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Descriptive and explanatory
item response models

Mark Wilson
Paul De Boeck

2.1 Introduction

In this chapter we present four item response models. These four models
are comparatively simple within the full range of models in this volume,
but some of them are more complex than the common item response mod-
e¢ls. On the one hand, all four models provide a measurement of individual
differences, but on the other hand we use the models to demonstrate how
the effect of person characteristics and of item design factors can be in-
vostigated. The models range from descriptive measurement for the case
where no such effects arc investigated, to explanatory measurement for the
case where person properties and/or item properties are used to explain
the effects of persons and/or items.

In the following sections of this chapter we will concentrate on logistic
models, but all that is said also applies to normal-ogive models if the logit
link is replaced with the probit link. The models we will discuss are all
GLMMs with random intercepts and fixed slopes.

2.1.1  The intercept or person parameter

Typically, the intercept in an item response model is one that varies at
random over persons. It is therefore called the person parameter. In the
notation for item response moedels, it is commonly denoted by 8. It is
assiumed in this chapter that ¢, is normally distributed with mean zero:
8, ~ N(0,03).

The random intercept or person parameter fulfills the function that is
often the main reason why people arc given a test. Person parameters pro-
vide a measurement of latent variables such as abilities, achievement lev-
els, skills, cognitive processes, cognitive strategies, developmental stages,
motivations, attitudes, personality traits, states, emotional states or incli-
nations. A general term that we will use for what is measured in a test
is propensity. Alternatively, another conception of the person parameter is
rhat it can also be (a) a fixed parameter, and/or (b) more than one person
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parameter (i.e., in a multidimensional model). We will elaborate on these
possibilities only later. For now, it suffices to know that the random inter-
cept is a person parameter and that the cstimate for an individual person
is considered a measurement of the propensity expressed in the test.

As a measurement tool, item response models of the type we are dis-
cussing provide more than ordinal quantification. However, an important
alternative approach is to restrict quantification to ordinal numbers. Ordi-
nal item response models are often also called nonparametric item response
models { Junker & Sijtsma, 2001; Sijtsma & Molenaar, 2002). The important
asset of nonparametric models is that they make no assumptions regarding
the item response functions, except for monotonicity assumptions. Thus,
they are more flexible than parametric item response models. However, the
family of nonparametric models has been developed mainly for measure-
ment purposes. It is not yet fully elaborated for explanatory purposes to
investigate the effect of person properties and item properties {such as fac-
tors in an experimental design). Thus, in this volume, we will concentrate
on parametric models.

2.1.2 The weights or item parameters

As in Chapter 1 we will denote the item predictors by an X, with subscript
k {k =1,...,K) for the predictors, so that X;; is the value of item ¢ on
predictor k. The most typical predictors in an item response model are
not real item properties as in Chapter 1, but item indicators. This means
that as many predictors are used as there are items, one per item, so that
X = 1if k=14, and X, = 0 if & #£ i. For example, for a set of six items,
the predictor values would be as follows:

iteml: 1 0 0 O 0 O itemd: 0 0 0 1 0 0
item2: 0 1 0 0O 0O O item5 0 0 0 O 1 O
item3: 0 0 1 0 0O 0O item6: 0O 0 0 0 0 1

In typical item response modeling applications, the weights of these pre-
dictors are fixed parameters since they do not vary over persons. These
weights are the slopes of the binary indicators (see Figure 2.1). The values
of these indicator weights are called the item parameters, commonly de-
noted by §;. Since each item has its own predictor, the subscript  is used
instead of k.

2.1.8 Resulting models
The resulting equation for the lincar component 7, is the following:
T = 35 + B, (2.1)

with 3; = Ei_(:l 3% X;x. As noted in Chapter 1, ,; is 1p: |6, but here and in
the following we will omit the conditional notation for 7,; {and m,;). Since
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all X;, with 7 # k equal 0, only one term of this sum has a non-zero value.
It is & common practice to reverse the sign of the item parameter, so that
the contribution of the item is negative and may be interpreted as the item
difficulty in the context of an achievement test. The resulting equation is:

Npi = Qp - ﬁz (22}

In order to convey some intuitions about the intercept and coefficients used
above, we give, in Figure 2.1 a graphical representation of Equation 2.2 for
person p and the kth predictor. The value of X is represented on the
r-axis. X can have two values: 0 and 1. For & = i, the value is 1 for
item ¢, and 0 for all other items. This simply means that item ¢ makes
no centribution for other items. Note that the intercept of the regression
line is the value of # at X,;; = 0. Also note that the difference between
Xix = 1 and X3 = 0is 1, and the difference between the 7y, for X =1
and X, = 0is —/3;, hence the slope of the line (i.e., the regression weight)
is also —3;. Other persons will have a parallel line, but the intercepts of
the line will vary (and we have assumed they follow a normal distribution).
Figure 2.1 does not give the full picture since it represents the effect of
ouly one predictor, the item indicator & = {. Figure 2.1 is also somewhat
imaginary in the sense that our item indicators can have only two values,
while the line connecting the two points suggests that intermediate values
can also exist,

I

X0 Xx=1

FIGURE 2.1. Linear function for one item predictor in the Rasch model. (Note
that in this case 3; < 0.)

The resulting model of Equation 2.2 {or, equivalently, 2.1) is the Rasch
model (Rasch, 1960}. The Rasch model is a model that is descriptive for
both the person side and the item side of the data matrix. It describes
variation in the persons through a person parameter #,, which is a ran-
dom variable as presented here. And it describes the variation in the items
through fixed individual item parameters.
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2.2 Four item response models

The primary aim of this chapter is to illustrate the distinction between a
descriptive approach and an explanatory approach in the context of item
response modeling. In the course of illustrating the distinction, we will
present four item response models one of which is the Rasch model from
Equations 2.1 and 2.2. The four models differ in whether they are descrip-
tive or explanatory at the person side and the item side.

The four models we have selected to present below are logistic random-
intercepts models and therefore belong to the Rasch tradition, but this
does not mean we are in this volume restricting our possible models to that
approach. In the Rasch tradition, which might also be called prescriptive
measurement (Rasch, 1960; Fischer & Molenaar, 1995). models include no
interactions between persons and items, but just main cffects of persons and
items — specifically, the random intercept, #,, is not weighted depending
on the item. If there were such interactions, then the effect of a person
parameter would depend on the items, and therefore, by implication, in the
inferential step, the measurement outcome would necessarily also depend
on the items that are included. This prescriptive measurement approach
is only one of two measurement approaches that are commonly followed
with item response models (Thissen & Orlande, 2001; Wilson, 2003). The
alternative approach might be termed empirical in that one seeks to modify
the model to fit the data more closely — specifically, the model is expanded
by weighting the random intercept by an item parameter o; (Birnhaum,
1968). Such a model is called the two-parameter logistic model (2PL model)
Thus, in the empirical tradition, relatively more items will fit the model
than in the prescriptive tradition, although there will he items that do not
fit well under cither tradition.

The basis for selecting these particular models for this second introduc-
tory chapter is that they are building blocks which can serve as the basis
for the very extensive expansion of the models in the remainder of this
volume, and which will include, as one aspect, adding the second item pa-
rameter «;, typical of the empirical tradition. After the model formulation
and discussion for each of the four models below, an application will be
discussed, making use of the dichotomized example data from Chapter 1.

Table 2.2 shows four types of models, depending on the types of pre-
dictors that are included. There are two kinds of item predictors: item
indicators, and item propertics. And there are also two kinds of person
predictors: person indicators, and person properties. Look first at the top
left-hand corner of the 2 x 2 lavout of Table 2.1. When each person has
his/her own unique effect, unexplained by person properties, and when
each item has its own unique effects, unexplained by item properties, we
will refer to the model as doubly deseriptive. Such a model describes the in-
dividual effects of the persons and of the items (hence, doubly descriptive),
without explaining either of these effects. The Rasch model is an example.
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TABLE 2.1. Models as a function of the predictors.

Person predictors

Item predictors Ahsence of properties  Inclusion of properties
(person properties)

Absence of properties  doubly descriptive person explanatory

Inclusion of properties  item explanatory doubly explanatory
(item properties)

Doubly descriptive models are mostly sufficient for measurement purposes,
and are those most comionly seen in practice.

However, if the person paramecter is considered to be a random effect,
then there may be unwanted consequences if the effect of certain person
propertics is not taken into account. If & normal distribution is assumed,
the result is that the normal distribution no longer applies for the entire
subset of persons. but only for subsets of persons who share the same
person property values. For example, if gender has an effect, then not one
normal distribution applies but two, differentiated by the gender of the
person. Thus, when person properties are included in the model to explain
the person effects, then the models will be called person explanatory (top
right-hand corner of Table 2.1).

In a similar way, when item properties are included to explain the item
cffects, the models will be called item explanatory (hottom left-hand corner
of Table 2.1). Finally, when properties of both kinds are included, the
models will be called doubly explanatory (hottom right-hand corner of Table
2.1). See Zwinderman (1997) and Adams, Wilson and Wu (1997) for similar
taxonomies and short descriptions of the models. In the verbal aggression
example data set from Chapter 1, we have information on person properties
as well as on item propertics, so that the two types of explanatory models
(person and item) can be illustrated.

2.2.1  Summary and notation

A summary of the four models to be explained is given in Table 2.2. The
following notation is used in the table and will be followed also in the re-
mainder of this chapter. #, is used for the random person parameter, with
mean zero and variance ;. When person properties are included in the
model, the symbol £, is used for the unexplained part of the person contri-
bution, with mean zero and variance 2. The person properties are denoted
with capital Z. The subscript j is used for these predictors, j =1,....J.



48 Mark Wilson, Paul De Boeck

TABLE 2.2. Summary of the four models.

Tpi =
Model Person part Item part Random effect Model type
Rasch medel 6, —B3; 8, ~ N(0, og) Doubly
descriptive
4 N .
Latent reg ZJ,—1 W;Z5; + €5 —i; ep ~ N(0, o'ﬁ) Person
Rasch model explanatory
K ;
LLTM #n “ Db Bk X 8, ~ N(O.ef)  ltem
explanatory
J K .
Latent reg Ej:l W;Zpi +p  — Zk—() BeXix  £a~ N(0.a?) Deoubly
LLTM cxplanatory

This is a deviation from the GLMM notation where Z is used for predictors
with a random effect. The GLMM notation is the notation that is followed
in Chapter 4 on the statistical background of this volume and in Chapter
3 on multicategorical data also because that chapter relies more directly
on the general GLMM framework. Rather than distinguishing between the
predictors on the basis of whether they have a fixed or random effect, we
use here a different notation for person predictors and item predictors, be-
cause they lead to quite different item response models and because in these
models persons and items are not treated in an equivalent way, as will be
explained in Scetions 2.4.1, 2.5.1, and 2.6.1. This leaves the X for the item
predictors, with subscript k, k=1,..., K. Where the effects of person pre-
dictors are considered fixed, they are denoted by ¥;, and the fixed cffects of
item predictors by ;. The random intercepts may be considered the effect
of a constant predictor {Z,s, or alternatively Xj,).

2.3 A doubly descriptive model: the Rasch model

2.8.1 Formulation of the model

The Rasch model was defined earlier in Equations 2.1 and 2.2. We will use
Equation 2.2 to ohtain an expression for the odds, or 7p; /(1 —7;). If on both
sides of Equation 2.2 the exponential form is used, then exp(n,:) = exp(f,—
B;). Since ny = log(mi /(1 — mpi)), and exp(8, — 3;) = exp(8,)/ exp(8;}, it
follows that

7pi/ (1 = mpi) = exp(fy)/ exp(3;). (2.3)

Equation 2.3 is the exponential form of the Rasch model. As a way to
understand Equation 2.3, interpret exp(f,) as an exponential measure of
the ability of person p when taking an achievement test, and interpret
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exp(/J;) as an exponential measure of the difficulty of the item 7 from that
test. Then the formula expresses the ratio of the success probability 7,
to the failure probability {1 — ;) as the ratio of a person’s ability to the
difficulty of the item.

The intuition reflected in the formula, in an achievement context, is that
ability allows one to succeed, while difficulty makes onc fail, and that the
ratio of both determines the odds of success. Figure 2.2a gives a schematic
presentation of this intuitive idea. The figure shows two rectangles on a
balance beam - if one weighs more than the other, then the balance will
tip that way. Physical balance beams tip one way as soon as the weight
on that side is larger than the weight on the other side, Imagine now that
tipping one way or the other way in an achievement context is probabilistic
as follows. The white rectangle represents the ability and the gray rectangle
the difficulty. The ratio of ability to difficulty is 2/1, so that the ratio of
the success probability to the failure probability is also 2/1.

From the odds equation, one can derive the equation for the probabil-
ity. if the numerator on each side of Equation 2.3 is divided by the sum
of the numerator and the denominator, it follows that 7, / (Mpi+(1—my)) =
exp{#,)/{exp (6, )+exp($3,)), and thus that 7,; = exp(8,)/(exp(d,)+exp(3:)).

-When the numerator and denominator of the latter are each divided by
exp({3;), then the familiar equation for the probability of a l-tesponse is
obtained:

T = exp(fy, — 3;:) /(1 + exp(f, — 3;)). (2.4)

The intuition behind this alternate formula for the Rasch model is that
therc are two competing responses cach of which has a certain attractive-
ness. Let us denote the attractiveness of ¥,,; = 0 as A and the attractiveness
of ¥;; = 1 as B. The probability of a response may then be considered the
ratio of its attractiveness to the sum of the two attractiveness values, or
mpi = B/{A+B). This is an example of the well-known Bradley-Terry-Luce
choice rule: the probability of an alternative depends on the ratio of the
attractiveness of that alternative to the sum of the attractiveness values of
all alternatives. In Equation 2.4, 4 = 1, and B = exp(8, — 3;). The value of
1 for A is an arbitrarily chosen convention (i.e., the value of Tps 18 invariant
under multiplicative transformations of the attractiveness values, so that
one may as well set A equal to 1).

The intuition behind Equation 2.4 is presented in Figure 2.2b. The two
attractiveness values are each represented by a section of a rectangle: the
gray section for the O-response, and the white section for the 1-response.
The probability of each response is the proportion of the corresponding
sectlon in the rectangle. The white section is twice as large as the gray
section, so that the resulting probability of a 1-response is 2/(2 + 1) = .67.

"The link between Figure 2.2a and Figure 2.2b is that the two rectangles
of the upper part are first shrunken in equal proportions, and then put next
to one another to form one long rectangle. This is a legitimate operation
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exp(e;)

- mpif(1-mpi)=
abilty expl6pVexpif)
B=exp(fp- ) i ~BAA+B)
correct response T =eXp(bp - 3 V[ 1+exp(6; - B;)]

FIGURE 2.2. Iustration of two ideas behind two different formulations of the
Rasch model: {a) odds formula, and {b) probability formula.

since 71y, is invariant under multiplicative transformations of the rectangles.
The transformation illustrates that both exp(6,) and exp(f, — 0i) may be
understood as the attractiveness of a 1-response, and both exp({3;) and 1 as
the attractiveness of a O-response, depending on whether or not one divides
by exp(3;).

A third metaphor is one of a hurdler (the person) and a series of hurdles
(the items). The hurdler is seen as having the ability to leap over hurdles of a
certain height (the ability is indicated by 8,,). and the series of hurdles have
heights indicated by the series of item diffienlties (3;,....37). When the
hurdler’s ability is equal to the height of the hurdle, the leap is successful,
with a probability of .50. When the hurdler’s ability is different than the
height of the hurdle, the leap is successful, with a probability dependent on
the difference between them (when the difference is positive, the probability
will be greater than .50, and when it is negative, it will be less than .50).
This metaphor is possibly better-suited to achievement and ability contexts
than other such as attitude variables, but similar interpretations in such
contexts are also possible.

In a fourth metaphor, one can represent the heights of the hurdles (the
item difficulties} as points along a line, and the ability of the person as
a point along the same line. The amount determining the probability of
success is then the difference between the two locations, or (8, — 3;). This
representation is sometimes called an ‘item map’ or ‘construct map.” A
generic example is shown in Figure 2.3, where the students are shown on
the ieft-hand side, and the items on the right-hand side. This representa-
tion has been used as a way 1o enhance the interpretability of the results
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from item responsc model analyses. Segments of the line can be labeled
as exhibiting particular features, for both the persons and the items, and
the progress of say, students, through this set of segments, can be inter-
preted as development in achievement. The placement of the person and
item locations in a directly linear relationship has been the genesis of an
extensive methodology for interpreting the measure (Masters, Adams, &
Wilson, 1990; Wilson, 2003; Wilson, 2005; Wright & Stone, 1079).

Direction of
increasing ability
b
Students Iltems
Students with high Item response indicates highest
ability level of ability
Students with mid-range item response indicates mid-
ability range level of ability
Students with low tem response indicates lower
ability level of ability
Y
Direction of

decreasing ability

FIGURE 2.3. A generic construct map for an ability.

Item response function

Item response functions or item characteristic curves are item specific fune-
tions that map the value of 8, into the corresponding probability mp;, given
the value of 3;. Figure 2.4 shows the item response functions of three items.
The shape of Rasch item response functions is the same for all three items,
bt the location is different. All curves are equally steep, because 6, is not
weighted depending on the item. For all items n,; = .50 when 3; = 8,
which indicates that 3; locates the curve on the #-scale.

Graphical representation

The Rasch model is graphically represented in Figure 2.5, following the
conventions introduced in the previous chapter. The figure shows the item
parameter 3, as the effect of the corresponding item indicator X, (for
k = i, the other item indicators arc not shown since they don’t have an
effect), and it shows the person parameter 8, as the random effect of the
constant predictor Z,,. Note that in GLMM notation Z is used for predic-
tors with a random effect, while our notation Z is used for person predictors.
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FIGURE 2.4. Item response functions for three items.

Incidentally, the Z, in Figure 2.5 corresponds with both conventions. It
R p0

is a constant predictor with a random effect. and it may be considered a
person predictor as well, one with a value of 1 for all persons.

logit o 0

link |

LY 4 Npi \
8p @

FIGURE 2.5. Graphical representation of the Rasch model. {Note that k = i.)

Local independence

An important feature of the model is the so-called local (or conditional)
independence assumption, meaning that for any response vector ¥,
{(Yp1+ -+ ¥pr) (with g, being the realization of Yy, (y, =1 or 0)), the
conditional probability of the whole vector is the product of the condi-
tional probabilities of cach response. This implics that, for all pairs of
itets @ and i (i # 40 Pr(Yyi = ypi & Yoo = ypir|6p) = Pr(Y = Y|y} %
Pr(Y,ir = Ypir|6p). Under this assumption, ¢, is the only source of depen-
dence {or correlation) between items — hence, for a given value ot #, the
observations are independent, which means that one dimension or latent
trait. #,. explains all inter-item correlations. The assumption of local in-
dependence underlies all four models in this chapter, and also all models
in this volume, except for models with a residual dependence part (sce
Chapters 7 and 10 for an explanation of that).
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Parametrization

Note that the parameters in the above equations appear in two forms: the
exponential form., using exp(#,} and exp(J;). as in Equation 2.3, and the
logarithmic form, using #, and 3,, as in Equation 2.4, We will use the log-
arithmic form, which is also the most common form. Four different but
equivalent parametrizations are possible based on the signs of the person
and item expressions:

(1) &y — 34
(2) 8, + 7, with 3% = —3;
(3) -0 — 8;. with 8, = —4,; and

{4) 37 — 67,

The difference between the four is that in some contexts, one of them might
work better in terms of interpretation. For example, taking the difference
between the item parameter and the person parameter (fourth parame-
trization) could be useful for the verbal aggression example if the persen
parameter is scen as a personal aggression threshold (67) and the item pa-
rameter as the inductive power of the situation-behavior pair (7). The
probability of a verbally aggressive response then grows with the difference
between the inductive power of the situation-behavior pair and the personal
threshold. In general, the two subtraction parametrizations {1 and 4) lend
themselves to metaphors of comparison and competition {e.g., ahility and
difficulty}, and are compatible with the intuitions mentioned above whereas
the two addition formulations (2 and 3) are suitable for an intensification
metaphor.

Identification

The model as formulated in the previous equations would have an identifi-
cation problem 1f the mean of the person paramecters was not restricted to
be zero. The exponential parameters and logarithmic parameters are iden-
tified only up to a multiplicative or additive constant, respectively. If one
multiplies all exponential parameters with a constant ¢, then the odds in
Equation 2.3 do not change, and if one adds a constant ¢ to all logarithmic
parameters, then the probability in Equation 2.4 does not change. Differcnt
conventions oxist to solve this problem. For instance, one can set the mean
8, cqual to 0, which is the solution we have chosen for this volume, or one
can set either a particular J3; or the mean of the 3; equal to 0, which arc
the most common tactics if 6, is not considered a random effect,

Variants

The Rasch model exists in three variants named after the formulation of
the likelihood to be maximized {(Moienaar, 1995). There are three likeli-
hood formulations for the maodel: the jeint maximum likelihood formula-
tion (JML)}, the conditional maximum likelihood formulation (CML), and
the marginal maximum likelihood formulation {MML). The labels of the
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three formulations refer to a maximization of the likelihood function for
estimation purposes. The likclihood function is the probability of the data
as a function of the parameters, and, in the case of CML, also of the suffi-
cient statistics for the person parameters. It has been common to consider
the three different formulations as no more than three estimation tools, but
they can also be considercd as being based on different models, as explained
in Chapter 12 of this volume. We will follow here the MML formulatioun,
meaning that we assume that the person parameters are sampled from a
distribution, so that only the parameters of that distribution (and not the
individual person parameters) enter the likelihood that is maximized. 1f
the distribution is the normal distribution, these parameters of the distri-
bution are the mean and the variance. In all applications up to Chapter
10. the normal distribution will be used for person paramecters, Other dis-
tributions can also be used — for example a histogram distribution can be
particularly flexible {Adams, Wilson, & Wu, 1997: de Leenw & Verhelst,
1986; Follmann, 1988).

MMTL formulation and estimation of person parameters

For the MML formulation, a more complete way of presenting the model is

Tpi = exp(‘?;n - ﬂl)/(l + exp(gp - 481))1 (2 5)
6, ~ N(0.02), '

with o2 being the variance of the #,, and assuming local independence.
The corresponding marginal likelihood for a full response pattern (y, as
the realization of Y ) is

PI‘(YP = yp)

I
= 72 TL(exp(upalfy — 30)/(1 + exp(by = 31)a(6p1)d0,. (26)
i
with g(,[+) as the normal density of 6, with parameters ¥ (ps and o).
For all persons together, the marginal likelihood is the product of the cor-
responding integrals. The marginal likelihood will not be repeated for the
next three models, since one can simply adapt Equation 2.6 based on the
cquation for ;. To estimate the model, we need to estimate only the strue-
tural parameters 4. .... &, and ng (the mean of the distribution is fixed
at 0). Therefore, the cstimation of 8, requires a further step beyond the
model estimation. A common method for this second step is to calculate
empirical Bayes estimates; see Bock and Aitkin (1981), Adams, Wilson and
Wang (1997), or Wainer et al. (2001) for a discussion of the concept within
the context of item response modeling. These estimates are maximum like-
lihood estimates given the item responses of the person and the assumed
normal distribution with estimated (or fixed) mean and variance. For a
discussion and some interesting results on the estimation of person para-
meters for the Rasch model, see Hoijtink and Boomsma {1995) and Warm
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(1989). The issue of estimating person parameters is the same for all four
models in this chapter, and in general for all models with a random person
parameter.

Comments and literature

The Rasch model is a doubly descriptive model, since it yields only esti-
mates of the individual item and individual person effects. Its great asset is
that if it is valid, the person effect does not depend on the item, which is an
attractive measurement quality and corresponds to certain notions of what
it means to measure (Rasch, 1961). When the ultimate goal is to assign a
number to each person in order to measure the person's latent trait, the
Rasch model is an excellent model. However, there may be complications in
the data that it does not incorporate, and when it comes to understanding
the responses in terms of person and item properties, the model itself does
not. help.

The Rasch model is also called the one-parameter logistic {1PL) model
because it has only one parameter per item. We will not use this terminol-
ogy for the Rasch model, since a mode! with unequal but fixed item weights
(discriminations) is also a one-parameter logistic model (OPLM, Verhelst
& Glas, 1995). The Rasch model was first described by the Danish math-
ematician and statistician Rasch (1960, 1961, 1967), and it became known
in the psychometric literature thanks to work by Fischer (1968, 1974, 1981)
in Europe and Wright (1968, 1977) in the United States. For a history of
the Rasch model, see Wright (1997). For a description and discussion of re-
cent developments in the Rasch model and related models, see Fischer and
Molenaar (1995) and Rost (2001). A recent introduction has been written
by Bond and Fox (2001). A good description of the life and work of Rasch
is given by Andersen and Olsen (2001).

2.3.2  Application of the Rasch model

After a dichotomization (i.e., 2 and 1 are mapped to 1), the example data
set is analyzed with the NLMIXED procedure of SAS (SAS Institute, 1999).
in order to estimate the Rasch model in its MML formulation. The options
we chose for all four models discussed in this chapter are: Gaussian quadra-
ture for numerical integration, with 20 quadrature points without adaptive
centering {with centering on ), and Newton Raphson as the optimization
method. When adaptive centering was used, essentially the same results
were obtained for all four models as with the nonadaptive method - how-
ever, it took much longer to run the analysis. For a discussion of estimation
methods, see Chapters 4 and 12, and for a discussion of software. see Chap-
ter 12. The use of the NLMIXED procedure of SAS is described in Section
2.8.1.

We will not test this model and the other models with respect to their
absolute goodness of fit. Instead we will do two other things. First, we
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will report the value of three indices: the deviance, the Akaike informa-
tion criterion (AIC) (Akaike, 1974}, and the Bavesian information criterion
(BIC) (Schwarz. 1978), with the aim to compare the four models from this
chapter on these fit indices. The deviance is —2log(L), with I being the
maximum of the likelihood function given the estimated model, The AIC
and BIC are information criteria derived from the deviance, but with a
penalty included for the number of parameters: AIC = —2log(L) + 2Ny,
and BIC = —2lag(L) 4+ log{ P)Npor, with N, being the number of para-
meters {for the persons, only the variance is counted as a parameter), and
P being the number of persons (see also Bozdogan, 1987; Read & Cressie,
1988). Lower values of the deviance, the ATC, and the BIC indicate a bet-
ter fit. As a comparison makes sense only when at least one other model
is involved, we will start using these indices only in the discussion of the
results from the second model; see Section 2.4.2.

Second, we will use significance tests of the likelihood-ratio type and
Wald tests. For nested models. we can use likelihood-ratio tests (LR tests).
The LR test is based on the ratio of two likelihoods. The first likeiihood
(L) belongs to a model that is nested in a second, more general model.
The second likelihood (L) belongs to this more general model. When the
models are estimated with a maximum likelihood method, then minus two
times the logarithm of the likelihood ratio, —2log{L{/L2), or the differ-
ence between the deviances, is asymptotically distributed as a 2 with a
number of degrees of freedom {df ) equal to the difference between the num-
ber of parameters of the two models. Further, we will also use Wald fests
(Wald, 1941) to determine whether the difference of an estimate with zero
is statistically significant. The asymptotic normality of the parameter es-
timates is the basis for dividing the parameter cstimate by its standard
error, in order to obtain a statistic that is approximately distributed as
a standard normal. For a discussion of adaptations one may consider for
this test. depending on the estimation method that is followed, see Verbeke
and Molenberghs {2000). The LR test does not apply when one wishes to
compare a madel with one or more parameters fixed at a boundary value to
a model in which these parameters are not fixed but free. For example, the
rcgular LR test does not apply when comparing a model with the person
vartance fixed to zero and another model where the variance is estimated.
For a model with one variance parameter fixed to zero (model 1, likelihood
s L1) and a model where that variance is estimated (model 2, likelihood
is L2), the LR statistic ~2log(L1/L2) follows a mixture of a x?(0) and a
x*(1) distribution (Verbeke & Molenberghs, 2000). Therefore, the regular
LR test (which would use x2{1} as the difference in number of parameters
is une) is conservative and in fact the p-values must be halved. Given the
asymptotic equivalence of the Wald test for a given parameter value and
the likelihood-ratio test to test whether the parameter is needed, the Wald
test may also be considered conservative. Thus, if the p-value of the Wald
test (as shown by NLMIXED} is smaller than the critical value, then the
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correct p-value certainly is smaller also.

Results
Person variance

The estimated person vartance is 1.98 on the logit scale. The standard crror
(S E£) of the variance estimate is .21, meaning that the individual differences
are statistically significant, with p < .001. In general, to interpret an effect
e on the logit scale, one should mnltiply the odds by exp(a). In order to
translate this effect into an effect on the probability, the probability of .50
can be used as a reference value. The size of the person effects can be
examined by considering the effect of one standard deviation of #. Based
on Equation 2.3, the odds increase by a factor 4.08 when ¢ increases hy one
standard deviation (i.e., 4.08 is exp(1/1.98)}. To illustrate this, suppose a
person has a probability of .50 of responding with a 1 (“ves” or “perhaps™)
on the first item, then someone with a #-value that is one standard deviation
higher has a probability of .80

Ttem parameters

The estimated item parameters vary from —1.75 to +2.97 on the logit scale,
with an average value of .16. The estimates of the item parameters are
given in Table 12.3 (Chapter 12). Note that, hecause of the subtraction
in the model equations, lower values of the item parameters imply higher
probabilitics (i.e., are ‘easier’ to endorse). The average item value is only
slightly higher than the mean of the persons (fixed at zero to identify the
model). This means that the average person has a probability of about
.50, or more exactly .46, to endorse the average item (responding “ves™ or
“perhaps” ). Note that the cffect on the average person is not the average
effect, as will be explained in Chapter 4.

Discussion

The rationale of the Rasch model is in the first place to measure persons

in this case, to measure the tendency of individual persons to react with
verbal aggression. When used for that purpose, the 24 items relating to
only four situations are a rather narrow basis for a reliable measurement
(but note that Cronbach’s a = .89). One way to estimate the reliability of
the estimates is to derive the standard error (SE) of each of the person
parameters, However, since we want to concentrate on the model and not
so much on its application for measurement. we will not follow up the
reliability of the person measurement at this point {(but scc Hoijtink &
Boomsma, 1995}, Instead we will switch to models that can explain person
aariance and/or item parameters.
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2.4 A person explanatory model: the latent
regression Rasch mode]

2.4.1 Formulation of the model

The second model that we consider is the latent regression Rasch model. Tt
includes person propertics to explain the differences between persons with
respect to verbal aggression. Including person properties as predictors is
a possibility in GLMMs that we mentioned in Chapter 1, but we did not
elaborate on this point there. Recall that person predictors are denoted by
Z, and the predictor subscript with j, while the fixed effect is denoted by
v.. The model differs from the Rasch model in that 8, is now replaced with
a linear regression equation {sce also Table 2.2):

J
O, = > 0,2, + e (2.7)
J=1
so that
J
Toi = 30,2y, + £ — i (2.8)
j=1
in which Z,; is the value of person p on person property j (j =1,...,. .

¥, is the (fixed) regression weight of person property 7,

£, 18 the remaining person effect after the effect of the person properties
is accounted for, £, ~ N(0,72), which may be considered as the random
effect of Z,p, the random intercept.

Note that the &; that is used in Equation 2.7 as a symbol for the regression
weight of a person property is a symbol that differs from #,, which is used
as the person parameter.

This model is calied here the ‘latent regression Rasch model’, because one
can think of the latent person variable 6, as being regressed on external
person variables (Adams, Wilson, & Wu, 1997} such as, for the verbal
aggression example, Gender and Trait Anger.

The external person variables are considered as variables with fixed val-
ues. When observed person propertics are used, the fact that they may
include error is ignored in this model (i.e., any errors in the Zs are not mod-
eled). An alternative solution would be a regression on the latent variable
that underlies the observed properties (Fox & Glas, 2003: Rabe-Hesketh,
Pickles, & Skrondal, 2001). For example, the latent variable underlying the
Trait Anger score can function as a latent predictor for the verbal aggres-
sion propensity. However, this solution is not part of the latent regression
Rasch model formulation in this chapter. In principle, it can be incorpo-
rated in the present framework through a multidimensional model with a
criterion # being a function of predictor #s. Depending on the model this
may require restrictions on the covariance structure of the #s. For example,
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when 6; has an effect on both #3 and 63, then this has consequences for the
correlation between #; and &+.

Graphical representation

Figure 2.6 gives a graphical representation of the latent regression Rasch
model. The difference with Figure 2.5 is that the person parameter 4,
is explained in terms of person properties (the Zs) and their effects (the
¥s), and that the unexplained part or error term is the random effect of
the constant predictor. One can also connect the two right-most arrows
directly to n,;, omitting 6, in correspondence with Equation 2.8.

o, logit 0
L Ypi M Tpi —— Mpi

FIGURE 2.6. Graphical representation of the latent regression Rasch model
{Note that k =14.)

Literature

The latent regression Rasch model was first described by Verhelst and
Eggen {1989) and Zwinderman (1991}. This latter author used the term
‘generalized Rasch model for manifest predictors’ for the global model,
and ‘structural model’ for the latent regression part of the model. Similar
models have been presented by Mislevy (1987) for the 2PL or Birnbaum
model. For a rather brief but thorough discussion of this model in the
broader context of the models of this chapter, see Zwinderman (1997).

2.4.2 Application of the latent regression Rasch model

Two person properties will be used in the application (J = 2): the Trait
Anger score (7 = 1) and Gender (j = 2). A dummy coding is used for
Gender, with a 1 for males, and a 0 for females. Of the 316 respondents
243 are males, and 73 are females. For Trait Anger, the raw score is used
as a person property; as reference points, the mean score is 20.00 and the
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standard deviation is 4.85. The use of the NLMIXED procedure for this
application is described in Section 2.8.2.

Table 2.3 shows the goodness of fit of the latent regression Rasch model,
and also of the Rasch model. The lower the value of these indices, the
better the fit of the model. One should of course take into account the
number of parameters to make an evaluation, which is why the AIC and the
BIC are important criteria. As explained earlier, the penalty for number
of parameters is larger in the BIC. It can be noted from Table 2.3 that

TABLE 2.3. Goodness-of-fit indices for the four models.

Model deviance AIC BIC
Rasch 8072 8122 8216
latent regression Rasch 8060 8114 8215
LLTM 3232 8211 K266
latent regression LLTN 8220 8236 8266

the latent regression Rasch model has a better fit than the Rasch model,
although the difference is rather small, especially for the BIC. Based on a
LR test, the difference is significant (x?(2) = 12.6, p < .01) meaning that
the goodness of fit of the Rasch model is lower.

Person property effects and residual person variance

There are a number of wayvs to express the resulss indicated by the esti-
mated parameters. We mention several of them in the following paragraphs.

The estimated effect of Trait Anger is .057 on the logit scale, with a SE
of 016, so that the effect is highly statistically significant (p < .001}). The
value of 057 is the change one would cxpect, given a change of one unit on
the Trait Anger score — it corresponds to a multiplication of the odds ratio
by 1.06. An alternative framework is provided hy the standard deviation.
An increase of one standard deviation (SI) in Trait Auger (instead of one
unit) represents a multiplication of the odds by 1.32, and the difference
between 25D and +25D represents a multiplication of the odds by 3.02,
The effect of +15D on a .50 probability is to raise this probability to .57.

The estimated effect of Gender is .29 on the logit scale, with a SE of
20, so that the effect is not statistically significant. Males are not signif-
icantly more inclined to verbal aggression than females, but the odds for
male students are nevertheless 1.34 times larger than the odds for female
students. The effect of being male on a probability of .50 is to raise this
probability to .57.

Since Trait Anger and Gender explain part of the original person vari-
ance, the residual person variance may be expected to be lower than the
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one estimated with the Rasch model. The estimated value of the person
variance is 1.84, with a SE of .19, so that we must conclude that the in-
dividual differences that are not explained by Trait Anger and Gender are
still highly statistically significant (p < .001). We note that the person
variance is smaller than it was for the Rasch model.

In comparison with the residual person variance, the variance that is
explained by Trait Anger is rather small: the variance of Trait. Anger mul-
tiplied by the squared effect of Trait Anger is {(4.85% x .057? =).08, which is
4% when added to the restdual person variance. This percentage represents
a correlation of .20 between Trait Anger and the verbal aggression propen-
sity as measured in a small sct of specific situations. This low correlation is
not surprising since typically situational behavior is not correlated higher
than approximately .20 to .30 with trait measures (Mischel, 1968). The
variance explained by Gender is even much smaller: the variance of Gender
multiplied with the squared effect of Gender is (.42% x .29? =).02, which
is not significant. Thus, in terms of effect size, the effect of Trait Anger is
small to moderate and the effect of Gender is small to vanishing.

Item parameters

The estimated item parameters vary from —.57 to +4.16. To interpret these
values one needs to know the actual mean of the person effects. This mean
is the result of adding three terms: (1) the mean of the normal distribution
of £ (which is zero), (2) the average Trait Anger score (20.00) times the
Trait Anger effect (L057), and (3) the average of Gender (the proportion of
males: .23} times the effect of Gender (.29). The sum of these three terms
is 1.20. When this reference value of 1.20 is subtracted from the original
range {—.57 to +4.16), the result is —1.77 to +2.96, which is very close to
the range obtained with the estimates from the Rasch model. This short
discussion demonstrates how the parameter valnes are identified only up
to an additive constant.

2.5 An item explanatory model: the LLTM

2.5.1 Formulation of the model

In the third model, the lnear logistic test model (LT TM), item properties
are used to explain the differences between items in terms of the effect they
Lave on 1, and therefore on m,,. The model differs from the Rasch model
in that the contribution of item 4 is reduced to the contribution of the itemn
properties and the values they have for item ¢ (sce also Table 2.2}

P
Mpi = ():D - Z kaXTk'. (29)
h=0
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in which X, is the value of item i on item property &£ (k=10,..., K), and
i is the regression weight of item property k. Comparing Equation 2.9
with the corresponding equation for the Rasch model {see Equation 2.2),
one can see that the item parameter 3, is replaced with a linear function:

K
A= Z B X ik (2.10)

k=0

Note that in genecral 3 will not equal 3; as the prediction will not be
perfect.

Because the mean of the person distribution is fixed to zero, a property
with a value of 1 for all items is needed (a constant predictor) to act as the
intercept in Equation 2.10. Hence, we need an item predicter for k = 0, with
X0 =1 for all values of 4, so that /3y is the item intercept. An alternative
is to estimate the mean of the €, and to omit the contribution of the
constant predictor, so that in Equations 2.9 and 2.10 k¥ would run from 1
to K. These remarks apply also to the fourth model: see Section 2.6.1.

The model in Equation 2.9 is called the ‘linear logistic test model’ (LLTM;
Fischer, 1973} because the model is based on a logit link and on a lincar
combination of item propertics in the linear component, and because it was
first used for test data. Instead of estimating individual item effects, the
cffects of item properties are estimated. The term ‘logistic’ in the label of
the model does not mean that the principle of a linear combination of item
properties cannot be used for normal-ogive models. Substituting a probit
link instead of a logit link is all that is nceded to obtain the normal-ogive
equivalent of the LLTM.

The LLTM also allows for interactions between the item properties. If one
is interested in the interaction between two item properties, their product
can he added as an additional item property.

Graphical representation

A graphical representation of the LLTM is given in Figure 2.7.

The difference between Figure 2.5 for the Rasch model and Figure 2.7
for the LLTM is that the contribution of each item is explained through
the item properties {the Xs) and their fixed effects {the ds from 1 to K,
and a constant Jp, the effect of the constant item predictor). The constant
predictor is represented twice, as X, and Z,q, because it is also used twice:
for the fixed LLTM intercept {) and for the random intercept (6,,).

Comments and Literature

Note that there is no error term in Equations 2.9 and 2.10 and hence, the
prediction is assumed to be perfect. The model implies that the item effects
can be perfectly explained from the item properties, that &; from the Rasch
model equals dl from Equation 2.10. This is a strong assumption, and it
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FIGURE 2.7. Graphical representation of the LLTM.

makes the model highly restrictive. But this constraint may be relaxed in
more complex models. In Chapter 6, models are presented with an error
component added to Equations 2.9 and 2.10.

The LLTM was developed by Fischer (1973, 1983). For an early appli-
cation of regressing the item parameters on item properties, although the
latter were not incorporated in the model. see Scheiblechner (1972). Fis-
cher {1977) has presented a LLTM for multidimensional items, and later
he described a general framework for designs with multidimensional items
and different points in time, possibly with different subsets of items for dif-
ferent occasions (Fischer, 1989). For an overview of LLTM devclopments,
see Fischer (1995}

2.5.2  Application of the LLTM

Three item properties are used in the LLTM for the verbal aggression data:
Behavior Mode, Situation Type, and Behavior Type. The three properties
are coded into four X-variables (k = 1 to 4). complemented with the con-
stant item predictor (k = 0). We chose the coding given in Figure 2.8

Behavior Mode
predictor 1 Do=1 Want = (0

Situation Type
predictor 2 Other-to-blame = 1 Self-to-blame = 0

Behavior Type
predictor 3 Curse, Scold =1/2  Shout = -1
predictor 4 Curse, Shout = 1/2  Scold = -1

FIGURE 2.8. Coding scheme for the LLTM
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Note that the coding scheme as presented in Figure 2.8 differs from the
one used for the simple linear regressions in Chapter 1, since, except for
the Behavior Type, dummy coding is used. This illustrates how alternative
coding schemes are possible. For the Behavior Type, contrast coding with
centering on the overall mean 1s used as in Chapter 1, because we are still
interested in the effect of the behavioral features (Blaming, Expressing) in
comparison with the mean. However, we will also report. the estimates using
dummy coded factors for Behavior Tvpe: one for Curse versus the other
two behaviors, and one for Scold versus the other two behaviors (Shout is
the reference level). The Behavior Mode is coded as a dummy variable: Do
is coded as 1, and Want as 0. Also the Situation Tvpe is coded as a dummy
variable, with Other-to-blame coded as 1. and Self-to-blame as 0. In order
to include an intercept, an item predictor is added with a value of one for
all items (k = 0).

The goodness-of-fit values of the LITM are given in Table 2.3. The values
are clearly inferior to those of the previous models. The LR test comparing
the LLTM to the Rasch model is significant y2{19) = 159.6 (p < .001),
meaning that the goodness of fit of the LLTM is lower. The reason is that
the 24 parameters for item effects are now reduced to oniy five, correspond-
ing to the five item predictors {including the constant predictor). But see
our discussion below regarding the estimates, where we conclude that the
item properties have a very high explanatory value. This illustrates how
choosing to use an cxplanatory model can be at the cost of a statistically
significant lower goodness of fit cven when the explanation is rather suc-
cessful. See Chapter 6 for a solution to this by defining the item parameters
as a random variable. As for the other models, we first discuss the results
regarding the person variance.

Person variance

The estimated person variance is 1.86, with a SE of .20 and thus significant
(p < .001). Note that the variance is smaller than for the Rasch medel
(where it was 1.98). This illustrates how the estimates for the person mode
are slightly affected by a different approach for the item mode (explanatory
instead of descriptive). This phenomenon can he explained as a secaling
effect, (Snijders & Bosker, 1999, pp. 227 -228), which was also discussed in
Chapter 1. The cffect is due to the less than perfect explanation of the item
parameters on the basis of the item properties {see next paragraph).

Item property effects

We no longer have estitnates of the individual item parameters but instead
we have estimates of the cffects of the item propertics. To find out the
cffect per item, the sum of the effects of the corresponding item property
variables must be made, as will be illustrated below.

The estimated effect of the Behavior Mode is .67, with a SE of .06, so
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that this effect is also highly statistically significant (p < .001) — when
going from wanting to doing, the odds are reduced to about half of their
valie for wanting. The odds decrease with (are divided by) a factor of about
two, more precisely 1.96. If the probability of wanting were .50, then the
reduction would yvield a probability of .34.

The estimated effect of the Situation Type is —1.03, with a SE of .06,
so that the effect is highly statistically significant (p < .001). The effect
implies that when others are to blame, verbal aggression is more commaon
than when oneself is to blame. When others are to blame, the odds inerease
by a factor 2.80. The effect on a probability of .50 would be to raise it to
.74,

Recall that for the ¢ffect of the Behavior Type two predictors were used.
The effect of the first (Curse and Scold vs Shout) is —1.36, with a 5FE of
.05 and the effect of the second (Curse and Shout vs Scold) is —.70, with a
SF of .05. Both cffects are highly statistically significant (p < .001). From
these effects it may be concluded that for the situations under investigation
the blaming aspect of a behavior has a larger effect on its occurrence than
the expression aspect. When both effects are combined, the values for the
three behaviors are: —1.36/2—.70/2 = —1.03 for Curse, —1.36/2+.70 = .02
for Scold, and 1.36 — .70/2 = 1.01 for Shout. Using odds to describe the
cffect size, the odds of cursing are 2.86 times higher than those of scolding,
and the odds of scolding are in turn 2.69 times higher than those of shout-
ing. The odds roughly increase with a factor of almost three when going
trotn shouting to scolding, and when going from scolding to cursing. If the
probability of scolding were .50 in a given situation, then the corresponding
probabilities of cursing and shouting would be .74, and .27, respectively.
Equivalent results are obtained with the dummy coding. The effects are
—2.04 (SE is .07) for Curse, and —.99 (S§F is .07) for Scold. Finally, the
cstimated effect of the constant predicter is .31, the estimation of the fixed
intercept using the coding scheme of Figure 2.8, Given the mixed coding
(contrast coding and dummy coding) this effect has no easy interpretation.

In order to reconstruct the individual item parameters from the LLTM,
one has to add up the effects that correspond to the four item property
variables and the constant. For example, the reconstructed parameter for
“A bus fails to stop for me. I would want to scold™ is .02 (Scold) + .00
(Want is the reference level) —1.03 {Other-to-blame} +.31 {constant) =
—.70. The parameter as estimated on the basis of the Rasch model is —.57.
The correlation between the item parameters as cstimated with the Rasch
model and the parameters as reconstructed from the LLTM is .94. Thus,
although the LLTM fits significantly worse in a statistical sense, it does
very well in explaining the item parameters, so that we may say it has a
large effect size in this respect.
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2.6 A doubly explanatory model: the latent
regression LLTM

2.6.1 Formulation of the model

Finally, one can carry out both of the previous extensions by combining
Equations 2.7 and 2.10 into the equation for the Rasch model (Equation
2.2), assuming that £, is used in place of 3;. This yields the latent regression
LLTM, a model that is explanatory for both the person mode and the item
mode {see also Table 2.2):

J K
Mpi = O 0, 7Zp; +6p— 3 X (2.11)
j=1 k=0

As for the previous models, the model of Equation 2.11 has two parts: a
person contribution and an item contribution. The person contribution is
explained in terms of person properties and has an error term, while the
itern contribution is explained in terms of item properties and does not
include an error term. This asymmetric construction is not a necessity. as
will be seen in Chapter 6.

The model in Equation 2.11 is a GLMM with both person predictors and
item predictors, each having a fixed effect, and a random intercept, which is
the error term of the person contribution. The previous three models in this
chapter can be obtained from Equation 2.11. Two kinds of modifications
arc needed to obtain the other three models: (a) to obtain the LLTM, the
Zs arc omitted, so that ¢, can be expressed as ¢,; and (b) to obtain the
latent regression Rasch model. the Xs are just the item indicators (X;x = 1
if i =k, X;x = 0 otherwise, and K = 1), so that for k = i it holds that
F.X = ;. and for k #£ 7 it holds that 3y X, = (. For the Rasch model
both modifications are needed. Alternatively, these three models can be
seen as being built up by adding compiications to the basic building block
of the Rasch model.

Graphical representation

Figure 2.9 gives a graphical representation of the latent regression LLTM.
The difference with Figure 2.5 (the Rasch model) is that in Figure 2.9 for
thie latent regression LLTM both the contribution of each item and of each
person is explained through properties, item properties with a fixed effect
i and person properties with a fixed effect ,,. respectively. For the items,
the effect of the constant predictor is 3y, while for the persons the effect of
the constant predictor is a random effect, which appears as an error term
... This is why both Xy, and Z, are included in the representation. Note
that the circles containing ;" and €, are not needed. A direct connection
of the arrows from the X's and the £s to n,; is a more parsimontous but
prrhaps less interpretable representation.
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FIGURE 2.9. Graphical representation of the latent regression LLTM.

Literature

The latent regression LLTM is simply a combination of the latent regression
idea with the LLTM, and this is why we call this combined model here
the ‘latent regression LLTM. Tt is described theoretically in Zwinderman
(1997), and Adams, Wilson and Wu (1997).

2.6.2 Application of the latent regression LLTM

The fit indices for the latent regression LLT'M are given in Table 2.3. The
goodness of fit is slightly better than for the LLTM, for the same reasons
that the latent regression Rasch model had a slightly better goodness of fit
than the Rasch model, The LR test comparing the latent regression LLTM
to the LLTM is significant (x%(2) = 12.6, p < .001}. We will not note the
specific effect estimates here, as the estimated person property cffects are
about the same as those obtained with the latent regression Rasch model,
and also the estimated stem property effects are about the same as those
obtained with the LLTM.

It is noteworthy that the residual person variance, after the estimated
effect of Trait Anger and Gender is accounted for, amounts to 1.73 in
the latent regression LLTM, while it was 1.84 in the corresponding latent
regression Rasch model. Again, the more flexible the model is for the esti-
mation of the item effects, the larger the variance is of the (residual) person
effects, as could be expected from the scaling effects discussed earlier.
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2.7 Enlarging the perspective

The four models we have presented are chosen to illustrate the contrast
between descriptive and explanatory models. They are only an introductory
selection. In order to cover the broad varicty of item response models, we
need an enlargement of the perspectives. In principle the extensions can
relate to the three parts of & GLMM: the random component, the link
function, and the linear component.

Regarding the first two parts, the extension of the models to nmlti-
categorical data has consequences for the link function and the random
component. We will not go as far as extending the models also to count
data, however, which would require a logarithmic link and a Poisson dis-
tribution for the random component. Regarding the linear component, the
extensions concern not only the type of predictors and the type of effects,
but also the linear nature of the component. since some of the item re-
sponse models are not generalized lincar mixed models but nonlinear mixed
maodels. Examples of nonlincar mixed maodels are the two- and the three-
parameter logistic models (2PL and 3PL models), and the multidimensional
two-parameter models. Finally, the assumption of local independence will
be relaxed.

For all these models, the parameters can either be descriptive parameters
or explanatory parameters. Explanatory parameters are effects of proper-
ties, or in other words, of external variables, Descriptive parameters are
either random effects or fixed effects of predictors that are not properties
but indicators. This distinetion, which is at the basis of the presentation of
four models in this chapter, will be extrapolated in the following chapters.

Chapter 3 discusses extensions to multicategorical data. Other extensions
are prescuted from Part II on. Chapter 4 describes more thoroughly than
the previous chapters the statistical background for this volume.

2.8 Software

2.8.1  Rasch model {verbal aggression data)

The basic options that were used are described in Section 2.3.2. In later
chapters, the basic options are reported in the sections on software.

Codr

PROC NLMIXED data=aggression_dich method=gauss
technique=newrap noad gpoints=20;

PARMS bl-b24=1 sd0=1;

beta= bl*x1+b2*x2+b3*x3+b4d*x4+b5*x5+bExxB+bT*x7
+b8*x8+b0*x9+b10*x10+b11+x11+b12*x12+b13*x13+b14*x14
+b15%x15+b16%x16+b17*x17+b18%x18+b19*x19+b20*x20
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+b21*x21+b22#x22+b23%x23+b24*x24 ;
ex=exp(theta-beta) ;
p=ex/ (1+ex};

MODEL y ~ binary(p):

RANDOM theta ~ normal{Q,sd0x*2) subject=person;
ESTIMATE ’sd0**2°’ sd0O*x2;

RUN;

Comments

I. The data sct is called aggression dich (see website mentioned in the
Preface). The data matrix contains the data in one long string and the val-
ues of the design factors corresponding with each observation (see Chapter
12).

2. In the PARMS statement, the parameters are introduced together with
their initial values.

3. Next, the formula for the probahility is built up from two ingredients:
beta and theta. The beta part is based on the 24 item indicators {x1 to
x24) and their weights (bl to b24). The theta part is just a single term (6,
but see the software for the next application). With the basic ingredients
of theta and beta, the formula for the probability is constructed. Instead
of building up the formula in steps, one can as well give the formula in one
step.

4. In the MODEL statement, it is specified that the observations follow a
Bernouili distribution (binary) with parameter p (7).

5. In the RANDOM statement the distribution of theta is specified, over per-
sons (subject=person), with mean zero and a variance that is the squared
value of sd0 (gg). The value that is cstimated is therefore the 5D and not
the variance,

6. This is why an ESTIMATE statement is added, so that also the variance
is estimated, with label ‘sd0**2” (the label may differ from the symbol in
the software; ¢.g.. vartheta would be another label).

7. The code for the LLTM will not be shown, but is analogous: x1 to x24

is replaced with x1 to x5 (the coded design factors) with their weights.

2.8.2  Latent regression Rasch model (verbal aggression data)

The options are the same as for the Rasch model.
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Code

PROC NLMIXED data=aggression_dich method=gauss
technique=newrap noad qpoints=20;

PARMS b1-b24=1 sd0=1 gl-g2=0;

theta=eps + gl*anger + g2+male;

beta= bl*x1+b2*x2+b3*x3+b4*x4+bb*x5+b6*x6+bT*x7
+b8*xB+bI*xG+b10*x10+b11*x11+b12+x12+b13*x13+b1d*x14
+b15%x15+b164x16+b17*x17+b18*x18+b19*x19+b20*x20
+b21#x21+b22%x22+b23*%x23+b24%x24 ;
ex=exp(theta-beta);

p=ex/(1+ex};

MODEL y ~ binary(p);

RANDOM eps ~ normal (0,sd0#*2) subject=person;
ESTIMATE ’sd0=**2’ sdO*x%2;

RUN;

Comments

The two differences with the estimation of the Rasch model are:

1. theta is now defined as a sum of the Gender effect, the Trait Anger effect,
and a random term eps, in correspondence with how theta is defined in
the latent regression Rasch model. The person properties are anger and
male (the Zs), and their weights g1 and g2 (the 9s).

2. Tt is now the distribution of eps that is defined, instead of the distribution
of theta.

2.9 Exercises
1. Why is no intercept () used in the Rasch model?

2. Redraw Figure 2.5 for a model with fixed person effects and random
item effects,

3. How shonld one interpret the intercept in the LLTM? Suppose the in-
tercept would be fixed to zero, while the mean of the #-distribution is free.
What would be the consequence of this? How do dy and the mean of 8
relate to one another?

4. Suppose that for Do vs Want not a dummy coding would have been
used but contrast coding (Do = 1, Want = —1). What would then have

been the weight of this predictor?

5. 0y can be removed from Figure 2.6. How would the new figure look
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like then? Would ¢, be the random intercept? If yes, how can an error
term be the measure of a latent trait, and how would the trait be defined?
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