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1. Preface
It all started when I wrote a Java applet to illustrate some point related to item re-
sponse theory (IRT). Applets of this kind proved easy to write and modify, and they
multiplied rapidly on my hard disk. Some text that would try to assemble them into
a more coherent whole seemed desirable, and it is provided with this PDF document.

The text relies heavily on graphs to explain some of the more basic concepts in
IRT. Readers connected to the Internet can also access the interactive graphs pro-
vided as Java applets on our webpage. All links pointing to other places in the PDF
file are green, and all links pointing to material on the Internet are brown. Each ap-
plet is accompanied by instructions and suggestions on how to make best use of it.
Applets are not mandatory in order to understand the text, but they do help.

Using interactive graphs to explain IRT is certainly not a novel idea. Hans
Müller has produced some interesting macros for Excel that may be found on our
webpage. And, of course, there is the excellent book by Frank Baker accompanied
by a stand-alone educational software package—a veritable classic that I could not
possibly match in scope or depth. Yet my applets are easy to use, and they do not
require any installation or programs other than a Java-enabled browser.

I did not intend a book on IRT but just some glue to keep the applets together,
so I did not provide credits or references — then I put in chapter 10 to partly amend
this deficiency.

http://www2.uni-jena.de/svw/metheval/tippstools.php
http://ericae.net/irt/
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2. Some basic ideas
The ultimate aim of both classical test theory (CTT) and item response theory (IRT)
is to test people. Hence, their primary interest is focused on establishing the position
of the individual along some latent dimension. Because of the many educational
applications the latent trait is often called ability, but in other contexts it might be
anxiety, neurosis, or simply the authoritarian personality.

The latent trait is not directly observable but theory has no trouble in assuming
it known. The most distinct feature of IRT is that is adopts explicit models for the
probability of each possible response to a test—so its alternative name, probabilistic
test theory, may be the more apt one.

IRT derives the probability of each response as a function of the latent trait and
some item parameters. The same model is then used to obtain the likelihood of abil-
ity as a function of the actually observed responses and, again, the item parameters.
The ability value that has the highest likelihood becomes the ability estimate.

For all this to work, the IRT model has to be (more or less) true, and the item pa-
rameters known. Any attempt at testing is therefore preceded by a calibration study:
the items are given to a sufficient number of test persons whose responses are used
to estimate the item parameters. When the model is appropriate and the estimates of
the item parameters are reasonably accurate, IRT promises that the testing will have
certain attractive properties. Most importantly, we can ask different examinees dif-
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ferent items, and yet obtain comparable estimates of ability. As a result, tests can be
tailored to the needs of the individual while still providing objective measurement.

Let us take a simple example. Can anything be simpler than a test consisting
of a single item? Let us assume that this is the item “What is the area of a circle
having a radius of 3 cm?” with possible answers (i) 9.00 cm2, (ii) 18.85 cm2, and
(iii) 28.27 cm2. The first of the three options is possibly the most naive one, the
second is wrong but implies more advanced knowledge (the area is confused with
the circumference), and the third is the correct one.

P (θ)

−4 −3 −2 −1 0 1 2 3 4
0
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θ

Figure 1: A partial credit model

Let us assume that the item on the area
of the circle has been calibrated, and that its
psychometric properties are as shown on Fig-
ure 1. There are three curves on the plot, one
for each possible response. The curve for re-
sponse 1 is shown in black, the curve for re-
sponse 2 is blue, and the curve for response
3 is red. The person’s ability is denoted with
θ, and it is plotted along the horizontal axis.
The vertical axis shows the probability P(θ)
of each response given the ability level. Be-

cause each person can only give one response to the item and the three options are
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mutually exclusive, the sum of the three probabilities at each value of θ is 1.
The curve for option 1 is high at the lowest ability levels and gradually declines

as people become more knowledgeable; for people of ability below 1.5, this is the
most probable option. The probability of the second option (shown in blue) rises
with ability to a certain point and then declines again. As a result, the second option
has the highest probability of being selected at ability levels between −1.5 and 2.0 as
compared with the other two options. The probability of the correct response (option
3, shown in red) is very small at low ability levels but rises as ability increases, and
becomes the largest at ability levels above 2.0. Note that persons at any ability level
still have a non-zero probability of selecting any of the three options: thus, even very
knowledgeable persons have a small probability of selecting option 1, and a slightly
higher probability of selecting option 2.

The model shown on Figure 1 is called the partial credit model, and it is a bit
complicated for introductory purposes. We can continue the process of simplifica-
tion by lumping together the two wrong options. Now we are left with only two al-
ternatives: a correct or a wrong response. Items with only two alternative responses
are called dichotomous (this not only sounds Greek, it is Greek), while items with
more than two options are called polytomous.
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P (θ)
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Figure 2: An IRT model for a dichotomous
item

The response probabilities for the dicho-
tomized item are shown on Figure 2. The
probability of a correct answer given the abil-
ity level is shown in red — it is the same as
on Figure 1. The probability of the wrong re-
sponse is shown in black. At any value of θ,
the sum of the two probabilities is 1. As abil-
ity increases, the probability of a correct re-
sponse steadily increases, and the probability
of a wrong response decreases.

Because the probability of the wrong re-
sponse Q(θ) is simply equal to 1 − P(θ), we

can concentrate just on the probability of the correct response P(θ). A large part of
IRT is about the various possible models for P(θ).
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3. The one-parameter logistic (1PL) model
3.1. The item response function of the 1PL model
Each IRT model predicts the probability that a certain person will give a certain
response to a certain item. Now, people can have different levels of ability, and
items can differ in many respects — most importantly, some are easier and some are
more difficult. To keep track of this, we can denote the probability with Pi j instead of
simply P: the index i refers to the item, and the index j refers to the person. When an
item allows for more than two options, we shall also need an index for the options.

Also, we used to write P(θ) to show that the probability of a correct response is
a function of the ability θ. However, P also depends on the properties of the item
as captured by the item parameters. For dichotomous items, we shall examine IRT
models having one, two, or three parameters, and the probabilities predicted by the
models will be denoted as Pi j(θ j, bi), Pi j(θ j, bi, ai), or Pi j(θ j, bi, ai, ci), where ai, bi,
and ci are all item parameters. Models for items with more than two options will
also have some parameters associated with the response options.
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P (θ, bi)
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Figure 3: The item response function of the
one-parameter logistic (1PL) model

The simplest IRT model for a dichoto-
mous item has only one item parameter. The
item response function (i.e. the probability of
a correct response given the single item pa-
rameter bi and the individual ability level θ)
is shown on Figure 3.

The function shown on the graph is known
as the one-parameter logistic function. It has
the nice mathematical property that its values
remain between 0 and 1 for any argument be-
tween −∞ and +∞—this makes it appropriate
for predicting probabilities, which are always

numbers between 0 and 1. Besides, it is not at all a complicated function. The
formula is:

Pi j(θ j, bi) =
exp(θ j − bi)

1 + exp(θ j − b j)
,

where the most interesting part is the expression exp(θ j − bi) in the numerator (in
fact, the denominator is there only to ensure that the function never becomes smaller
than 0 or greater than 1).

Concentrating on exp(θ j − bi), we notice that the one-parameter logistic (1PL)
model predicts the probability of a correct response from the interaction between
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the individual ability θ j and the item parameter bi. The parameter bi is called the
location parameter or, more aptly, the difficulty parameter. In all previous plots, we
identified the horizontal axis with the ability θi, but it is also the axis for bi. IRT
essentially equates the ability of the person with the difficulty of the test problem.

P (θ, bi)
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0
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Figure 4: Locating the difficulty of an item on
the ability / difficulty axis

One can find the position of bi on the com-
mon ability / difficulty axis at the point for
which the predicted probability Pi j(θ j − bi)
equals 0.5. This is illustrated by Figure 4. The
item whose item response function is shown
on the figure happens to have a difficulty of 1.

This is a good point to experiment with
our first applet. You can play with the val-
ues of the difficulty parameters (item easier
— item harder) and the ability (person more
able — person less able) and see how the in-
teraction of ability and item difficulty influ-

ences the predicted probability of a correct response to the item.

ptb.html
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3.2. The item information function of the 1PL model
Information functions have a prominent role in IRT. Thus, the test information func-
tion, to be examined somewhat later, is related to the accuracy with which we can
estimate ability — in other words, it measures the success to which we can do our
business as psychometricians!

For the time being, we are considering just one item, and we can examine the
item information function. Any item in a test provides some information about the
ability of the examinee, but the amount of this information depends on how closely
the difficulty of the item matches the ability of the person. In the case of the 1PL
model this is the only factor affecting item information, while in other models it
combines with other factors.

The item information function of the 1PL model is actually quite simple:

Ii(θ, bi) = Pi(θ, bi)Qi(θ, bi).

It is easy to see that the maximum value of the item information function is 0.25. It
occurs at the point where the probabilities of a correct and of an incorrect response
are both equal to 0.5.
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P (θ), I(θ)
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Figure 5: Item response function and item in-
formation function of the 1PL model

In other words, any item in the 1PL model
is most informative for examinees whose abil-
ity is equal to the difficulty of the item. As
ability becomes either smaller or greater than
the item difficulty, the item information de-
creases. This is clearly visible on Figure 5 and
on the applet. The most important practical
implication of all this is that we need items of
different difficulty if we are to achieve good
measurement for people having all sorts of
different abilities.

3.3. The test response function of the 1PL model
One item will not get us very far. We need many items, ideally spread evenly over
the possible range of ability. In theory, ability may be anywhere between −∞ and
+∞ but in practice we usually expect to see values somewhere in the range between
−3 and +3.

ii1pl.html
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Figure 6: Item response functions of five
items conforming to the 1PL model

Figure 6 shows the item response func-
tions of five items whose difficulties (−2.2,
−1.5, 0.0, 1.0, and 2.0) are more or less evenly
spread over the most important part of the abil-
ity range. The five curves run parallel to each
other and never cross.

Five items are not nearly enough for prac-
tical purposes — unless, perhaps, they have
been carefully chosen to match the examinee’s
ability, as is the case in adaptive testing. How-
ever, they are sufficient for us to introduce the
next important concepts in IRT, and the first

of these will be the test response function.
As we know, each of the five item response functions shown of Figure 6 predicts

the probability that a person of a given ability, say θ j, will give a correct response
to the corresponding item. The test response function does very much the same, but
for the test as a whole: for any ability θ j, it predicts the expected test score.

Consider first the observed test score. Any person who takes a test of five items
can have one of six possible scores by getting 0, 1, . . . , 5 items right. For each of
the five items and a given ability θ j, the item response function will predict the
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probability of a correct response, say Pi j(θi, bi). The sum of these probabilities is the
expected score at ability θ j. Just like the observed score, it is somewhere between
0 and 5 but, unlike the observed score, it can be any number within that range and
need not be an integer.

P (θ)
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Expected score
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0
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θ

Figure 7: Item response functions and test re-
sponse function for five items conforming to
the 1PL model

Figure 7 shows (in red) the test response
function for the five items that we had on Fig-
ure 6. The five item response functions are
also shown. Note that the two kinds of func-
tions are plotted on different scales — we now
have a scale from 0 to 1 for the item response
functions, and a scale from 0 to 5 for the test
response function. The test response function
is the sum of the five item response functions:
if it were plotted on the same scale as they, it
would rise much more steeply. When a test
has five 1PL items, the test response function

becomes 0 for persons of ability −∞, 5 for persons of ability +∞, and assumes some
value between 0 and 5 for all other persons. Given the items in our example, it will
be somewhere between 0.565 and 4.548 for persons in the (−3,+3) ability range.
(Please take some time to play with the applet).

trf1pl.html
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3.4. The test information function of the 1PL model
If the test response function is the sum of the item response functions, then how
does the test information function relate to the item information functions? Right, it
is equal to their sum:

I j(θ j) =
∑

i

Ii j(θ j, bi).

Ii(θ, bi)

0

1

I(θ)
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Figure 8: Item information functions and test
information function for five items conform-
ing to the 1PL model

Figure 8 shows the test information func-
tion for the five items that we saw on Figure 6.
The five item information functions are also
shown. Although the test information func-
tion is plotted on the same scale as the item
information functions, I have added a sepa-
rate axis to emphasize the difference.

Note how the test as a whole is far more
informative than each item alone, and how
it spreads the information over a wider abil-
ity range. The information provided by each
item is, in contrast, concentrated around abil-

ity levels that are close to its difficulty.
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The most important thing about the test information function is that it predicts
the accuracy to which we can measure any value of the latent ability. Come to think
of it, this is rather amazing: we cannot observe ability, we still haven’t got a clue
on how to measure it (that subject will only come up in the next chapter), but we
already know what accuracy of measurement we can hope to achieve at any ability
level!

Now, why not try out the applet?

3.5. Precision and error of measurement
Precision is the opposite of error. “Precision” sounds kind of more positive than
“error”, but error is useful too. Measurement error is expressed in the same units as
the measurement itself — hence, we can compare it with the ability estimate, or use
it to build a confidence interval around the estimate.

The variance of the ability estimate θ̂ can be estimated as the reciprocal value of
the test information function at θ̂:

Var(θ̂) =
1

I(θ̂)
.

Because the standard error of measurement (SEM) is equal to the square root of the

trf1pl.html
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variance, for the 1PL model we have

SEM(θ) =

√
1

I(θ)
=

√
1∑

i Pi(θ, bi)Qi(θ, bi)
.

I(θ)
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Figure 9: Test information function and stan-
dard error of measurement for an 1PL model
with five items

Figure 9 shows the test information func-
tion and the standard error of measurement
for the five items of Figure 6. The test in-
formation function is now shown in blue, and
its values may be read off the left-hand axis.
The SEM is shown in red, and its values may
be read off the right-hand axis.

Note that the SEM function is quite flat
for abilities within the (−2,+2) range, and in-
creases for both smaller and larger abilities.

Do we have an applet for the SEM? Sure
we do.

sem1pl.html
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4. Ability estimation in the 1PL model
Estimating ability is arguably the most important part of IRT. This is what we are
paid for to do, and everything else is about how we get to do it properly.

We shall examine two approaches to ability estimation. First, we try out some-
thing ‘naive’ by equating the observed score in a test to the expected score. After
that, we examine the concept of likelihood, and the related concept of maximum like-
lihood estimation of ability. At some point we shall show that the two approaches
are equivalent.

P (θ)
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Figure 10: Finding the ability estimates

Any person taking a 1PL test with five
items can obtain one of six possible observed
scores by getting 0, 1, . . . , 5 items right. For
scores 1, 2, 3, and 4 we can find the ability
estimate at the point where the expected test
score is equal to the observed score. In other
words, the estimates of ability given observed
scores of 1, 2 . . . , 4 are those values of θ for
which the test score function assumes the val-
ues of 1, 2, . . . , 4. This is shown on Figure 10
and, of course, on the applet.

What about the observed scores of 0 and 5? On page 15 we noticed that the test

abi1pl.html
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response function in a 1PL model of five items becomes 0 for persons of ability −∞,
and 5 for persons of ability +∞. It follows that the ability estimate for a zero score
will be −∞, and the ability estimate for a perfect score (in our case, 5) will be +∞.

4.1. The likelihood function
A person taking a 1PL test with k items can obtain one of k + 1 observed scores
(0, 1, . . . , k). However, the number of the possible responses to the test (the response
patterns) is much larger: 2k. For a test of 5 items, there are 32 distinct response
patterns. Each of them has a certain probability. Because every examinee must
have some response pattern and the response patterns are mutually exclusive, their
probabilities will sum to 1. This is true for the data set as a whole, and it is also true
at any specific level of ability.

How can we calculate the probability that a person of ability θ j will respond to
the test with a certain pattern, e.g. (True, True, False, True, False)? We already know
how to calculate the probability of each response in the pattern separately: P(θ j, b1),
P(θ j, b2), . . . , Q(θ j, b5), but what is their joint probability?

IRT makes the important assumption of local independence. This means that
the responses given to the separate items in a test are mutually independent given
ability. The actually observed responses may be correlated, even strongly correlated
— but this is only because the responses of persons with widely different abilities
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have been put together, ignoring ability. If we consider only persons having the same
latent ability, the correlations between the responses are supposed to vanish.

Now, because P(θ j, b1), P(θ j, b2), . . . , Q(θ j, b5) are functions of θ j, we can mul-
tiply them to obtain the probability of the whole pattern. This follows from the
assumption of conditional independence, according to which the responses given to
the individual items in a test are mutually independent given θ.

The function
L(θ) =

∏

i

Pi(θ, bi)ui Qi(θ, bi)1−ui ,

where ui ∈ (0, 1) is the score on item i, is called the likelihood function. It is the
probability of a response pattern given the ability θ and, of course, the item param-
eters. There is one likelihood function for each response pattern, and the sum of all
such functions equals 1 at any value of θ.

The likelihood is in fact a probability. The subtle difference between the two
concepts has more to do with how we use them than with what they really are.
Probabilities usually point from a theoretically assumed quantity to the data that
may be expected to emerge: thus, the IRT model predicts the probability of any
response to a test given the true ability of the examinee. The likelihood works in the
opposite direction: it is used by the same IRT model to predict latent ability from
the observed responses.
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4.2. The maximum likelihood estimate of ability
In the beginning of this chapter we obtained ability estimates of ability by equat-
ing the observed test score to the expected test score. Now we are ready for the
more conventional approach to ability estimation, which is based on the principle of
maximum likelihood. The ability, say θ̂, which has the highest likelihood given the
observed pattern (and the item parameters), will become the ability estimate.

Likelihood
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Figure 11: Finding the ability estimates by
maximum likelihood

Figure 11 shows (in blue) the likelihood
functions for the response patterns (T,F,F,F,F),
(T,T,F,F,F), (T,T,T,F,F), and (T,T,T,T,F). I have
also included the test response function that
we used on Figure 10 to find the ability esti-
mates for the observed scores 1, 2, 3, and 4.

It is easy to see that the likelihood func-
tions peak exactly at the ability estimates that
we found before. Hence, maximum likeli-
hood will produce the same estimates of abil-
ity as our previous method.

In the 1PL model, the ability estimate de-
pends only on how many items were answered correctly, not on which items got the
correct responses. This does not mean that the likelihood functions are invariant to
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the response pattern; it only means that the likelihood functions for patterns having
the same number of correct responses peak at the same ability level.

−4 −3 −2 −1 0 1 2 3 4
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θ

Likelihood

Figure 12: Likelihood functions for various
response patterns having the same total score
of 1

Figure 12 shows the likelihood functions
for the five response patterns having the same
total score of 1. All five functions lead to the
same ability estimate even if they are not the
same functions.

It is easy to see why the likelihood func-
tions are different: when a person can only
get one item right, we expect this to be the
easiest item, and we would be somewhat sur-
prised if it turns out to be the most difficult
item instead.

The accompanying applet lets you manip-
ulate the item difficulties and choose different response patterns simultaneously.

To finish with the 1PL model, there is yet another applet that brings together
most of what we have learnt so far: the item response functions, the test response
function, the likelihood function, two alternative ways to estimate ability, the test
information function, and the standard error of measurement. Not for the faint-
hearted perhaps, but rather instructive.

MLE.html
Finale.html
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5. The two-parameter logistic (2PL) model
The two-parameter logistic (2PL) model predicts the probability of a correct re-
sponse to any test item from ability and two item parameters. The nature of the two
parameters and the consequences of having two rather than one item parameter will
be examined at length in this chapter.

Many authors call the 1PL model the Rasch model, and the 2PL model is of-
ten labelled the Birnbaum model. However, this is potentially confusing since both
Rasch and Birnbaum authored more than one model—for instance, the 3PL model
(to be covered later) was also proposed by Birnbaum. It is a bit like calling Satisfac-
tion ‘the Stones song’ and Yesterday ‘the Beatles song’!

5.1. The item response function of the 2PL model
The item response function of the 2PL model is defined as

Pi j(θ j, bi, ai) =
exp[ai(θ j − bi)]

1 + exp[ai(θ j − b j)]
.

The basic difference with respect to the 1PL model is that the expression exp(θ j−bi)
is replaced with exp[ai(θ j − bi)].

Just as in the 1PL model, bi is the difficulty parameter. The new parameter ai is
called the discrimination parameter. The name is a rather poor choice sanctified by
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tradition; the same is true of the symbol a since slopes are usually denoted with b in
statistics.

We saw on Figure 6 that the IRF in a 1PL model run parallel to each other and
never cross; different difficulty parameters solely shift the curve to the left or to the
right while its shape remains unchanged.

Pi(θ, bi, ai)
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Figure 13: The item response functions of
three 2PL items

A very different picture is observed on
Figure 13. Two of the items have the same
difficulty of −1.0. As in the 1PL, the difficulty
is found at the ability level that yields a proba-
bility of 0.5. However, the blue curve is much
steeper than the black one. This is because
the item with the blue curve has a higher dis-
crimination parameter than the item with the
black curve. The discrimination parameters
ai are sometimes called slope parameters, just
like the item difficulties are a.k.a. location pa-
rameters. The slope of the 2PL item response

function at b is equal to a/4.
What about the green curve? It has the same slope as the black one but it is

shifted to the right — hence the item with the green curve has the same discrimina-
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tion parameter as the item with the black curve but a higher difficulty.
Note how the blue curve and the black curve cross. This is something that could

never happen in the 1PL model. It means that the item with the black curve is the
more difficult one for examinees of low ability, while the item with the blue curve is
the more difficult one for examinees of higher ability. Some psychometricians are in
fact upset by this property of the 2PL model.

As usual, there is an applet that lets you try out the new concepts in an interactive
graph.

5.2. The test response function of the 2PL model
The test response function of the 2PL model is defined exactly as in the case of the
1PL model: it is the sum of the item response functions over all items in the test,
and it predicts the expected test score as a function of the latent ability and the item
parameters.

The test response function approaches 0 as ability goes to −∞, and it approaches
the perfect score (= the number of items) as ability goes to +∞. In the normal case
when all discrimination parameters ai are positive, the test response function is an
increasing function of ability. It could only decrease with increasing ability in the
pathological case where some item has a negative discrimination — but we would
never use such an item in a test anyway.

bbit.html
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The actual shape of the test response function, i.e. its slope at any specific level
of θ, depends on the item parameters. Ideally, we should like to see a smoothly
and steadily increasing curve. A jumpy curve means that the expected test score re-
sponds to true ability unevenly. When the curve is flat, the expected score is not very
sensitive to differences in true ability. A steeper curve means that the expected score
is more sensitive to differences in ability. In other words, the test ‘discriminates’
or distinguishes better between persons of different ability, which explains the term
‘discrimination parameter’.

As always, you can learn more by playing around with the applet.

5.3. The item information function of the 2PL model
The item information function of the 1PL model was defined as

Ii(θ, bi) = Pi(θ, bi)Qi(θ, bi).

For the 2PL model, the item information function becomes

Ii(θ, bi, ai) = a2
i Pi(θ, bi)Qi(θ, bi).

Again, the discrimination parameter ai enters the picture, and its influence is quite
strong because it appears in the formula as a square. This means that discrimination
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parameters below 1 can decrease the information function rather dramatically, while
discrimination parameters above one will increase it substantially.

Pi(θ, bi, ai)

0
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Ii(θ, bi, ai)
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Figure 14: Item response functions and item
information functions of three 2PL items

This is evident on Figure 14, where the
item response functions are now plotted with
dotted lines and matched in colour with the
corresponding item information functions.

In the 1PL model, all item information
functions have the same shape, the same max-
imum of 0.25, and are simply shifted along
the ability axis such that each item informa-
tion function has its maximum at the point
where ability is equals to item difficulty. In
the 2PL model, the item information func-
tions still attain their maxima at item diffi-

culty. However, their shapes and the values of the maxima depend strongly on the
discrimination parameter. When discrimination is high (and the item response func-
tion is steep), the item provides more information on ability, and the information is
concentrated around item difficulty. Items with low discrimination parameters are
less informative, and the information is scattered along a greater part of the ability
range. As usual, there is an applet.

iif2pl.html
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5.4. The test information function of the 2PL model
The test information function of the 2PL model is defined in the same way as in the
1PL model: it is the sum of the item information functions over the items in a test.
However, the item information functions are different from those in the 1PL model,
so the formula for the test information function is now

I j(θ j) =
∑

i

Ii j(θ j, bi, ai) =
∑

i

a2
i P(θ, bi, ai)Q(θ, bi, ai).

Because the item information functions in the 2PL model depend so strongly
on the discrimination parameters ai, the shape of the test information function can
become rather curvy and unpredictable — especially in tests with very few items like
our examples. In practice, we should like to have a test information function that is
high and reasonably smooth over the relevant ability range — say, (−3,+3). This
could be ideally attained with a large number of items having large discrimination
parameters and difficulties evenly distributed over the ability range.

Items with very low discrimination parameters are usually discarded from prac-
tical use. However, it would be an oversimplification to think that curves should be
just as steep as possible. For instance, there are varieties of computerized adaptive
tests which find good uses for the flatter items as well.

If you are wondering about the applet — here it is!

tif2pl.html
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5.5. Standard error of measurement in the 2PL model
Just as in the 1PL model, the variance of the ability estimate in the 2PL model can
be estimated as the reciprocal value of the test information function at the ability
estimate θ̂. The standard error of measurement (SEM) is equal to the square root of
the variance, so for the 2PL model it will be

SEM(θ) =

√√
1
/∑

i

a2
i Pi(θ, bi, ai)Qi(θ, bi, ai).
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Figure 15: Information functions and SEM for
the items of Figure 13

On Figure 15 you can see the item infor-
mation functions (in black), the test informa-
tion function (in blue), and the SEM function
(in red) for the three items first seen on Fig-
ure 13. Because the items are very few, the
difficulties unevenly distributed, and the dis-
criminations differ a lot, the test information
function and the SEM function are dominated
by the single highly discriminating item. You
can obtain some more interesting results with
the applet.
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6. Ability estimation in the 2PL model
In Chapter 4, while discussing the 1PL model, we learnt that the maximum likeli-
hood estimates (MLE) of ability

1. can be found at the point of the ability scale for which the expected score
equals the observed score, and

2. depend only on how many items were answered correctly, but not on which
items were answered correctly.

Under the 2PL model, the first of these propositions holds in a modified form, while
the second one is generally not true.

Formally, the first proposition states that, for the 1PL model,
∑

i

P(θ̂, bi) =
∑

i

ui,

where ui ∈ (0, 1) is the score on item i. Under the 2PL model, this is replaced by
∑

i

aiP(θ̂, bi, ai) =
∑

i

aiui,

so instead of simple sums we now have weighted sums with the item discriminations
ai as weights. A visual proof is provided on this applet.

ml2.html
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As long as the ai are distinct, which is usually the case, the different response
patterns having the same observed score (number of correct answers) will no longer
lead to the same estimate of ability. It now matters not only how many, but also
which items were answered correctly.
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Figure 16: Likelihood functions for three re-
sponse functions having the same observed
score of 1

This is clearly visible on Figure 16, which
shows the likelihood functions for the three
response patterns having the same observed
score of 1, i.e. (T,F,F), (F,T,F), and (F,F,T).
The items are the same as on Figure 13, and
the same colours are used to indicate which of
the three items was answered correctly. The
green curve is very flat; this reflects the gen-
erally low probability of a correct response to
the difficult item occurring jointly with wrong
responses to the two easy items. But the im-
portant thing to notice is that each of the three

curves peaks at a different point of the ability scale. This was not the case in the 1PL
model, as you remember from Figure 12.

The maximum likelihood principle still applies, and we can find the MLE of
ability at the point where the likelihood function for the observed response pattern
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reaches its maximum. For instance, a test of five items will have 32 possible response
patterns. The MLE for response pattern (F,F,F,F,F) is −∞, the MLE for response
pattern (T,T,T,T,T) is +∞, and the MLE for the remaining 30 patterns can be found
by maximizing the likelihood. You can try this out on the applet.

As with the 1PL model, we bang off the final fireworks in another applet that
brings together all features of the 2PL model: the item response functions, the test
response function, the likelihood function, the test information function, and the
standard error of measurement.

7. The three-parameter logistic (3PL) model
You may have guessed that after the 1PL and the 2PL models there comes the 3PL
model, and that it is trickier than its two predecessors. Well, both guesses are correct.

Unlike the 1PL and the 2PL models, the 3PL model is not really a logistic model.
Rather, it is a 2PL model whose item response function has been refashioned such
that its lower asymptote be larger than zero. In other words, the probability of a
correct response no longer approaches zero as true ability goes to −∞. Instead, it
approaches some positive value — usually 1/k, where k is the number of response
categories in the multi-choice item. The argument is that examinees of very low abil-
ity will very likely switch to random guessing, and random guessing would enable
them to choose the correct response with a probability of 1/k.

ml2pl.html
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7.1. The item response function of the 3PL model
The item response function of the 3PL model is

P(θ, a, b, c) = c + (1 − c)
exp(a(θ − b))

1 + exp(a(θ − b))
.

The third parameter, c, sets the lower asymptote, i.e. the probability of a correct
response when true ability approaches −∞. The part multiplied with (1 − c) is the
IRF of the 2PL model (with different numeric values for a and b).

Pi(θ, bi, ai, ci)
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Figure 17: Item response function of a 3PL
item

Figure 17 shows the IRF for a 3PL item
with a = 1.4, b = 0, and c = 0.2. The low-
est ability on the graph is only −4 and −∞
is a bit farther off than that, but it seems that
the lower asymptote is indeed 0.2. As in the
1PL and the 2PL models, the curve turns from
convex to concave at θ = b, but the probabil-
ity of a correct response at θ = b is no longer
0.5 — it is equal to c + (1− c)/2 = 0.2 + 0.4 =

0.6 instead. Furthermore, the slope at b is
(1 − c)a/4 rather than a/4.

As usual, you may want to check out the applet.

irf3pl.html
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7.2. The item information function of the 3PL model
The item information function of the 3PL model is a bit more complicated as com-
pared to the 1PL or the 2PL model. It may be useful to compare the item information
functions for the three models:

1PL I(θ, b) = P(θ)Q(θ)
2PL I(θ, a, b) = a2P(θ)Q(θ)

3PL I(θ, a, b, c) = a2 Q(θ)
P(θ)

[
P(θ)−c

1−c

]2

P, I
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Figure 18: Item response functions and item
information functions of two 3PL items

Figure 18 shows the IRF (dotted) and the
IIF (solid) for two 3PL items. The item with
the black lines has a = 1, b = −1, and c = 0.1,
while the item with the red lines has a = 1,
b = +1, and c = 0.3. Remember that b shifts
the item information function to the left or to
the right but does not affect its shape. Our
two items have the same a = 1 but differ in c:
hence, a higher c leads to an overall decrease
in item information. A further complication

is that the IIF no longer peaks at θ = b. You can see for yourself on the applet.

iif3pl.html
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7.3. The test response function of the 3PL model
The test response function of the 3PL model is defined as in the 1PL and the 2PL
models: it is the sum of the item response functions over all items in the test, and
it predicts the expected test score as a function of the latent ability and the item
parameters.

The only difference between the three models is in the item response functions
that are summed together. When all discrimination parameters ai are positive, the
test response function approaches is an increasing function of ability. Its exact shape
depends on the item parameters. You can try out this on the applet.

7.4. The test information function of the 3PL model
The test information function of the 3PL model is defined similar to the 1PL model
and the 2PL models: it is the sum of the item information functions over the items
in a test. What differs between the three models are the item information functions,
so for the 3PL model the test information function is

I j(θ j) =
∑

i

Ii j(θ j, bi, ai, ci) =
∑

i

a2 Q(θ)
P(θ)

[
P(θ) − c

1 − c

]2

.

As we know, the item information function depends strongly on the discrimina-
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tion parameters ai. In the 3PL model, there is the additional influence of the ‘guess-
ing parameters’ ci: larger ci decrease the item information and shift its maximum
away from bi. As a result, the shape of the test information function can become
rather complicated under the 3PL model, as you can see for yourself on the applet.
In practical applications, we should like to have a test information function that is
high and reasonably smooth over the relevant ability range — say, (−3,+3).

7.5. Standard error of measurement in the 3PL model
Just as in the 1PL and the 2PL model, the variance of the ability estimate in the 3PL
model can be estimated as the reciprocal value of the test information function at the
ability estimate θ̂. The standard error of measurement (SEM) is equal to the square
root of the variance, so for the 3PL model it will be

SEM(θ) =

√√
1
/∑

i

a2 Q(θ)
P(θ)

[
P(θ) − c

1 − c

]2

.

As usually, there is an applet.

tif3pl.html
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7.6. Ability estimation in the 3PL model
As in the 1PL and the 2PL model, ability estimates under the 3PL model can be ob-
tained by maximizing the likelihood function (or, more conveniently, its logarithm).
The likelihood function is defined in the same way as for the 1PL and the 2PL mod-
els, except that the probabilities P and Q now obey the 3PL model:

L(θ) =
∏

i

Pi(θ, bi, ai, ci)ui Qi(θ, bi, ai, ci)1−ui ,

where ui ∈ (0, 1) is the score on item i.
As in the 2PL model, the ML estimate of ability depends not only on how many,

but also on which items were answered correctly.
An unwelcome complication under the 3PL model is that the likelihood function

can have local maxima. You are invited to produce such an unpleasant situation by
playing around with the applet.

As with the 1PL and the 2PL models, there is a final applet that brings together
all features of the 3PL model: the item response functions, the test response function,
the test information function, the likelihood function, the ML estimates of ability and
their standard error of measurement.

ml3.html
all3pl.html
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7.7. Guessing and the 3PL model
The 3PL model tries to accommodate guessing by introducing the third item pa-
rameter, the asymptote c. However, it is not very convincing to associate guessing
behaviour with an item property. Items never guess — people do. Some persons
may have a higher propensity to guess than others, all other things equal. On the
other hand, there may be situations where everyone is forced to guess. Suppose you
are taking a computer-administered test, you don’t know the answer to an item, and
the software won’t let you go to the next item unless you choose a response — what
would you do?

When guessing is taking place, we actually end up with a mixture of two models.
One of these, the model under guessing, predicts a probability of a correct response
that is independent of ability and equal to 1/ki where ki is the number of response
categories for item i. The other model could be the 2PL model:

P(θ j, ai, bi, πi j) = πi j
1
ki

+ (1 − πi j)
exp(ai(θ j − bi))

1 + exp(ai(θ j − bi))
.

The mixing weights πi j and 1 − πi j can be interpreted as the probability that the
person responds according to the guessing model or according to the 2PL model.
They are person-specific because not everyone has the same propensity to cheat,
and they depend on the interaction between ability and item difficulty, as cheating
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only makes sense when the item is too difficult given ability. So we end up with
something roughly similar to the 3PL model but incomparably more complicated, as
instead of ci we now have πi j, depending in a complex way both on the person and
on the item.

Things may be even more complicated in practice as guessing need not happen
purely at random. Depending on their ability level, persons may adopt some rational
strategy of ruling out the most unlikely responses, and then choosing at random
among the remaining ones. The rate of success will then depend on the item — it
will be greater when some of the distractors (wrong response categories) seem much
more unlikely than the others. Nedelsky models try to formalize the psychometric
implications of such response behaviour.

8. Estimating item parameters
So far, we have been concerned mainly with the properties of the different IRT mod-
els. Abilities and item parameters were assumed known, and we could easily plot,
examine, and modify the item response functions, the information functions, etc.

We have seen that ability can be estimated fairly easily if the item parameters
are known. Alternatively, the estimation of item parameters will be much easier if
the true abilities of the examinees were known. Much in the same way, we can easily
get an egg if we have a hen, and it would be not too difficult to produce a hen if we



Section 8: Estimating item parameters 41

have an egg. However, the question of what comes first, the egg or the hen, is a bit
more difficult. To put it in another way, we cannot escape the problem of estimating
item parameters and person parameters simultaneously. The possible ways of doing
this are examined in section 9, ‘Test calibration and equating’. For the time being,
we shall assume that abilities are somehow known, and we shall concentrate on the
easier problem of fitting an S-shaped curve to empirical data.
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Figure 19: The distribution of latent abilities,
assuming a standard Normal distribution

As we know, abilities can theoretically as-
sume any value between −∞ and +∞. How-
ever, not all values in that interval are equally
likely, and it is more reasonable to assume
some distributional model — for instance, the
standard Normal distribution shown on Fig-
ure 19. According to that model, most abil-
ities are close to the average (i.e. zero), and
values smaller than −3 or larger than +3 will
be very rare.

This has important consequences for the
kinds of response data that we are likely to

observe in practice. The plots in this text have a horizontal axis from −4 to +4, and
the accompanying applets go from −6 to +6. However, only parts of these intervals
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will be covered by empirical data. In other words, there might be endless landscapes
out there, with fat item response functions grazing about everywhere, but we shall
only be able to observe bits of them from a window that goes from −3 to +3. In
addition, our vision outside the range (−2,+2) will be quite blurred because of the
small number of observations and the high random variation that goes with it.
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Figure 20: Observed proportions of correct re-
sponses assuming normally distributed abili-
ties and a 1PL item of b = 0.5

Let us take a sample of 1000 examinees
with normally distributed abilities, and let us
ask them a 1PL item of medium difficulty (say,
b = 0.5). We can split the ability range into a
number of bins, count up the examinees and
the correct responses in each bin, and calcu-
late the proportions of correct responses.

The results will look similar to the step
function shown on Figure 20. The points ap-
pear at the middle of each bin; I have put them
there because the accompanying applets show
points rather than step functions.

The step function (or the points, if you prefer) looks quite similar to the item
response functions we have been considering so far. This should not come as a great
surprise since I simply simulated some data from the 1PL model. Unlike real-life
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people, simulated data have the nice property of always obeying the model. So it
will be easy to approximate the data with a suitable 1PL item response function.

8.1. Group invariance of item parameters estimation
p(θ), P (θ)
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Figure 21: The observed proportions of cor-
rect responses shown on Figure 20, fitted with
a 1PL model

Figure 21 shows the data from Figure 20
fitted with a 1PL item response curve. The
fit is quite good — but then, what else did
you expect with data simulated to obey the
model? And we can get quite a good look at
it all because the item had medium difficulty
— hence, most of the item response function
is within the reach of our normally distributed
examinees.

What will happen if, instead of an item of
medium difficulty, we were to ask the same
examinees a very hard item? We know that

increasing the item difficulty will shift the item response function to the right. Be-
cause the distribution of ability in the sample remains the same, we shall be looking
at the shifted IRF from the same old window, and we shall be able to observe only its
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left-hand part. A likely plot of observed data, again obtained through simulation, is
shown on Figure 22. The model is again the 1PL, with an item difficulty is b = 2.4.
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Figure 22: Observed proportions of correct re-
sponses to a difficult 1PL item, fitted with the
appropriate IRF

We have very few examinees at ability
levels where a high proportion of correct re-
sponses could be observed. Would this ham-
per our attempts at estimating the item param-
eter? Actually, no. As long as the data follows
the logistic model, we can fit the curve even if
our observations only cover a relatively small
part of it. The logistic curve has a predeter-
mined shape, its slope is fixed, and, as long as
we have some data, all we have to do is slide it
to the left or to the right until the best possible
fit is obtained.

By the way, we would observe very much the same if we had kept our old
item of medium difficulty (b = 0.5) and asked it to a sample of less bright persons
(say, having latent abilities with a mean of −1.9 and the same standard deviation
of 1). Being able to estimate the item parameters from any segment of the item
response curve means that we can estimate the parameters of an item from any group
of examinees (up to sampling error, of course). The term group invariance refers to
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this independence of the item parameter estimates from the distribution of ability.
You can try it out on the applet, which will become even more interesting later on.

8.2. Group invariance under the 2PL model
Will group invariance hold under the 2PL model as well? We have to estimate an
additional parameter for slope, but the model is still a logistic one, and the task is
feasible.
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Figure 23: Observed proportions of correct re-
sponses to an easy 2PL item, fitted with an
IRF

Figure 23 shows simulated data for 1000
examinees answering an easy 2PL item with
a relatively high discrimination (b = −2.0,
a = 1.7). To make the graph look more like
the applet, the data is represented with points
instead of a step function.

The 2PL model may present us with some
additional difficulties when we try to estimate
item parameters simultaneously with abilities.
But why worry about that now — better play
some more with the applet before things have
become more complicated.

itmpar.html
itmpar.html
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8.3. Guessing and parameter estimation
What if the data does not obey the model? Placed under strictly controlled condi-
tions, examinees tend to behave in the way they like. They look at the ceiling or
through the window, they think of their hobbies or sweethearts. If the test has high
stakes for them and they don’t know how to answer an item, they will most likely
try to guess.

Guessing must be one of the most notable reasons for disagreement between
an IRT model and actual data. As noted in section 7.7, real-life data is probably
a mixture of data following an IRT model and data from some guessing model(s).
The 3PL model tries to compensate for guessing, but not without introducing some
additional difficulties.

Consider first a difficult item. We still have a sample of examinees with normally
distributed abilities (mean of 0 and standard deviation of 1), so many will have dif-
ficulties in providing the right answer, and we shall have plenty of opportunity to
observe guessing behaviour.



Section 8: Estimating item parameters 47

•
•
• •

• • • •
•
•

•

•
•

p(θ), P (θ)

−4 −3 −2 −1 0 1 2 3 4
0

0.5

1.0

θ

Figure 24: Observed and fitted proportions of
correct responses to a difficult 2PL item with
random guessing taking place.

A plausible data set is shown on Figure 24.
Rather than simulate data conforming to the
3PL model, I tried to emulate guessing in the
following way. Assume that the item is in the
multiple-choice format with five response op-
tions. The probability of a correct response
under random guessing is then 1/5 = 0.2.
From the 2PL model (b = 1.54, a = 1.98),
compute the IRT probability of a correct re-
sponse given the examinee’s true ability, and
compare it to 0.2, then simulate a response us-
ing the larger of the two values. In this way,

the imaginary examinee switches to random guessing whenever that promises a bet-
ter chance of success than thinking.

Obviously, the data suggests an asymptote of 0.2. An attempt at fitting is made
with a 3PL model having b = 1.75, a = 2.42, and c = 0.2 (the blue curve). The
original 2PL curve is shown in red for comparison. Its upper part is very close to
that of the 3PL curve. To combine the same upper part as the 2PL model with a
different lower asymptote, the 3PL model has different difficulty and discrimination
parameters.
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So far so good. Let us look at an easy item now (2PL, b = −2.13, a = 1.78).
The examinees have the same normal distribution of ability, and the same logic of
guessing. Only the item is so easy that very few people might be tempted to guess.
Guessing is still a theoretical possibility but it would occur outside of the scope of
our data. We cannot really observe it for the easy item.
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Figure 25: Observed and fitted proportions of
correct responses to an easy 2PL item with
random guessing taking place.

The data is shown on Figure 25. The solid
red curve shows the 2PL item response func-
tion used in simulation. The solid blue curve
is of course a 3PL IRF.

When a 3PL item is estimated with an
IRT program under the default options and
there is little observed data on guessing, the
program will most likely produce an estimated
asymptote of 1/k where k is the number of
options for the multi-choice item. This is be-
cause programs use Bayesian tricks, and esti-
mation will be dominated by the default prior

distribution when the data is scarce. Accordingly, the blue curve shows a 3PL IRF
with an asymptote c = 0.2. The other two parameters (b = −1.85, a = 2.13) have
been selected to make its upper part similar to the 2PL curve. I have also included
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the item information functions (dotted lines) to emphasize that the two curves are
quite different and provide optimal measurement for examinees of different ability.
The difference between the information functions is due partly to the different diffi-
culty and discrimination parameters and partly to the fact that the IIF under the 3PL
model peaks to the right of item difficulty (see section 7.2).

Hence, it may be reasonable to make the software produce zero asymptotes for
the easy items. In effect, this means working with a mixture of 2PL and 3PL items
rather than a uniform 3PL model.

You can try it all out with the same applet.

8.4. Item invariance of ability estimation
Test responses originate as the interaction between a person of a certain ability and
items having certain properties—notably, difficulty. The central idea of IRT is to
develop models that parameterize person traits and item properties concurrently and
separately.

One consequence of this approach is that item parameters can be estimated from
a sample of persons having an arbitrary distribution; this is the property of group
invariance examined at some length in the preceding sections.

Another consequence is that, given calibrated items, latent ability can be esti-
mated with any test—easy, medium, or hard. We don’t have to equate test scores to

itmpar.html
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a reference group of persons as in classical test theory because IRT scores are, in a
way, self-equating: IRT compares persons to items, so we can do without a direct
comparison of persons to other persons. This property is called item invariance, and
you can try it out with the Joey applet.

For readers who might not have access to the Internet, here is a short description
of what the applet does; those who have seen it can jump to section 9.

Joey is a kid of average intelligence (θ = 0.0) who has an unprecedented passion
for taking tests. We happen to have an infinitely large pool of calibrated items and
each time Joey comes to visit, we give him 100 different tests as a present. Each test
consists of 20 items, and the average difficulty of the items in each test is usually
0.0. Joey does all tests in a whiz. Sometimes he does better and sometimes he does
worse, but on the average he gets about 10 out of 20 items right, and his average IRT
score is about zero, i.e. close to his true ability.

Now and then we pull a joke on Joey, and we give him tests that are too difficult
for him — for instance, the 20 items might have an average difficulty of 1.0 or even
1.5. This gets him into trouble: when the average item difficulty is 1.5, he can answer
only about 5 out of 20 items on the average. The interesting thing is that his average
IRT score is still about zero, and only the standard deviation of his IRT scores over
the 100 tests is perhaps a bit larger than before.

Sometimes we want to encourage Joey, so we give him 100 tests having items

johnny.html
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with an average difficulty of −1.5. Joey can then answer 15 out of 20 items on the
average, which makes him very happy. However, his average IRT score is still about
zero.

9. Test calibration and equating
In these final sections, we consider how to get estimates of item parameters that can
be used in practical testing. We cannot get into great detail because the material is
relatively complicated and does not seem to permit graphical explanations. And, the
terminology is a bit of a mess — this is due partly to classical test theory (CTT)
and IRT competing to solve similar problems with different means, and partly to the
great variety of situations occurring in practice.

Consider for instance equating. This is a term originating from classical test
theory. CTT does not know about item parameters in the IRT sense. Whenever a
new test is assembled from either new or existing items and scored in the classical
way, the test scores have to be equated in order to compensate for the differences
in difficulty among test forms. Equating in CTT typically involves adjusting the
distribution of test scores to a reference distribution.

IRT compares abilities not directly to other abilities but to item parameters in-
stead. If an IRT test involves calibrated items, the ability estimates do not need any
equating at all. However, if the test consists entirely of new items, equating will be



Section 9: Test calibration and equating 52

an issue. In addition, IRT involves tasks that are not known in CTT — for instance,
adding new items to an existing pool of calibrated items.

To obtain calibrated items, one has to

i write them,

ii estimate their parameters, and

iii make sure that the estimates are on the same scale. Some authors call this
third task calibration, others prefer the term scaling, and some might speak
even of equating.

It gets even more complicated. When all items of interest are tackled simultane-
ously, i.e. given to the same group of persons, the item parameter estimates will be
on the same scale, so estimation and calibration are achieved simultaneously. The
same will happen if (i) two or more groups of examinees, possibly of different abil-
ity, are given tests with partially overlapping items, (ii) any items not presented to
the examinee are treated as missing data, and (iii) the combined data set is processed
in a single run (some programs will allow this).

This may be the reason why some authors seem to use ‘calibrate’ more loosely
in the sense of ‘estimate and scale’. However, estimation and scaling have to be dis-
tinguished — if we process the same data sets separately, the estimates will no longer
be on the same scale, and scaling becomes a separate (and necessary) procedure!
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To create my own personal mess, I used up the term ‘estimation’ in the preceding
sections while discussing the fitting of logistic curves to empirical data. So in the
following two sections I shall have to refer to the estimation of item parameters (the
way it occurs in practice, i.e. with abilities unknown) as ‘calibration’. The problem
of ensuring a common scale, or calibration in the narrower sense, will be revisited in
section 9.3.

9.1. Calibrating the 1PL model
The 1PL model belongs to the exponential family, so we can estimate item difficul-
ties by conditioning on the sufficient statistics for the person parameters.

This sounds hopelessly Greek but it is not really that complicated — only I failed
to introduce some of the more fundamental statistical concepts at the right time. So
let us try to get orientated.

A statistic is simply some function of empirical data. A sufficient statistic allows
us to estimate some unknown parameter without requiring any further data. A nice
property of the 1PL model is that the sufficient statistics for the person parameters
θ j do not involve the item difficulties bi, and vice versa. This property is not shared
by, say, the 2PL model, where the sufficient statistics for θ j unfortunately include the
discrimination parameters ai.

Hence, we can estimate the item difficulties in the 1PL model by a technique
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called conditional maximum likelihood estimation. If you know log-linear models,
CML estimates can be obtained from a log-linear model that does not involve any
latent variables at all—the θ have been ‘conditioned out’.

Estimation techniques are too complicated for this text (no applets, sigh), so we
shall not go into further details. It is a small miracle, and it is done with software.
One should remember that CML estimation is only applicable to the 1PL model, and
that it can run into numerical difficulties with long tests—say, 80 or more items.

9.2. Calibrating the 1PL, 2PL, or 3PL model
If calibrating the 1PL model via conditional maximum likelihood is a small mir-
acle, calibrating the 2PL and the 3PL models must be a bigger one. Two of the
better known approaches are joint maximum likelihood (JML, a.k.a. the Birnbaum
paradigm), and marginal maximum likelihood (MML). Both claim not to be Bayesian
but when one delves into the software manuals, one tends to encounter prior distribu-
tions for the parameters. In addition, there are the fully Bayesian approaches, some
of them employing Monte Carlo techniques.

JML and MML estimation are applicable to the 1PL, 2PL, and 3PL models.
Let us see if we can get some intuitive understanding of the two techniques without
going into the actual nitty-gritty.

JML estimation works in cycles. We start with some rough estimates of ability
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such as the raw test scores, we treat them as ‘known’ person parameters, and we use
them to produce some initial estimates for the item parameters. Then we treat the
initial estimates as ‘known’ item parameters, and we produce new, improved person
estimates. The procedure is repeated, after some rescaling, until it converges (at this
point, some of the more vocal critics of the 2PL and the 3PL models might point out
that it does not have to converge at all for these models).

MML estimation also goes in cycles. We start with some initial guess not of
the person parameters, but of the item parameters. For each person, we estimate
the complete probability distribution of ability given the observed responses and the
initial guesses for the item parameters. The distribution may be of a pre-specified
type (say, standard Normal), or it can even be estimated.

Based on this distribution, the expected number of examinees and the expected
number of correct responses at each ability level can be estimated. Note this is quite
different from our observed data. What we have observed is the number of correct
responses for each person (and item) ignoring ability, i.e. incomplete, and now we
have an approximation to the complete data (with ability) but marginalized (summed
up over the individual persons). This can be used to obtain new, improved estimates
of the item parameters without bothering about the person parameters. The new
estimates of the item parameters produce a better approximation to the complete
data, and the procedure goes on in cycles until it converges.
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9.3. Placing the estimates on a common scale
Consider the expression exp(θi − b j) which lies at the heart of our simplest model,
the 1PL. This is determined only up to an additive constant: if we add to each ability
θi the same number, say 3.14, then we can get back to the same model by adding
3.14 to each item difficulty bi. In short, exp[θi + B − (b j + B)] = exp(θi − b j).

In the same way, the discrimination parameters a j in the 2PL and the 3PL models
can accommodate multiplication by a constant: exp[ ai

A (Aθi − Ab j)] = exp(θi − b j).
More generally, let θ∗i = A + Bθ. We can adjust the 3PL model to accommodate

the linear transformation of ability by taking

a∗j =
a j

A
, b∗j = Ab j + B, and c∗j = c j.

A practical consequence of this property is that we have to impose some arbitrary
constraints on the abilities θi — typically, by setting their mean to zero and the
variance to 1 — or, alternatively, some constraints on the estimates for the item
parameters, in order to identify our model. Most computer programs allow a choice
between the two kinds of constraints.

Now suppose we are trying to estimate the item parameters for two tests, and we
have a different sample of examinees for each test. On top of that, the two samples
differ dramatically in ability. If we let the program standardize abilities, the ability
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estimates for the more able group will be pushed down, and the item difficulties will
follow them. Conversely, the ability estimates for the less able group will be inflated,
and the item difficulties will go up with them. Hence, the item parameters for the
two tests will not be on the same scale.

The problem will not disappear if we were to standardize the item parameters
instead of the ability estimates. We cannot claim that the two tests have the same
average difficulty, so the estimates are again on different scales.

Placing the item parameters obtained from different calibration samples on the
same scale is the necessary step that makes item calibration complete. The ways in
which it can be accomplished depend on the practical situation.

1. If we can estimate our complete item pool with a single sample (not very
likely), we don’t have to do anything, since all item parameters are on the
same scale.

2. If we can assume, possibly based on a careful randomization of subjects, that
the samples for all tests are statistically identical (up to negligible random
variation), all we have to do is set up our estimation program to standardize
abilities; the estimates for the item parameters will be (approximately) on the
same scale.

3. If we are not prepared to make the assumption of equivalent samples, we can
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use a design in which a subset of the items are given to both samples (anchor
items). There are two possible ways to calibrate the items from such a design:

(a) Some computer programs can work with large proportions of missing
data. We can set up our data sets such that data on the common items
is complete, and data on the non-overlapping items is missing for all
subjects who have not seen them. Because all items are estimated in a
single run, the estimates will be on the same scale.

(b) We can calibrate the data from the two samples separately (again, stan-
dardizing ability estimates), and then use the estimates for the common
items to bring all item estimates to the same scale. This is accomplished
by a linear transformation whose parameters can be derived from the
relationships

A =
σ(b∗j)

σ(b j)
=
µ(a j)
µ(a∗j)

and
B = µ(b∗j) − Aµ(b j),

where µ is the mean and σ id the standard deviation. The Greek letters
imply that these relationships hold exactly only on the model level, but
not necessarily in the data; besides, it only holds for the items that
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were seen by both samples. Depending on whether A is determined
from σ(b j) or from µ(a j), we have the Mean/Sigma or the Mean/Mean
method of scale transformation.
We saw, particularly in the applets accompanying section 9, that IRT
models with more than one parameter can define very similar item re-
sponse functions with quite different sets of item parameters. Because
of that, a comparison of item response functions based on a single pa-
rameter (a or b) can be misleading. To overcome this difficulty, some
more complicated methods for scale transformations have been pro-
posed; they are sufficiently documented in the more advanced literature
on IRT.

10. Stuff to read, credits and thanks
The three persons who arguably made the greatest contribution to IRT were the
Americans Alan Birnbaum and Frederick Lord, and the Dane Georg Rasch. Most
of the other important figures in the field are alive and well, so we can bother them
with questions and observe that they are not only highly knowledgeable people but
also very kind and willing to help. IRT is a relatively young discipline, and it is still
growing.
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Books— The one I could not possibly do without is Item response theory: Prin-
ciples and applications by Ron Hambleton and H. Swaminathan (Kluwer, 1985); it is
both readable and informative. This is complemented very nicely by the Handbook
of modern item response theory, edited by Wim van der Linden and Ron Hamble-
ton (Springer, 1997), which covers the more recent and advanced developments in
IRT. Many of the chapters in the Handbook made their first appearance as articles in
the journal Psychometrika. (By the way, Psychometrika have made all their issues
from 1936 to 2000 available on 4 CDs—it is amazing how much knowledge one can
carry in one’s pocket nowadays.) Another important journal is Applied Psychologi-
cal Measurement.

If you are in search of something less mathematical, Item response theory for
psychologists by Susan Embretson and Steven Reise (Lawrence Erlbaum Associates,
2000) may be the right one; it is fairly new and covers many of the more recent de-
velopments. Fundamentals of item response theory by Ron Hambleton, H. Swami-
nathan, and H. Jane Rogers (Sage, 1991) is also highly accessible but somewhat
more concise and less recent.

When you have seen some of these books, you will know whether you need to
delve into the more specialized literature. Two particularly important (and well writ-
ten) books are Test equating: methods and practices by Michael Kolen and Robert
Brennan (Springer, 1995), and Item response theory: Parameter estimation tech-
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niques by Frank Baker (Marcel Dekker, 1992).
If German is your language, two of the more recent books are Messen und Testen

by Rolf Steyer and Michael Eid (Springer, 2001), and Lehrbuch Testtheorie Testkon-
struktion by Jürgen Rost (Huber, 1996).

Doing this project was easy and fun due to the amazingly good and robust soft-
ware that is available out there for free. The text, the 25 figures, and the 25 applets
took the equivalent of a week. Thanks are due to the many wonderful people in the
LATEX and the Java communities.

Finally, I should like to mention a psychometrician whose brilliant career came
to an abrupt and untimely end. If my text were a little better, I would dedicate it to
Bradley A. Hanson. Brad’s site still lives on the Internet, and the reader can take a
look at his excellent work.

http://www.b-a-h.com/
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