402 > wilner _ fac.design(c(2,2,2,2),c("Sent","Cont","Norm","Prox")) 402 > wilner$Count _ scan("t139.dat") 402 > wil.glm1 _ glm(Count ~ Sent*Cont*Norm*Prox,data=wilner,family=poisson) 402 > qqnorm.aov(wil.glm1) 402 > qqnorm.aov(wil.glm1,label=9) 402 > wil.glm2 _ glm(Count ~ (Sent+Cont+Norm+Prox)^2,data=wilner,family=poisson) 402 > anova(wil.glm2) Analysis of Deviance Table Poisson model Response: Count Terms added sequentially (first to last) Df Deviance Resid. Df Resid. Dev NULL 15 209.4294 Sent 1 2.90363 14 206.5257 Cont 1 0.32240 13 206.2034 Norm 1 8.54636 12 197.6570 Prox 1 19.28639 11 178.3706 Sent:Cont 1 45.61234 10 132.7583 Sent:Norm 1 35.52986 9 97.2284 Sent:Prox 1 10.53795 8 86.6905 Cont:Norm 1 19.06215 7 67.6283 Cont:Prox 1 52.65934 6 14.9690 Norm:Prox 1 12.72094 5 2.2480