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Notes for Tuesday January 27, 1998 to plot residuals not against the fitted values, but rather against some potentially important aspect
of the data collection process, such as

1 Diagnostics and Remediations for ANOVA models e Time order observations were taken in;
1.1 Graphical inspection of residuals e Spatial order (e.g. in an agricultural experiment, distance from the ag. station);

e etc.
The diagnostic plots that one gets from plotting an aov or Im object in SPLUS give visual checks

for most of the problems one could encounter in linear regression and ANOVA modeling: What we are looking for are trends and/or serial correlations, in these plots. For example, here are

three plots of residuals in time order.
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Second best is to try some sort of transformation to fix the problem.

Working from top left to lower right, these plots tell us:
1.2 Variance-stabilizing transformations and Box-Cox transformations

o First two plots: Equal error variance in all cells? Fitted vs. residuals and fitted vs. sqrt(|residuals|).
Referring back to a “fitted vs residuals” plot can be helpful in selecting the right transformation,

o Third plol: Nonlinearily (linear models) or non-equal error variances? Fitted vs. observed. when unequal variances are discovered in a residual plot:

e Fourth plol: Normal errors? Normal Quantile plot of residuals. 9 .
o If 07 is proporlional lo p;, try

o Fifth (double) plot: High 72 Normal quantile plots of fitted values, compared with normal . .
quantile plot of residuals. Y=y or y-=y+y+1

o Sizth plol: high leverage or influence? Cook’s distances. o [f 0; is proportional lo p;, try

Y =logy
An additional plot can be helpful: In the very first plot, “fitted vs residuals”, it is sometimes helpful
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e If 0; is proportional lo ,uf, try
Yy =1/y

e Ify is a proporlion, so that o? = [m;(1 — m;)/n;, try
y" = 2arcsin/y

The idea behind each of these is the following. If o;‘;i]_ = g(ui), then by taking variances on both
sides of the Taylor approximation

h(y) —h(p) = B (u)(y — p)

one can show that the variance after a transformation y* = h(y) is 051_.] ~ [B'(ui)]29(ui). We wish

to
choose h(:) so that [h'(u:)]?g(u:) = k, a constant,

i.e. the transformed random variable y* has constant variance k. This is a differential equation;
the solutions, for g(u) = u, v/(u), etc., are listed above.

Finally,

o It might also be desirable to estimate, by hand or using Venables and Ripley’s boxcox ()
function, the Box-Cox transformation

y =@ -1/
for the problem. A power transformation, such as the Box-Cox transformation, is also a

standard way to try to correct non-normality in residuals.

After any of these transformations, the model should be re-fit and new diagnostics should be carried
out, to ensure that the transformation helped and not hindered the solution of the problem.

1.3 Formal tests for equality of variances

There also exist formal tests of equality of variances in the cells of an ANOVA model. In general,
visual inspection as in the previous section is adquate for many purposes.

As an example, we present the Bartlelt test, which works for all ANOVA models, whether the
number of observations per cell is constant or not; however it is fairly sensitive to non-normality in
the residuals. When the number of observations per cell is constant, the Hartley lest can be used.

The Bartlett Test. Let s? denote the sample variance of the residuals in the i** cell of the data,
i=1,...,k, each with degrees of freedom df; = n; — 1; and total degrees of freedom dfy = " df;.
Then the MSE can be expressed as an arithmetic mean

k
MSE = SSE/dfr = L S dfis?
dfr
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On the other hand, the geometric mean is
GMSE = (DY (5% .- (s]) 90114
and the arithmetic-geometric mean inequality states that
GMSE < MSE.

Bartlett showed that if the y;; are all independent N (u;,02) (same variance in all cells) then

_dr ‘ L1 N2
B= F(log MSE —1logGMSE) = o [dfT log MSE ;log 52

is approximately x7_;, where

1 ko 1
e=t+ sy () o)

This provides a test (large B = reject Hy) of the hypothesis

Hy : ol=-- =0}, vs.

Hy not all 01-2 are equal.
Here is a short program in SPLUS to implement Bartlett’s test, for one-way ANOVA.

bartlet.test _ function(y,x) {
# bartlett

#

# y is the response

# x is the factor

#
ys _ split(y,x)
vars _ sapply(ys,var)
df _ sapply(ys,length)-1
dfT _ sum(df)
MSE _ sum(df*vars)/dfT
k _ length(unique(x))
const _ 1 + 1/(3%(k-1)) * ( sum(1l/df) - 1/4fT )
B _ (dfT*log(MSE) - sum(df*log(vars))) / const
return(B=B,pval=1-pchisq(B,k-1))
}

Bartlett’s test works for more complicated ANOVA problems also, but the SPLUS code above
would have to be modified somehow to do this.
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The Hartley test The Hartley test is based on the ratio

— ma‘x(oi te 7013)

min(o?,...,02)
and simply compares this to the distribution of H under the null hypothesis
Hy: ot=...=0}

The distribution of H under Hj has been tabulated, but it is also easy to simulate. Here is a short
SPLUS program that implements the Hartley test, using a simulated p-value.

hartley.test _ function(y,x,reps=1000) {
hartley.test

#

#

# y is the response

# x is the factor

# The simulation part of this is pretty slow!
#

ys _ split(y,x)
vars _ sapply(ys,var)
ns _ sapply(ys,length)
if (sum(abs(diff(ns)))!=0)
stop("Cell sample sizes must be equall")
n _ ns[1]
k _ length(unique(x))
H _ max(vars)/min(vars)
cnt _ 0
for(i in 1:reps) {
vars _ sapply(split(rnorm(nxk),x),var)
if (max(vars)/min(vars)>H)
cnt _ cnt+l

}

return(H=H,pval=cnt/reps,reps=reps)

Like the SPLUS code for the Bartlett test, this is really only set up for one-way ANOVA; it would
be fairly easy to adapt to other ANOVA models as well. Also, since the p-value is computed using
simulation, this test could be adapted to unequal sample sizes in the cells (this adaptation would
be much harder to do if we had to explicitly tabulate the distribution of H for “all” combinations
of cell sample sizes).
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2 Regression Equations for ANOVA; Reparametrization

We have seen that the “dummy variables” linear regression version of an ANOVA model is always
overparametrized. To see how ANOVA reparametrizations overcome this, we now examine the
one-way ANOVA model from a linear regression point of view.

For simplicity, consider a one-way ANOVA problem for a factor with three levels, a, b and ¢, and
two observations per cell. Let

1 atlevela 1 at level b 1 atlevel ¢
X = { 0 else x> = { 0 else X3 = { 0 else
so the linear regression model is
Yi; = 00 + X101 + Xoj0s + X303 T € 1
or in matrix form
Yy 1100 €11
Y12 1100 6o €12
Y21 1010 91 €21
= =X =
Y= Ote=11 01 0|6 |1 em
Y31 1001 03 €31
Y32 1001 €39

Basically we want to know how to introduce a linear constraint, to get a new set of parameters
that can be estimated uniquely (technical term: the new parameters are idenlifiable).

2.1 Matrix algebra details

Note: This is a bil more mathematically formal than the usual development of inlroducing con-
strainls lo make lhe paramelers idenlifiable, bul I wanted lo be able lo explain the “Helmert
paramelrization” in SPLUS, and lhis seems lo require fooling around like lhis.

We want to consider reparametrizations of the model y = X6 + ¢, that is, we want to consider new
sets of parameters

B z;
B | =C-| 2)
B3 g

04

where
1 cl2 €13 ci4
C=1|ca cm c3 cu
€31 C32 €33 C34

Our goal is to choose a new design matrix R so that

y=X0+e=ZB+e¢
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ie. the two regression problems are exactly the same (more formally: X and Z have the same Let’s see how we would do this by setting up the C matrix and calculating Z = XC'(CC") ':
column space). Note that, by (2), RS = ZC#, so it must be that _
We want 6y = 0 and

X = ZC.

u = 0
Now, we would like to solve this by “multiplying on the right by C~!”, but unfortunately C is not p2 = 0o
square, so it doesn’t have an inverse. Instead, notice what happens if we multiply on the right by uz = 03
C'(CC")~! (this is called a “generalized inverse”):
or
X = ZC " 0100 ZO
x.c'cehyt = zo-c'econ)t s | =00 10 01 =00
Xx-ceeyt = 2z 3 0001 02
3
so now we have a way of finding Z from X and C, namely Z = XC'(CC")~1. Hence
. . . T 1100 100
To summarize, our goal in understanding reparametrization is: 1100 00 0 100
_ 1010 100 010
o ] =1 _ —
Step 1. Figure out what “constraint(s)” are being imposed on the s to Z=Xx0(CC)" = 1010 010 |010
get rid of the linear dependency; 100 1 00 1 00 1
. . - 1001 001
Step 2. Figure out how to write that as something like 8 = C¥6;
which is the same design matrix that we got “by eye” above.
Step 3. Compute the design matrix for the f’s as Z = XC'(CC")~L.
Step 4. The new regression is then y = Z3 + €. Delete the last column. Some computer packages set 63 = 0 instead of g = 0. If we set 63 = 0,
this is like deleting the last column in the matrix formulation.
Two notes before going on: w1 110 e
. . . . . Y12 110 €12
e In many simple problems, you can intuitively get from Step 1 to Step 4 without fooling . 101 o -
around with the C' matrix in Steps 2 and 3. = 01 | +
Y22 101 6, €22
o After Step 4 it is often helpful to write the columns of Z in terms of the 0/1 dummy variables Y31 100 €31
X1, X2, X3, and re-expressing the cell means pq, pg and p3 in terms of the new parameters. Y32 100 €32
and (1) becomes
2.2 Some illustrations yij = 0o + X161 + X202 + €5
s . . We can also do this by setting up C' and computing Z = X C"(CC")~!. We want to set 63 = 0 and
Cell means model (delete the first column). This is easy. Setting 6y = 0 is the same as to define
deleting the first column in the X matrix; the matrix form of the regression becomes 100 0 0o
Yo
this becomes =0 100 b =C0
Y11 100 €11 ::; 0010 b
Y12 100 P €12 03
y 010 ! €
2| = Gy | + | It then follows that
Y22 010 P) €22
Y31 00 1 3 €31 1100 110
Y32 001 €32 1100 100 110
- 1010 010 101
and (1) becomes Z=XC(0C) " = 1010 001|101
Yis = X101 + Xo;0z + Xoi% + s 1001[[000 100
and it is easy to see in the resulting model, 1 = 0y, ua = 62 and p3 = 63, the cell means model. 100 1 100
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as expected. What do the parameters mean here?

1 = Yo+t
B2 = Y+
B3 = "o-

Hence, o = p3 is the mean of the last cell, and ; and 2 are the differences between the third cell

and the first and second (respectively).

Grand mean plus treatment effects. If we set the constraint
01+0,+63=0
then we can express 63 = —6; — 6 and (1) becomes

Ui = 00 + X1501 + Xo;j6y — X5i (01 +02) + 65

or equivalently

Uiy = O + (X, — Xai)O1 + (X2 = Xaj)02 + i 3)
and the matrix form becomes
Yy 1 1 0 €11
Y12 1T 1 0 6 €12
Y21 1 0 1 0 €921
= 6, | +
Y22 1 0 1 0 €22
Y31 1 -1 -1 2 €31
Y32 1 -1 -1 €32

Now let’s try setting up C and Z = XC'(CC")~:

Step 1. This parametrization can be thought of as doing two things: (a) we set §y = 0; and (b)
we define:

p o= (61+62+63)/3

2
o= hmp= 1, 1)
31737737
1 2 1
ag = Op—p = —591+§02—§03
1 1 2
a3 = O3—p = —591*592+§93

(as a check, note that a1 + a2 + a3 = 0 as desired).

Step 2. This means that a3 = —a; — a9, so we can omit it from the reparametrization, and so C
is the matrix in the transformation

o

I 0 % % % A
[e7] = 0 A o =Co

o _1 3 _1]]|e

@2 3 3 73 65
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Step 3. Therefore

1100 1 1 0
1100 0 0 O 1 1 0
., ’ n1_| 1010 11 o0f(_|1 0 1
Z=X0(00)" = 1010 1 0 1{7]1 0o 1
1001 1 -1 -1 1 -1 -1
1001 1 -1 -1
so the new model is
1 1 0
1 1 0
I N N
=11 o0 1 ZI €
1 -1 -1 2
1 -1 -1
Step 4. Now if we define
1 at level a 0 atlevela
Z1=X1—X3= 0 atlevel b '2=X2—X3= 1 atlevel b
—1 at level ¢ —1 atlevel ¢

we may express the model as
Yij = B+ Zijor + Zojas + €5 = p+ (X1 — X3)oq + (Xo — X3)ag + €5

In this model, the cell means are

m = pto
p2 = pta
pn3 = ptas

so that the o’s really are offsets from the grand mean p to each cell mean.

SPLUS’s default “Helmert contrasts”. The default parametrization for ANOVA models in
SPLUS is in terms of the “Helmert contrasts.” It is easiest to explain how to set this model up
directly in terms of C and Z = XC'(CC")~%:

Step 1. Like the “grand mean plus treatment effects” parametrization we do two things: (a) we
set g = 0; and (b) we define:

p o= (61+62+063)/3

B = {-6,+6:}/2
Ba = {—(61+62)/2+65}/3
Bs = {—(61+065+63)/3+04}/4

(Here, 64 = 0 [since there is no fourth calegory] and is just included lo show you the pallern,
should you ever have lo conslruct Helmerl conlrasls for more than lhree calegories).
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Step 2. Again, f33 is expressible in terms of the other parameters (83 = 3u), so we omit it from
the reparametrization, and C is the matrix in the transformation

2
1 11 0
P P A AR A
al = 0 —5 s 0 = 0(9
as 0 S Y 0
6 6 3 65
Step 3. Therefore
1100 1 -1 -1
1100 0 1 -1 -1
1010 1 -1 -1 1 1 -1
o 4 n—-1 _ —
Z=X0(00C)" = 1010 1 -1 /7|1 1 -1
1001 1 0 1 0 2
1001 1 0 2
so the new model is
1 -1 -1
1 -1 -1 i
1 1 -1
y= B | +e
1 1 -1 oS
1 0 2
1 0 2
Step 4. Now if we define
—1 atlevel a —1 at level a
Zh=Xo— X1 = 1 atlevel b Zy=2X3—X9—X1=¢ —1 atlevelbd
0 atlevel ¢ 2 at level ¢

we may express the model as
Yij = p+ ZiBy + ZojPa + €ij = p+ (Xo — X1)Bi + (2X3 — Xo — X1)Bo + €5
In this model, the cell means are
mo= p=p— b

2 = p+pi—pB
3 = p+206

Note that it is easy to read off the “treatment effects” also:
ar = —bi—p

az B — B2
a3 = Zﬂg



