Very quickly, lets look at the model when we just look at a failure or not.
402 > Bn <- cbind(sign(Fail), 1 - sign(Fail)) 402 > Bn [,1] [,2] 1 1 0 2 1 0 3 1 0 4 1 0 5 0 1 6 0 1 7 0 1 8 0 1 9 0 1 10 0 1 11 0 1 12 0 1 13 1 0 14 1 0 15 0 1 16 0 1 17 0 1 18 1 0 19 0 1 20 0 1 21 0 1 22 0 1 23 0 1then
402 > mymod <- glm(Bn ~ Temp, family=binomial)
402 > summary(mymod)
Call: glm(formula = Bn ~ Temp, family = binomial)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.061112 -0.76128 -0.3782822 0.4523828 2.217506
Coefficients:
Value Std. Error t value
(Intercept) 15.0422911 7.3366528 2.050293
Temp -0.2321537 0.1076141 -2.157279
(Dispersion Parameter for Binomial family taken to be 1 )
Null Deviance: 28.26715 on 22 degrees of freedom
Residual Deviance: 20.31519 on 21 degrees of freedom
Number of Fisher Scoring Iterations: 4
Correlation of Coefficients:
(Intercept)
Temp -0.99716
402 > anova(mymod)
Analysis of Deviance Table
Binomial model
Response: Bn
Terms added sequentially (first to last)
Df Deviance Resid. Df Resid. Dev
NULL 22 28.26715
Temp 1 7.95196 21 20.31519
So far things look very similar, including the residual plot (believe me).