3). Inferences based on this posterior
distribution, which include an adjustment for small m,
have been evaluated (Li 1985; Rubin 1987, chap. 4; Rubin
and Schenker 1986), and they can be perfectly adequate
even when m is 2 or 3, provided that the fraction of missing
information is modest, where the fraction of missing in-
formation about the parameter O is measured with normal
posterior distributions, for example, by the eigenvalues of
var[E(O | y, z) | y] relative to var(© | y).

Creating a multiply-imputed data set can be a major
effort; however, depending on the model and pattern of
missing data. Consequently, TW’s work on the data aug-
mentation algorithm initially appeared to be of great rel-
evance to this work, even though the algorithm could be
expensive to apply to large public-use data bases. After
some reflection, however, I believe that in those situations
where useful inferences can be drawn from a multiply-
imputed data set with small m (i.e., situations where the
fraction of missing formation is modest), a few draws from
p(z | y) can often be easily created noniteratively using a
method that may be of general interest to potential users
of the data augmentation algorithm, especially considering
that it can be applied even when the imputation step of
the data augmentation algorithm is intractable.

2. A SAMPLING/IMPORTANCE RESAMPLING
ALGORITHM FOR DRAWING A FEW IMPUTATIONS
FROM THE POSTERIOR PREDICTIVE DISTRIBUTION

OF THE MISSING VALUES

Step 1. Obtain a decent first-pass approximation to the
joint posterior density of (0, z) say h(©, z | y) > 0 for
all possible (O, z), usually formulated as

h(©,z]y) = k(O [y)h(z]©, ),

Joumal of the American Statistical Association, June 1987

where (O | y) is an approximate posterior density for ©,
and h(z | ©, y) is an approximate posterior predictive
density for z given O.

Step 2. Draw M values of (O, z) at random from A(O,
z | y), where M is large relative to m = the final number
of imputations desired for each missing value. Call these
(st zj) (] = 1’ LR | M)

Step 3. Calculate the importance ratios for each (9,
z;),

r(6;, z;| y) = p(y, z;| ©)p(0,)/h(6;, z; | y),

where the actual joint sampling density for (y, z), p(y,
z| ©), is designed to be easy to evaluate (up to a multiplier
depending only on y) by the construction of the missing
data, z

Step 4. Draw m values of z from the z; (j = 1,

M) with probability proportlonal tor; = r(e,, z; | y)
thereby creating m values of z, z; (I = 1, . . . , m); the
associated values of ©, 0/ (I = 1, . . ., m) are not needed
for imputation. Methods for such drawing appear in the
survey literature for pps sampling (e.g., Cochran 1977,
chap. 9).

If p(z | ©, y) is tractable in the sense that (a) the im-
putation step of the data augmentation algorithm is
straightforward [i.e., if A(z | ©,y) = p(z| ©, y)] and (b)
p(z| O, y) can be explicitly evaluated [i.e., if p(y | ©) =
p(y, z| ©)Ip(z | O, y), in addition to p(y, z | ©), can be
explicitly evaluated up to a multiplier depending only on
y], the sampling/importance resampling (SIR) algorithm
can be streamlined. In particular, in Step 2, only the O;
then need to be drawn, since the 7; calculated in Step 3
and used in Step 4 do not depend on the z;:

r(8;, z;| y)
< p(y | ©)p(z;1 ©;, y)p(6,)/[p(z; ] ©;, y)1(6; ] y)]
«p(y | 6)p(6))/h(6;]y).

Having calculated the 7; in Step 3 from the ©; (j = 1,

, M), then in Step 4, m values of O, are drawn with
probability proportional to r;, and for each 6/, z/ is
drawn from p(z | © = O}, y), thereby creating the m im-
puted values of z.

An important feature of the SIR algorithm is that only
one set of M (or m in the streamlined version) imputations
of z is created. When a data base is large, the number of
missing values can also be large, even with a small fraction
of missing information, and then repeatedly passing
through the database and creating sets of imputations for
z can be quite expensive. Furthermore, the process of
drawing M values of (O, z) (or O in the streamlined ver-
sion) in Step 2 is designed to be relatively inexpensive by
the choice of (0, z | y) [or A(O | y) in the streamlined
version)].

The rationale for the SIR ‘algorithm is based on the fact
that as M/m — «, the m values (z/, Of) are drawn with
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probabilities given by

r©,z]y)
fh(e, 2| Y)r(®, 2| y) 6 dz

h(e,ZIy)J»

p(y, z| ©)p(©)
f p(y, z| ©)p(©) dO dz

=p(z,0]y),

which implies that the m imputations, z (I = 1, .. .,
m), are independent draws from p(z | y), as desired. This
sampling/importance resampling technique for simulating
a posterior distribution has been previously applied in
small sample logistic regression problems (Rubin 1983).

The choice of an adequate ratio M/m depends on the
fraction of missing information, y: smaller y implies sat-
isfactory inferences from smaller M/m for two reasons.
First, h(O, z | y) should be a better approximation to p(©,
z | y) with smaller y, since p(© | y, z) is easy to find—a
simple measure of the adequacy of the approximation is
the variance of the log r;. Second, with smaller y, final
inferences from a multiply-imputed data set will be pro-
portionately more determined by y than the imputed data,
so there is less sensitivity to the imputed values. If y is
large, very large ratios M/m may be required for adequate
performance of SIR, but in such cases a multiply-imputed
data base with modest m is of limited utility anyway. In
common practical cases, I expect that M/m = 20 will often
be more than adequate, especially considering that with
modest m, accurately approximating the tails of p(z | y)
is of limited importance.

3. EXAMPLE: MISSING VALUES IN A NORMAL/
CONDITIONALLY NORMAL BIVARIATE SAMPLE

The case of a bivariate normal sample with missing val-
ues on both variables is a classic example (e.g., Wilks 1932)
of a missing-data problem without a general closed-form
solution. This case, however, is easily handled by the EM,
data-augmentation, and streamlined SIR algorithms. A
slightly modified situation, which has no closed-form so-
lution and cannot be directly handled by either the EM
or data-augmentation algorithms, will be used to illustrate
the general SIR algorithm.

Specifically, let (w;, w,) be an iid sample from

wi|© ~ N(u, %), O
wy | ©, wy ~ N(a + Bw; + ywi, %), )
where
O = (u,logo, a, B, y, log 7) 3
and
p(O) « constant. @)

Suppose that a sample of » units is taken, where n; units
have only w; observed, n, units have only w, observed,
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and n,, units have both w; and w, observed, where N =
n, + n, + nyp, nyy > 1y + ny, > n, > n,, and we assume
that the missing data are missing at random (Rubin 1976).
In TW’s notation, y consists of the n; observations of w,,
the n, observations of w,, and the n,, observations of (w,
w,), and z consists of the #; missing values of w, and the
n, missing values of w,. Notice that the fraction of missing
information for each component of O is constructed to be
modest, especially if 72 is small relative to var(w, | ©) or
if ny, > ny + n,.

The only specific issue in implementing the SIR algo-
rithm in this example is Step 1: choosing a decent ap-
proximation (0O, z | y) = k(O | y)h(z| O, y). Note that
the density p(y, z | ©) is easily evaluated, since it is the
product over the » units of the two normal densities im-
plied by (1) and (2), and from (3) and (4), this is the
numerator of the importance ratio, (0, z | y), used in
Step 3.

Regarding h(O | y), it can be easily approximated by
independent normal densities:

logo | y ~ N(log 51, [2(n, + n, — D], (5)

# |y~ N, sil(n + ny)), (6
logt |y~ N(og %, [2(n — 3)]°1, @)

and
(. ,7) |y ~ N(& B, 9), #C), ®)

where w; and s? are the mean and variance of the (n, +
ny,) observations of wy, and (&, 8, 9, 2, C) are the stan-
dard least squares summaries obtained by regressing w,
on (1, wy, w?) using the n, observations of (w;, w,).
Similarly, A(z | ©, y) can be easily approximated by n; +
n, independent normal densities:

ind

n, missing w, | 0,y ~ N(& + pw, + pw}, ), (9)
and
ind
n, missing w, | ©,y ~ N(a + bw, + cw3, s?), (10)

where (a, b, c, s?) are the standard least squares sum-
maries obtained by regressing w; on (1, w,, w3) using the
ny, observations of (wy, w,). Thus (0, z | y) is the product
of the (n; + n, + 3) univariate normal densities specified
by (5), (6), (7), (9), and (10), and the trivariate normal
density specified by (8), and is therefore easy to draw from
at Step 2, and easy to evaluate as the denominator of the
importance ratios, r(0, z | y), in Step 3. Better approx-
imations are available especially for small n,, but it is not
clear whether they are worth the effort in the context of
SIR relative to increasing the ratio M/m.
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Comment

Tanner and Wong have provided a fascinating illustra-
tion of how serious problems of Bayesian inference can
be addressed. Their approach is of interest not only to
committed Bayesians but also to other statisticians who
need to evaluate posterior distributions without unrealis-
tically simple models or unrealistically simple prior distri-
butions. Their iterative use of sampling is of particular
interest.

The techniques used in this article raise a question ad-
dressed briefly by the authors. Computational require-
ments are quite considerable even for small problems, and
the techniques used do involve judgment in their use. These
problems may decrease in significance as computers im-
prove and as investigators have more practice with the
authors’ approach; nonetheless, the really important ques-
tion is the frequency with which the approach of Tanner
and Wong will be used effectively by regular users of sta-
tistical procedures.

This computational issue is particularly troublesome given
that statistical analyses of the examples are available that
involve little calculation. To begin, consider the linkage
example. In this case, the maximum likelihood estimate
of §is obtained by solution of a simple quadratic equation,
and there is a straightforward normal approximation to
the distribution of the estimate. In samples of adequate
size for serious study of linkage, the normal approximation
is quite adequate. A disciple of Bayes can obtain a poly-
nomial expression for the posterior density of 6 given the
data under the uniform prior of the authors or even under
more realistic mixtures of beta priors. Thus this example
serves to illustrate feasibility of the method rather than an
efficient way to treat the problem at hand.

Normally, procedures such as the EM algorithm are

* Shelby J. Haberman is Professor, Department of Statistics, North-
western University, Evanston, IL 60201.

readily used to obtain maximum likelihood estimates in
the covariance example. To be sure, the sample is too-
small for reliance on the normal approximation for the
distribution of maximum likelihood estimates, but it is
necessary to ask why anyone would try to apply a five-
parameter model to so little data.

The last example can be analyzed by use of published
algorithms that perform maximum likelihood estimation
and obtain asymptotic standard errors of parameter esti-
mates with little expenditure of computer time. In con-
trast, the analysis in this article required almost 3 hours
on a VAX 750.

Thus one issue that must be considered is under what
circumstances will a typical consumer of statistics be will-
ing to make the additional investment in the authors’ tech-
niques given their current cost and given the possibility
that alternative methods of analysis may be satisfactory
enough.

A second issue to consider involves Bayesian inference.
The use of prior distributions derived from the Dirichlet
family by conditioning seems both inefficient and unreal-
istic. For example, it seems more realistic in the latent-
class example to use a joint multivariate normal prior on
the log-odds ratios 10g(P,pca:/ P11111), for a, b, c, d, and x
equal to 1 or 2. Such a prior is easily constructed given
that these log-odds satisfy a linear model under the tra-
ditional latent-class model.

Despite these reservations, Tanner and Wong are to be
congratulated for their powerful new approach to Bayesian
inference. I await with interest their views on the likely
future of their method.

© 1987 American Statistical Association
Journal of the American Statistical Association
June 1987, Vol. 82, No. 398, Theory and Methods
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Comment

Tanner and Wong have provided a fascinating illustra-
tion of how serious problems of Bayesian inference can
be addressed. Their approach is of interest not only to
committed Bayesians but also to other statisticians who
need to evaluate posterior distributions without unrealis-
tically simple models or unrealistically simple prior distri-
butions. Their iterative use of sampling is of particular
interest.

The techniques used in this article raise a question ad-
dressed briefly by the authors. Computational require-
ments are quite considerable even for small problems, and
the techniques used do involve judgment in their use. These
problems may decrease in significance as computers im-
prove and as investigators have more practice with the
authors’ approach; nonetheless, the really important ques-
tion is the frequency with which the approach of Tanner
and Wong will be used effectively by regular users of sta-
tistical procedures.

This computational issue is particularly troublesome given
that statistical analyses of the examples are available that
involve little calculation. To begin, consider the linkage
example. In this case, the maximum likelihood estimate
of §is obtained by solution of a simple quadratic equation,
and there is a straightforward normal approximation to
the distribution of the estimate. In samples of adequate
size for serious study of linkage, the normal approximation
is quite adequate. A disciple of Bayes can obtain a poly-
nomial expression for the posterior density of 6 given the
data under the uniform prior of the authors or even under
more realistic mixtures of beta priors. Thus this example
serves to illustrate feasibility of the method rather than an
efficient way to treat the problem at hand.

Normally, procedures such as the EM algorithm are
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readily used to obtain maximum likelihood estimates in
the covariance example. To be sure, the sample is too-
small for reliance on the normal approximation for the
distribution of maximum likelihood estimates, but it is
necessary to ask why anyone would try to apply a five-
parameter model to so little data.

The last example can be analyzed by use of published
algorithms that perform maximum likelihood estimation
and obtain asymptotic standard errors of parameter esti-
mates with little expenditure of computer time. In con-
trast, the analysis in this article required almost 3 hours
on a VAX 750.

Thus one issue that must be considered is under what
circumstances will a typical consumer of statistics be will-
ing to make the additional investment in the authors’ tech-
niques given their current cost and given the possibility
that alternative methods of analysis may be satisfactory
enough.

A second issue to consider involves Bayesian inference.
The use of prior distributions derived from the Dirichlet
family by conditioning seems both inefficient and unreal-
istic. For example, it seems more realistic in the latent-
class example to use a joint multivariate normal prior on
the log-odds ratios 10g(P,pca:/ P11111), for a, b, c, d, and x
equal to 1 or 2. Such a prior is easily constructed given
that these log-odds satisfy a linear model under the tra-
ditional latent-class model.

Despite these reservations, Tanner and Wong are to be
congratulated for their powerful new approach to Bayesian
inference. I await with interest their views on the likely
future of their method.
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A. OHAGAN*

Comment

The idea of data augmentation is certainly intriguing. I
have tried to consider in what applications it would be
valuable. My problem in this regard is that the authors
have not provided such applications themselves. When one
sees a new numerical technique proposed, one expects to
be shown examples where the new method requires less
computation than the old ones. The opposite is true of the
present article. In all of the examples there is a single
parameter whose unnormalized posterior density may be
written down directly. Simple numerical integration suf-
fices to normalize it and obtain any summaries of interest.
The authors have, therefore, not demonstrated any im-
provement over existing, well-tried techniques.

It is true that in the genetic linkage model a normal
approximation to the posterior density is poor, but who
would use a normal approximation for a parameter in [0,
1]? A beta approximation, having the same mode and
curvative at the mode, is easily fitted. Trivial computation
shows it to be excellent in all of the cases shown in Figures
1, 3, and 4. Indeed, on the scale used in those diagrams
it would also “superimpose” the true posterior. For the
record, the beta approximation in the case of Figure 4 is
Beta(8.163, .872).

So when would data augmentation be valuable? Pre-
sumably only when existing methods require very sub-
stantial computation. Furthermore, there must be a data
augmentation available that dramatically improves the
problem. I suggest, therefore, that the authors might look
at problems with many parameters, for here we can obtain
high-dimensional posterior densities that require laborious
numerical integration to obtain moments or marginal den-
sities. Then we require a data augmentation to simplify
the posterior density so that it becomes very much more
tractable.

It is hard to think of applications having both of these
features. However, the authors could examine some prob-
lems of the following kind. A traditional designed exper-
iment, such as a factorial experiment, is performed but
has missing data. With the full data set the likelihood
factorizes and, supposing that the corresponding param-
eters are independent a priori, they will be independent
a posteriori. Therefore, data augmentation makes mar-
ginal densities immediately available, and other summar-
ies are easily computed. With missing data, orthogonality
is lost and the likelihood no longer factorizes in the same
way. If we had normal prior distributions, we could still
invoke general linear model theory and obtain marginal
densities, et cetera. Nonnormal (but independent) priors,
however, would induce a massive numerical integration
problem. This is still not a good example, because it re-
quires rather special kinds of prior belief. On the other
hand, one often has prior knowledge about the sign of an

* A. O’Hagan is Lecturer, Department of Statistics, University of
Warwick, Coventry CV4 7AL, United Kingdom.

effect, which would produce truncated priors. Alterna-
tively, it is my opinion that prior beliefs often demand
thick-tailed prior distributions. So, if one is happy to ac-
cept normality in the likelihood, data augmentation may
offer a tractable way of using such priors.

I hope that the authors will justify their approach better
in the future by presenting convincing examples. Until
then I will remain doubtful of its practical value. Oppor-
tunities for data augmentation are not obviously common;
good opportunities, where data augmentation produces
computational advantages, seem likely to be rare.

© 1987 American Statistical Association
Journal of the American Statistical Association
June 1987, Vol. 82, No. 398, Theory and Methods
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MARTIN A. TANNER and WING HUNG WONG

Rejoinder

1. REPLY TO DEMPSTER, MORRIS, AND RUBIN
14 Hierarchical Models

Dempster and Morris point out the usefulness of data
augmentation in the analysis of hierarchical models, and
we agree with them completely. We are especially grateful
to Morris for his derivation of the explicit calculations
needed for the I and P steps in the multivariate normal
means example. A type of educational data, recently
brought to our attention by Michael Meltzer of the Uni-
versity of Chicago, can serve to illustrate the technique,
as well as some possible extensions. In this application,
one has student performance data y, which is modeled
given school indicators X; and other student-level covari-
ates X;; that is, the observational model is

y = Xiz; + X5z, + &.

In addition, there is a latent model for the school effects
given school characteristics (W) such as whether it is a
Catholic or a public school; that is,

zZ, = W'y + &.

Here y is the observed data, z is the latent data and 8 =
(y, 61, ;) if the errors in the two models are assumed to
be Gaussian with standard deviations ¢, and o,, respec-
tively. Typically, an EM-type algorithm is used to obtain
the maximum likelihood estimate of 6 (e.g., Raudenbush
and Bryk 1986). As remarked by Dempster, however, it
would be desirable to perform full Bayesian analyses with
genuine priors, and data augmentation offers a natural
method to accomplish this. Under standard conjugate
priors, the computations needed for the I and P steps can
be derived in the same way as in the example in Morris’s
discussion. To see the effect of changing priors, one can
attach weights (ratio between the true prior and the con-
jugate prior) to the sampled values of 6.

Very often it is desirable and prudent to perform the
analysis using heavy-tailed errors, especially for the latent
model, for which diagnostics are hard to come by and a
Gaussian error may lead to unwarranted pooling of truly
outlying schools. Thus a natural elaboration of the above
model is to use a ¢ distribution with a small degree of
freedom for &,. The data augmentation scheme can also
be extended to handle this situation. This is done by using
the normal/gamma mixture representation of the ¢ distri-
bution; that is, ¢, is distributed as normal/ \/_, where q is
a mean square variable. In such a problem, there are three
sets of quantities whose posterior distributions may be of
interest, namely, z, g, and 6. The posterior distribution
of either one given the other two is easy to obtain. The
data augmentation algorithm will now be extended to sam-
ple iteratively from each of these conditional posterior
distributions in turn (compare Li 1985). We hope that this
example can illustrate the freedom and flexibility offered

by the data augmentation scheme (and to a much greater
extent, the Bayesian outlook) for the application to, and
study of, more complex and realistic models—the need
for which being succinctly summarized by Dempster in his
opening paragraph.

1.2

Both Dempster and Rubin comment on the use of im-
portance sampling, and Rubin proposes a highly innova-
tive method (SIR algorithm) for creating a few imputations
when the fraction of missing information is modest, which
also exploits the simplicity of inference based on the aug-
mented data. We agree with their opinion that importance
sampling is a powerful tool that should be employed when-
ever appropriate. We regard data augmentation iteration
and importance sampling as complementary, however,
rather than rival concepts. To clarify this issue, we com-
pare the efficiency of the two procedures in the canonical
problem of estimating a posterior moment of the param-
eters. We do, however, wish to point out that in so doing
we have distorted Rubin’s intention, since the SIR algo-
rithm was initially designed for a more limited task under
more limited conditions.

Recall that the basic principle of importance sampling
is to generate values from a trial density, and then weight
the values thus generated according to

Importance Sampling

true density

ight .
welght & trial density

Let g«(6) be the true posterior density, g:(f) be the esti-
mate for g4(6) at the ith iteration of the data augmentation
algorithm, h.(0, z) be the true joint posterior density for
0 and z, and h(6, z) be the trial density in Rubin’s SIR
algorithm. To develop a quantitative comparison between
the data augmentation algorithm and the SIR algorithm,
let us consider the estimation of a specific posterior mo-
ment

p= j a(6)g+(0) db.

For the data augmentation algorithm, we can use the es-
timator

2:1 a(9;),

where {6;, ..., 6,} is a sample from g;(f) at the ith
iteration. For the SIR algorithm, we can use the estimator

2 ra)
Pn = T »

R 1
Pi=;
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where {(6y, z1), . . . , (Om, 2,)} is @ sample from A(0, z)
and {r,, . . ., r,} are the weights calculated as in Step 3
of Rubin’s discussion, his key observation being that the
true joint posterior

h« (8, z) = p(8)p(y, z | 0)

is easy to compute (up to proportionality constant) be-
cause of the simplicity of the augmented data likelihood
p(y,2]0).

It is easy to obtain expressions for the means and vari-
ances:

EG) = [a(0)810) do,
var(p) = = [ [ @sia0 - (Eﬁ,-)Z] :

E(jy) = f a(0)g+(0) b,

var(py) = — [ [ [0 b5 Z)’

We can now make the following comparisons: (a) g, is
unbiased and p; is not—the bias of the latter, however,
decreases with increasing i because g; converges in L, to
gx; (b) although both variances decrease with increasing
m, for any fixed m, the variance of j, can be arbitrarily
large because of its dependence on the ratio hy/h.

Thus, if the trial density is not chosen well, the SIR
estimate g, can be very inaccurate. In practice, this dif-
ficulty is indicated if the weights come out to be highly
skewed. Diagnostics for this phenomena are hence pos-
sible in the manner suggested by Rubin. But what should
one do when the weights are highly skewed? It is here that
we see a principal strength of the data augmentation al-
gorithm, namely that each iteration offers an improvement
over the previous estimate.

If the streamlined version of SIR is applicable, that is,
when the likelihood (@ | y) is easy to compute, then it is
possible and may be desirable to use a procedure that
combines the strength of both data augmentation iteration
and importance sampling. Such a procedure would use
data augmentation iteration to improve the initial ap-
proximation until the weights for importance sampling are
satisfactorily distributed. Further effort will be necessary
to formulate good strategies for such a combination and
to explore its full potential.

dz df — p2] .

2. REPLY TO HABERMAN

Haberman raises two related concerns regarding the po-
tential acceptance of the data augmentation algorithm as
a tool for routine data analysis. His first point relates to
the computational intensiveness of the algorithm, and the
second point questions whether the algorithm will be
adopted “given the possibility that alternative methods of
analysis may be satisfactory enough” (p. 546).

Regarding computational issues, it is noted that the al-
gorithm is conceptually a very simple algorithm. One gen-
erates m augmented data sets, and then based on these

549

data sets one repeatedly evaluates the augmented poste-
rior or likelihood. Thus the computational burden is not
due to the implementation of a complex algorithm, but
rather to the repeated evaluation of the same set of op-
erations. As we have noted in our article, the amount of
work performed at each iteration by the IP algorithm is
determined by the number of imputations. Thus it is a
highly parallel algorithm in the sense that the implemen-
tation of the algorithm can be tailored to make full use of
a multiprocessor machine by the careful selection of m.
In contrast, regarding both the EM algorithm and New-
ton—Raphson algorithm, the user is constrained by the
problem of how much of the resources of the machine can
be used per iteration. In this way, on a multiprocessor
machine, the IP algorithm may actually require a shorter
execution time than either the EM or Newton—-Raphson
algorithms.

Haberman questions whether the data augmentation al-
gorithm will be adopted for a particular problem given
that ‘““alternative methods of analysis may be satisfactory
enough.” Our opinion is that one does not know whether
the normal approximation, for example, is good enough
unless one is able to examine the likelihood (or posterior).
Thus the data augmentation algorithm may be useful as a
check on the validity of the normal approximation, as in
the covariance example. Moreover, we do not believe that
the plausibility of such departures from normality, as noted
in the covariance example, can be ignored. Although fit-
ting a five-parameter bivariate model to 12 observations
may be unwise, what can one say regarding the analysis
of 40 seven-dimensional observations? It is also important
to note that an examination of the likelihood (or posterior)
can sometimes allow one to check the adequacy of a given
model. This is again exemplified in the covariance ex-
ample. Certainly, under the bivariate normal model, we
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Figure 1. Posterior Distribution of the Smallest Eigenvalue—Bivariate
Case.
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would not expect 100 observations to yield the posterior
encountered in our 12-observation data set. If such a pos-
terior were to result from a large sample, however, we
would be forced to question the validity of the bivariate
normal assumption. In other words, even if we have a
“large sample,” we may find evidence against a model by
noting some peculiarity in the likelihood. As such, by ig-
noring the likelihood (or posterior) and focusing on a point
estimate, one may miss some feature of the data that re-
lates to the adequacy of the model.

Regarding our analysis of the traditional latent-class
model, Haberman seems to interpret our use of the
Dirichlet distribution as a specification of the prior dis-
tribution for the conditional probabilities. We use the
Dirichlet distribution as a vehicle for generating the prob-
abilities, not to specify a prior. We can, however, incor-
porate a prior distribution by assigning weights to the prob-
abilities.

Haberman queries our views on the future of the method.
It is our opinion that the data augmentation algorithm is
not only a useful method for calculating likelihoods (or
posteriors) but it also provides a paradigm for handling
missing data problems. For example in the context of
grouped and censored data, we have used this paradigm
to develop an algorithm for the nonparametric estimation
of the hazard function (Tanner and Wong 1987).

3. REPLY TO O'HAGAN

- We do not agree with the basic premise of O’Hagan that
the measure of the value of a new methodological contri-
bution is whether it minimizes numerical computation. We
feel that data augmentation is valuable, not only as a nu-
merical tool for computing posteriors, but as a way of
thinking about certain types of problems (e.g., Morris’s
hierarchical model), as well as providing a diagnostic for
both the normal approximation and the model. To focus,
as does O’Hagan, on data augmentation as only a com-
putational technique misses several major themes of the
article.

It is unfortunate that O’Hagan misses several important
features in our examples and as a consequence of this
reaches the conclusion that the examples are unconvinc-
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ing.  He states: “In all of the examples there is a single
parameter whose unnormalized posterior density may be
written down directly. Simple numerical integration suf-
fices to normalize it and obtain any summaries of interest”
(p. 547). This is incorrect. In both the covariance and
latent-class examples there are more than one parameter.
In fact, the conditional independence model for the latent-
class data has 12 parameters. We will be very surprised if
in that example anyone can “write down” the unnormal-
ized posterior density for an arbitrary parameter, for ex-
ample, the quantity 7{*, upon which we focus. The point
that we wish to make is that the data augmentation al-
gorithm offers an approach of treating the nuisance pa-
rameters. This is because the algorithm enables one to
readily obtain the marginal posterior distribution of any .
parameter or the joint posterior distribution of any two
parameters. To illustrate, suppose that in the covariance
example we are interested in the posterior distribution of
the smallest eigenvalue. We can obtain this posterior dis-
tribution by finding the smallest eigenvalue for each matrix
in the sample of covariance matrices drawn from the final
estimate of p(2 | y). The histogram of these values yields
the desired posterior (see Fig. 1 here).

O’Hagan suggests that we “look at problems with many
parameters” (p. 547), as well as factorial experiments with’
missing data. In this regard, he seems to have missed the
latent-class example. The associated log-linear model has
12 parameters and the associated 3 x 2* table, clearly,
has a factorial design. O’Hagan is critical of the use of the
normal approximation in the linkage example. We feel,
however, that based on our analysis of the original data,
the normal approximation is quite acceptable. Clearly, the
adequacy of the normal approximation depends on the
nature of the data and it is the use of data augmentation
that can assist the statistician in assessing the adequacy of
the approximation for the particular data set.
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