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Abstract

The ASSISTment system is an online benchmark testing systatrtutors as it tests. The
system has been implemented for the content of thgr@de Mathematics portion of the Mas-
sachusetts Comprehensive Assessment System (MCAS) eltasiseen developed and tested in
Massachusetts middle schools, and is being adapted fonusber states such as Pennsylvania.
Two main statistical goals for the ASSISTment system arereédipt end-of-year MCAS scores,
and to provide regular, periodic feedback to teachers on $tadents are doing, what to teach
next, etc. In this chapter we focus on the first goal and cansi@ prediction models: how they
reflect diferent models for student proficiency, how they account fodestt learning over time,
and how well they predict MCAS scores. We conclude that a éoation of measures, including
response accuracy (rightrong) measures that account for problerfiicilty, responsef&ciency,
and help-seeking behavior, produce the best predictioretaoth addition, our investigations of
prediction models reveal patterns of learning over timéshauld be captured in feedback reports
for teachers.

*This project involves theftorts of many, including principal investigators Neil fiernan (Worcester Polytechnic
Institute) and Ken Koedinger (Carnegie Mellon) as well aghidaiel O. Anozie, Elizabeth Ayers, Andrea Knight,
Meghan Myers, Carolyn Rose all at CMU, Steven Ritter at Ggismeearning, Mingyu Feng, Tom Livak, Abraao
Lourenco, Michael Macasek, Goss Nuzzo-Jones, Kai Rasmussena Razzag, Terrence Turner, Ruta Upalekar, and
Jason Walonoski all at WPI; and was made possible with fupnéliom the US Department of Education, National
Science Foundation (NSF) fiize of Naval Research, Spencer Foundation, and the US Army.
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1 TheASSISTments Project

In many States there are concerns about poor student paricaron new high-stakes standards-
based tests that are required by United States Public Lawi10{theNo Child Left Behind Act
of 2001, NCLB). For instance the Massachusetts Compreferdssessment System (MCAS),
administers rigorous tests in English, math, history anenee in grades 3—-12. Students need to
pass the math and English portions of th& tfade versions in order to get a high school diploma
without further remediation. In 2003 a full 10% of high scheeniors were predicted to be de-
nied a high school diploma due to having failed to pass theaesheir fourth try. The problem

is most acute with minority students; the failure rates flacks and Latinos are 25% and 30%,
respectively. This problem was viewed with such serioustiest the governor of Massachusetts
proposed giving out $1,000 vouchers to students to getithailized tutoring. While that pro-
posal did not get enacted, the Massachusetts Legislatuaeyery dificult budget year, increased
spending on MCAS extra-help programs by 25% to $50 milliormrébver, the State of Mas-
sachusetts has singled out student performance on the &tle gnath test as an area of highest
need for improvement This test covers middle school algebra, but not the forrutaa (e.g.,
factoring polynomials) typically done irf9grade.

Partly in response to this pressure, and partly becauskedea@arents, and other stakeholders
want and need more immediate feedback about how studentkerg, there has recently been
intense interest in using periodic benchmark tests to pretiident performance on end-of-year
accountability assessments (Olson, 2005). Some teaclades entensive use of practice tests and
released items to target specific student knowledge neet&lantify learning opportunities for
individual students and the class as a whole. However, sirafitive assessments not only require
great éfort and dedication, but they also take valuable time awam firmstruction. On-line test-

ing systems that automatically grade students and proejolerts (e.g., Renaissance Learring

thttpy/www.edweek.orew/newstory.cfm?slugd2mcas.h21
2httpy/www.doe.mass.edmcag2002resultgsummary.pdf
Swww.renlearn.com



Measured Progre$sreduce the demands on the teacher, however, they do narfisrtally ad-
dress the formative assessment dilemma: although sucksassets intrude on instructional time,
they still may be uninformative because they are not basealsafiiciently fine grained model of
the knowledge involved, or a ficiently rich data record for each student.

Another application of technology that has an establiseednd of success in supporting class-
room instruction is that of computer based, intelligenotung systems. For example, Cognitive
Tutors developed at Carnegie Mellon University (e.g., @ttliKoedinger & Hadley, 2001) com-
bine cognitive science theory, human-computer interadttCl) methods, and particular artificial
intelligence (Al) algorithms for modeling student thinginCognitive Tutors based courses in Al-
gebra, Geometry, and four other areas of high school (elgvea & Koedinger, 2002) and middle
school (e.g., Koedinger, 2002) mathematics have been @@l Classroom evaluations of the
Cognitive Tutor Algebra course, for example, have demaiestkthat students in tutor classes out-
perform students in control classes by 50-100% on targetdeorld problem-solving skills and
by 10-25% on standardized tests (Koedinger et al., 1997¢likiger, Corbett, Ritter, & Shapiro,
2000).

The ASSISTmentsProject http://www.assistment.org) is an attempt to blend the pos-
itive features of both computer-based tutoring and benckesting. Like most computer-based
tutoring systems, the ASSISTment system guides studemtsgh the performance of education-
ally relevant tasks, in this case solvin) §rade mathematics problems. The ASSISTment system
also monitors various aspects of students’ performanckidmg speed, accuracy, attempting, and
hinting metrics, on which to base prediction of proficiencytbe MCAS &' grade mathematics
examination, as well as individual and group progress tsgorteachers and others stakeholders,
at daily, weekly or other time intervals. Although inspitegineeds of Massachusetts students, the
ASSISTments System is also being adapted for use in Peramsgland potentially other States.

A typical student interaction in the ASSISTments Systemut laround a single released

“www.measuredprogress.org
5Coined by Ken Koedinger, to combine thssistingandassessmeifitinctions of the system.



@ Triangles ABC and DEF shown below are congruent.

8 inches

C D F

The perimeter of AABC is 23 inches. What is the length of side DF in ADEF?

Figure 1: A released MCAS item. This item would be renderesinmlar format as a “main ques-
tion” for one ASSISTment item.

MCAS item, or a morphof a released item, from the end of year accountability extna §"
grade MCAS mathematics exam), for example as shown in Fifufde item would be rendered
in the ASSISTment system in a similar format. This is calléchain question”.

Figure 2 gives an annotated view of the interaction that destumight have, based on the
main question in Figure 1. If the student correctly answeestain question, a new main question
is presented. If the student incorrectly answers, a sefiesceffolding” questions are presented,
breaking the main question down into smaller, learnablenkbuThe student may request hints
at any time, and if the student answers a question incoyrectbuggy message” keyed to a hy-
pothesized bug or error in the student’s thinking is pres@ntlultiple hints on the same question
become increasingly specific. The student repeatedly ptee@ach question until correct, and then
moves on to the next question.

Each package of a main question and its associatdtbktsis a single ASSISTment item.
All questions are coded by source (e.g. MCAS released itearpmof a released item, etc.),

and knowledge components (KC's; e.qg. skills, pieces of Kadge, and other cognitive attributes)

61n other contexts, e.g. Embretson (1999), item morphs diedcitem clones”.
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Messages

) . . . Corvesponding sides are congruent
What is the length of side DF in triangle DEF? In the picture below, corresponding sides are colored

Original question B E
Which side of triangle ABC has the same length

x> § inches 7
as side DF of the congruent triangle DEF? A /\ ol
Hint A / cpl ¥

Oa OBC ® ac 2

“

S - o Dan Hal, >>
what is the perimeter of triangle ABC? [oone ][ nab | ‘
~ o~ 7oy - e “No. You might be thinking that
®) = @ (&) 2x + x + 8 } Bu message that 2 ¢
ATRIRE SRR 220 g Shfﬁg up ,fthge ctudent [the area is 1/2 base times
3 ; . W% height, but looking f
MNow, given the perimeter of triangle ABC equals 23 ol theelgperin:leti?’l‘ arerlooxing:or

inches, you can write the equation 2x+x+8=23 and =

J essages
solve it for ®, What is the value of x: S5 ) Sk
Hint |AC 1s equal to 2x?

Good, You've just got the value of x. 10 AC = ﬁf/’_—:“;;
Now you can get the length of side AC. What is it? -— Scaffolding T e = )
Remember, we are looking for side DF. Enter the [ auestions AC=10

length of side DF:

Figure 2: Annotated student interaction with the ASSISTnsgstem, based on the main question
in Figure 1.

required. In addition teachers working with project reskars may collect ASSISTment items
together into “curricula” or groups of items that are adrsiared to just his or her students. The
system tracks individual students through time, recordipged, accuracy and other data, and
provides regular reports to teachers per student, per, @tss

The ASSISTment system is implemented in a more generalpgikie tutoring architecture
(Razzag et al., to appear). The architecture is designed scalable from simple pseudo-tutors
with few users to model-tracing tutors and thousands ofs;islee ASSISTment system itself is on

the simpler end of this range. The architecture consists of

e A Curriculum Unit that allows items to be organized into npl# overlapping curricula,
and allows sections within a curriculum to be administerezbeding to a variety of rules,
including linear, random, and designed-experiment asségt;

e Problem and Tutoring Strategy Units that manage task ozgtioh and user interaction (e.g.

main questions and sifalds, interface widgets, etc.) and allow mapping of task ponents



(questions) to multiple transfer mod&land
e A Logging Unit that provides a fine-grained trace of humampater interactions as well as

various mechanisms for abstracting or coarsening thig rgo usable data.

The architecture is supported by a web-based item buildgrishused by both research tand
classroom teachers to develop item content, and that preadpport for building item curricula,
mapping tasks to transfer models, etc. A back-end reldtaatabase and networking architecture
supports user reports for students, teachers, coachegistlators, etc., as well as research data
analyses.

As indicated above, two main statistical goals for the AS®#8nt system are to predict end-
of-year MCAS scores, and to provide regular, periodic feettto teachers on how students are
doing, what to teach next, etc. These goals are complicateeheral ways by ASSISTment system
design decisions that serve other purposes. For examelex#tt content of the MCAS exam is not
known until several months after it is given, and ASSISTra¢hémselves are ongoing throughout
the school year as students learn (from teachers, from AI3S¢8t interactions, etc.). Thus the
prediction problem is analogous to shooting at a barn indgg$tudents’ eventual MCAS scores)
from a moving train (students’ interactions with the ASSh&Int System as they learn throughout
the school year).

In addition, diferent transfer models are used and expected figrdnt stakeholders: the
MCAS exam itself is scaled using a unidimensional item respdheory (IRT) model (van der Lin-
den & Hambleton, 1997), but description and design of the G@#\based on a five-strand model
of mathematics (Number & Operations, Algebra, Geometryasddeement, Data Analysis & Prob-
ability) and 39 “learning standards” nested within the fits@sds. In addition, ASSISTment re-
searchers who have examined MCAS questions have develdpadséer model involving up to
106 KC’s (WPI-106, Pardos et al., 2006), 77 of which are adtivthe ASSISTment content con-

sidered in the present work. To the extent possible, feddbegmorts should be delivered at the

’A transfer modelspecifies the KC’s needed to solve a problem, and might bedcadth a Q-matrix, as in
Embretson (1984), Tatsuoka (1990) or Barnes (2005).
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granularity expected by each stakeholder. Thirdffetding questions have an ambiguous status in
practice: they can be designed as measures of single KC’'pantular transfer model, thus im-
proving measurement of those KC's; or they can be designlee éptimal tutoring aids, regardless
of whether they provide information on particular KC’s inarticular transfer mod&l

In this chapter we focus mainly on the task of predicting efigear MCAS scores from
student-ASSISTment interaction data collected peridlgicaroughout the school year, based on
each of the transfer models indicated above, and a varigigyafhometric and prediction models.
In Section 2 we consider “static” prediction models, in whitata is aggregated for some time,
usually from September to the time of the MCAS exam. Sincg tise the most data, these models
ought to do the best at prediction of MCAS scores. In Sectiase 8onsider “dynamic” prediction
models, in which predictions are made periodically thramghhe school year, based on the data
at hand at the time of the prediction.

The data we consider comes from the 2004-2005 school yedirshfull school year in which
ASSISTments were used in classes in two middle schools iWdreester School district in Mas-
sachusetts. At that time, the ASSISTment system containetabof 493 main questions and
1216 sc#olds; 912 unique students logs were maintained in the systemthe time period from
September to April. Of these, approximately 400 main qoestand their corresponding $icdds
were in regular use by approximately 700 students (eacty stuteyed below uses a slightly
different sample size depending on its goals). The remainingtigne and students represented
various experimental or otherwise non-usable data for tindiess considered here. Although the
system is web-based and hence accessible in principle angahytime, students typically inter-
act with the system during one class period in the schoofsejder labs every two weeks. Because
ASSISTment items were assigned randomly to students wétirincula developed by teachers and

researchers, and because students spent varying amotims oh the system, the sample of AS-

8]t can be argued that good tutorial ficads do focus on single KC'’s or small sets of KC'ssomerelevant transfer
model, but in a multiple-transfer-model environment f&ild questions need not map well onto KC'ssveryrelevant
transfer model.



SISTment items seen by each student varied widely from studestudent. Finally, in Section 5
we discuss successes and challenges for ASSISTment-batsedotiection, prediction, reporting

and statistical analysis.

2 Static Prediction Models

Much work has been done in the past 10 years or so on develtpnige testing metrics” for
dynamic testing (Campione, Brown & Bryant, 1985; Grigore8kSternberg, 1998) to supplement
accuracy data (wroridgght scores) from a single sitting, in characterizing stuidoroficiency. For
example, Table 1 defines a set of such metrics collected bgroratble from the Logging Unit in
the ASSISTment System.

In the work described here the goal is to train a predictiorcfion to provide accurate pre-
dictions of MCAS scores from such ASSISTment metrics, ugdg4—2005 data for which both
ASSISTment and MCAS score data are available. In this seeteconsider “static” predictions,
that is, predictions based on ASSISTment data aggregattrlaufixed point in time, usually from
September to the time of the MCAS exam. In Section 3 we con&ily@amic” predictions, which
are intended to account for or uncover student growth irousrivays, and are designed to be used
frequently throughout the school year.

The prediction functions we build using the 2004—-2005 dataadso intended to work well
in future years, and so a natural criterion with which to cangpcandidate prediction functions is
cross-validated prediction error. For reasons of inteégiiéty, the prediction error function chosen

was mean absolute deviation (MAD),
1 n
MAD = = Z IMCAS - pred|, (1)
i=1

whereMCAS is the actual 2005 MCAS score of tifé student, angred is the predicted score
from the prediction function being evaluated. In most cageslso compute mean squared error,
MSE(squaring the deviations in the sum in (1)), and root meaasglerrorRMSE= VMSE
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Table 1: Online testing metrics considered by Anozie andkdu(2006). A similar set of metrics

is used by Feng, Hiernan & Koedinger (2006; in press) and Ting & Lee (2005).

Summary Per Month

Description

NumAlIMain
NumAllScat
NumCorMain
NumHintsAll
NumAttAll
NumSecAll
AttCorMain
AttIncMain
AttCorScaf
AttincScaf
SecCorMain
SeclncMain
SecCorScaf
SeclncScaf
NumCorScaf
MedSecAllMain
MedSecIncMain
PctSecincMain
PctCorScaf
PctCorMain
NumPmAllScaf
NumPmAllMain
NumlIncMain
NumlncScaf
PctSecincScaf
NumHintsincMain

NumHintsincMainPerMain

Number of complete main questions

Number of complete séklds

Number of correct main questions

Number of hints on main questions and f§ckls
Number of attempts

Number of seconds on main questions andfstids
Number of a attempts on correct main questions
Number of attempts on incorrect main questions.
Number of attempts on correct stds

Number of attempts on incorrect $t@ds

Number of seconds on correct main questions
Number of seconds on incorrect main questions.
Number of seconds on correct ficdds

Number of seconds on incorrect ficdds

Number of correct sdkolds

Median number of seconds on main questions
Median number of seconds on incorrect main questions
percent of time on main questions spent on incorrect maistones
percent of sciolds correct

Percent of main questions correct

Number of complete sé@lds per minute

Number of complete main questions per minute
Number of incorrect main questions

Number of incorrect sdkolds

Percent of time on sélds spent on incorrect salds
Hints plus incorrect main questions

Hints plus incorrect main question per ASSISTment




The MCAS score used in (1) is the raw number-right score, wihamges from 0 to 54 in
most cases, rather than the scaled reporting score, whgesgrom 200 to 280. The MCAS re-
porting scale is created anew each year by: (a) running datdssetting procedure to determine
achievement levels in terms of raw number-right; and (b)eting a piecewise linear function
to transform raw number-right to the 200-280 scale, sucttitleacutpoints for each achievement
level are the same numerical values from year to year (Rath@@01). Because of this compli-
cation, all of our procedures are judged on their ability tedict the raw number-right score. As
additional years’ data are collected, we will compare preai of raw number-right with predic-
tion of the moving reporting scale target, to see whethessthedard setting procedure provides
a more stable target from year to year than the raw numbkt-sgpre. Some analyses do not use
all available MCAS questions, and so prediction error wiloabe reported as a percent of the

maximum possible raw score,
PctErr = MAD/(Max Raw Score) (2)

where ‘Max Raw Scorkis the maximum raw score possible with the MCAS questioredu®4
points if all 39 MCAS questions are used, since some are daorengright and some are scored
with partial credit).

Analyzing 2003-2004 pilot data for the ASSISTment systemg® Lee (2005) concluded
that such metrics may not contribute much above proportiorect on a paper and pencil bench-
mark test in predicting end-of-year MCAS scores. Howeverphot data set was small (in both
number of students and number of items) and the system waaswerh under development during
the pilot data collection period.

Feng, Hé&fernan & Koedinger (2006; to appear) considered a similaofsenline metrics ag-
gregated over seven months from the 2004—2005 school pearstibset of 600 of the 2004—2005
students. They compared predicting the 54-point raw MCASBeswith these summaries, vs. using
only paper and pencil tests given before and after thesensawvaths’ use of ASSISTments. Us-

ing stepwise variable selection they found the variabkedi in Table 2 to be the best predictors:
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Table 2: Final stepwise regression model of Fendfétaan & Koedinger (2006; to appear).

| Predictor | Coefficient ||
(Const) 26.04
Pre Test 0.64
Pct CorrectAll 24.21
Avg_Attempts -10.56
Avg_Hint_Reqs -2.28

September pre-test score, percent correct on the first ptttenall main questions and gtalds,
average number of attempts per question, and average nuhbert requests per question. Al-
though September pre-test score is in the model, it cortgselatively little to the prediction of
the raw 54-point MCAS score; instead approximately halfM@AS score is predicted by stu-
dents’ proportion correct on ASSISTment main questionssadtiolds, with substantial debits for
students who make many wrong attempts or ask for many hihis. model had within-sample
MAD = 5.533 andPct.Err = MAD/54 = 10.25%. These error rates are lower bounds on cross-
validation error rates.

Ayers & Junker (2006) improved on the Feng,fféenan & Koedinger (2006; to appear) ap-
proach, for a subset of 683 students, by replacing perceneatovith an item response theory
(IRT; van der Linden & Hambleton, 1997) score based on maéstjons only, to account for the
varying dificulty of the diferent samples of questions that each student sees. Theagiemusboth
a generic Rasch (196080) model, in which the probability of a correct respoXgdor student

i on main question is modeled as a logistic regression
logit P[Xi; = 116,,8j] = 6 — B 3)

depending on student proficienéy and question diiculty 8;; and a linear logistic test model

(LLTM; Fischer & Molenaar, 1995) in which main questiorffaiulty was decomposed into com-

Recall that logitp = In p/(1 - p), so that if logitp = A, thenp = e!/(1 + €?).
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ponents for each KC needed to answer the main question,

K

|OgitP[Xij = 1|9i,a’1,...,a’K] = 6 —Zija/k (4)
k=1

whereQy; = 1 if KC k contributes to the dliculty of questiork, and O otherwise, andy is the
contribution of KCk to the dfficulty of any question involving that KC. Only 77 KC’s from the
WPI-106 transfer model (Pardos, et al., 2006) were needatbttel the 354 main questions they
considered, so th@-matrix here is 7% 354. There is a bias-variance traffeguestion here for
prediction: the unrestricted Rasch model will produce-la@ased proficiency estimates on which
to base prediction of MCAS scores; but the LLTM with hundrézlger parameters will produce
lower-variance proficiency estimates.

They found that the Rasch model fit dramatically better (ctidn in BIC* of 3,300 for an
increase of 277 parameters), so the lower bias of the Rasdelrabould win over the lower vari-
ance of the LLTM for prediction. As shown in Figure 3, thers@ne evidence that a moderately
finer-grained transfer model might have worked better wighitLTM. For example, it is especially
clear that several 1-KC main questions, that depend on the 8& and hence have the same dif-
ficulty estimate under the LLTM, have greatly varyingfidiulty estimates under the unconstrained
Rasch model. This suggests that sources fiifcdity not accounted for by the WPI-106 transfer
model are present in those problems.

Ayers & Junker (2006) then incorporated the student profejescoreg; for each studeni

from the Rasch model into a prediction model for raw MCAS seaf the form

M
MCAS = 1o + 16, + Z Y + & (5)

m=2
whereMCAS is the student’s raw MCAS scor¥,, are values of online testing metrics selected
from Table 1,g is residual error, and the regression ffagentsi,, m = 0,..., M are to be es-

timated. In order to account for measurement erro#,jrthe model (5) is estimated using the

0Bayes Information Criterion, also known as the Schwarze@idh; see for example Kass & Raftery (1995, p.
778).
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LLTM Question Difficulty

Figure 3: Comparing main questiorfiitulty estimates from the LLTM (horizontal axis) with main
guestion dificulty estimates from the Rasch model (Ayers & Junker, 2006& number of KC'’s
from the WPI-106 required for each question is also inditate

WInBUGS (Spiegelhalter, Thomas, & Best, 2003) softwarewhich multiple imputations, or
plausible values (e.g. Mislevy, 1991), were generated;ftnom the fitted Rasch model, using a
Markov Chain Monte Carlo (MCMC) algorithm. (This model wasroduced by Schofield, Taylor
& Junker, 2006, to analyze the influence of literacy on incarsieag the National Adult Literacy
Survey.)

They evaluated their results using 10-fold cross-valid&é&D andPct Err for predicting the
54-point raw MCAS score. For a model using only percenteaxiron main questions (and nei-
ther Rasch proficiency scores nor online metrics), theydddw-MAD = 7.18 (CV-PctErr =

13.33%). Replacing percent-correct with Rasch proficiencgudated from main questions only,
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P(Congruence} m1 P(Equation-Solving)= P(Perimeter)= n3

Equation-Solving

Gate| P(X2 =1) Gate| P(X1 =1) Gate| P(X3 =1)
True | 1-s True| 1-s True| 1-s3
False| g» False| g1 False| g3

Figure 4: lllustration of the conjunctive Bayes Net (DINApdel, after Pardos et al. (200@). is
the base rate (prior probability) of KKin the student population; and for each questgns; is
the probability of a slip leading to an incorrect answer, gnthe probability of a guess leading to
a correct answer.

they foundCV-MAD = 5.90 (CV-Pct.Err = 10.93%), obtaining a cross-validation result compa-
rable to Feng, Héernan & Koedinger (2006; to appear) within-sample resujtsaplacing their
online metrics and pretest scores with only the Rasch pewitgi estimate. Finally, combining
Rasch proficiency with five online metrics from Table 1 chogeminimize MAD in a forward
selection scheme they four@V-MAD = 5.24 (CV-PctErr = 9.70%), improving on the earlier
within-sample results. All of the online metrics includedtheir final model were related to the
efficiency of student work (NumPmAlIScaf; see Table 1 for defani} or contrasts between the
time spent answering correctly or incorrectly (SecCofiScgecincMain, MedSecincMain, and
PctSeclncMain; see Table 1 for definitions).

Pardos et al. (2006) and Anozie (2006) considered statitigiren using conjunctive Bayes
Nets (Maris, 1999; Mislevy, Almond, Yan & Steinberg, 199@nker & Sijtsma, 2001) for binary

KC'’s (1 =learned, G= unlearned) & responses £lcorrect, O= incorrect). A schematic illustration
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of the model, also called the “deterministic input, noisy Bdgate” (DINA) model by Junker
& Sijtsma (2001), is presented in Figure 4 for a main ques(Xy) and two sc#olds (X, and
X3). In the figure, the main question depends on three KC’s, tfdaence”, “Equation Solving”
and “Perimeter”. The two s@@ld questions focus on “Congruence” and “Perimeter” retypely.
Each KCk has a population base rate (prior probability of alreadyddinown to the student)
of mx. The probability of student getting a correct answer on questipriwhether it is a main
question or a sdkold) is expressed in terms of a guessing paranggtand a slip parametes; for
that question,
(1-s)), ifstudenti knows all the KC’s
P[Xj=110;,s] = relevant to question; (6)
g, ifnot.

The mapping of KC'’s relevant to each question is accomptistieéh a Q-matrix, as in the LLTM.
A key difference in the models is that KC’s combine additively to detee question dficulty in
the LLTM, whereas they combine conjunctively to determingritive demand in the Bayes Net
model.

Pardos et al. (2006) compared the predictive accuracy glinotive Bayes Nets based on
several diferent transfer models, for a 30-item, 30-point subset ofMIBAS: a one-binary-KC
model, a five-binary-KC model corresponding to the five MCARrsds, a 39-binary-KC model
corresponding to the 39 MCAS learning standards, and a @3y KC model based on the WPI-
106 transfer model. They fixed the guessing paramejfess 0.10 and slip parametes = 0.05
for all items, fixed the base-rate probabilitigs = 0.5 for all KC’s, inferred which KC’s each
student had learned, based on seven months’ data using yles Biet Toolbox (Murphy, 2001),
and predicted success on individual MCAS questions by nmgigC'’s from the transfer model to
the released MCAS questions. In this analysis the most seftdenodel was the 39-KC model,
with MAD = 4.5 andPct.Err = MAD/30 = 15.00%.

Anozie (2006) focused on subsets of the Ayers & Junker (2888) from the first three months
of the 2004—-2005 data, involving 295 students and appraeimnd00 questions tapping a 62-KC
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ATTR c. Table 1: Which graph
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Figure 5: An ASSISTment main question and estimates ofifigs) and guessingy) parameters
(red boxes; the grey boxes are for other main questions)ziar{@006).

subset of the WPI-106 transfer model, and estimatés] s;’s andx’s from the data, using an
MCMC procedure developed for the statistical package R fk®undation, 2006). The raw 54-
point MCAS score was predicted as a linear function of themamber of KC’s learned according
to the Bayes Net model, for each student. 10-fold crosstaabén of prediction using two months’
ASSISTment data yielde@V-MAD = 8.11, andCV-PctErr = 15.02%. When three months’
ASSISTment data were usedy-MAD andCV-Pct Err were reduced to 6.79 and 12.58, respec-
tively.

Although the predictive error results were disappointioghipared to the simpler models of
Feng, Hé&ernan & Koedinger (2006; to appear) and Ayers & Junker (20D&)Bayes Net models
yield diagnostic information that may be of interest to teas, quite apart from predicting MCAS
scores. Close analysis is also revealing about the WPI-4@a<C measurement model.

Consider, for example, Figures 5 and 6. The left part of Fdushows a main question tagged
with a single KC, “Plotting Points”, by the WPI-106 transfaodel. On the right in Figure 5 are
summaries of the estimated slip and guess parameters $omgin question (the middle line in
the red box plot is the estimate; the box and whiskers shovexhent of uncertainty about the

estimate; the grey boxes are for other main questions taggadother combinations of KC's).
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1. Let’s go through the steps for solving
the problem. The first point in the ta-
ble is (-2, -3). The x-coordinate is neg-
ative and the y-coordinate is negative.
If you plotted this point, which quad-

rant would it be in? :
H o , Slip (sj) Guess ¢;)
1 4 2. Good. The nextpointis (-1, -1). Which

.

T quadrant would this be plotted in?

4. Great. You know that the correct graph . 3. i g ‘}D . ﬁh EE e :{
has a line that passes through the first o H AT
and third quadrants. That means you Iiﬁﬁ 53 4 HH H k
can eliminate some choices. Based ;
on the location of the plotted points,

0.4
0.4

T 3. Okay. The final point is (1, 3). Which
quadrant is this point in? 9
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Figure 6: The sd@old questions corresponding to the main question in Figur@n8 estimates
of their slip (s;) and guessingy;) parameters (green boxes; the grey boxes are for oth&okta
guestions). Anozie (2006).

The left part of Figure 6 shows the correspondingf&tding questions (again each tagged with
the same KC, “Plotting Points”) and their estimated slip gndss parameters are shown on the
right (green boxes; the grey boxes are for otheffetéhquestions tagged with other KC’s). To the
extent that the sdBolding questions have lower slip and guess parameters ieamain question,
they are more reliable indicators of the KC than the main tijoiess. DiBello, Stout and Roussos
(1995) refer to this increased per-item reliability in ma@sg KC’s as “high positivity” for the
transfer model.

However, another phenomenon appears in Figure 6 as welllifhparameter decreases, and
the guessing parameter increases, from onffadaquestion to the next: these trends tell us that
the sc#folds are getting successively easier, perhaps reflectmdatit that the student does not
have to re-parse the problem set-up oncshe has parsed it for the main question (and perhaps
the first scéold), andor a practice fiect with the KC. This reflects a validity decision about the

“completeness”, to use DiBello et al.'s (1995) term, of ttaansfer model: there is a trad&to make
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Figure 7: Average percent-correct on ASSISTment main guesfor each classroom (colored
lines) in the 2004—2005 ASSISTments study, by month. Froaz&get al. (2005).

between developing a more complete list of KC’s and othegrd@ihants of student performance
(reducing biases in assessing whether KC’s have been tk@ampot), vs. having little unique
information about each individual component of the mod&ti@asing uncertainty about whether

KC'’s have been learned or not).

3 Dynamic Prediction M odels

Figure 7 displays the percent correct on ASSISTment maistares in each month of the 2004—

2005 school year, for each class (colored lines) particigah the ASSISTments study. It is clear

from the figure that the ASSISTment system is sensitive tdesitilearning, and that students on
the whole are improving as the school year progresses. Sothésstudent learning is due the

experiences students are having in school outside the A®%#86t system, and some is due to the
ASSISTment system itself (Razzaq et al., 2005). What isdk=ss is how best to account for this

learning in predicting MCAS scores at the end of the year.

Feng, Héfernan & Koedinger (to appear) addressed the heterogemnefigure 7 directly by
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building growth-curve models in an HLM (hierarchical limeaodel; see for example Singer &

Willett, 2003) framework. They first examined an overallygtio-curve model of the form

Level 1: Xi = Bo+pB1(Month) + &
Level2: By = PBoo+ Boi(Covariatey) + &g
B1 = Pio+pu(Covariate;) + &y

whereX; is percent-correct on ASSISTment main questions for stuidenmontht, Month is
the number of months into the study (0 for September, 1 fookar etc.), and Covariatés an
appropriate Level 2 covariate f@;. For Level 2 covariates, they compared School, Class and
Teacher using the BIC measure of fit, and found School to bedkeLevel 2 covariate for base-
line achievemenid,) and rate of changes(), suggesting that School demographics dominate the
intercept and the slope in the model.

They also explored étierential learning rates for the five MCAS strands (Number &efap
tions, Algebra, Geometry, Measurement, Data Analysis &bRbility) by considering a growth-

curve HLM of the form

Level 1: Xsi = pBo+ Bi(Quarter) + &
Level 2: ﬁo = ﬁoo +,6’01(C0variate,i) + ﬁOZs + Eosi

B1 = Pio+pPu(Covariate;) + fios + €1si

where nowXg; is the proportion correct on ASSISTment main items in strsaitimet for student
i, Quarter is the school-year quarter (0, 1, 2, or 3) at timand agairCovariate; is an appropriate
Level 2 covariate foB,. Again using the BIC measure of fit, they found that Strandenafor both
the baseline level of achievemepgp) and rate of change(). No other covariates were needed to
predict rate of changgg(), but the September pre-test score was an additional ysefdictor for
baseline achievemef (thus replacing School in their first model).

After the growth curve model is fitted, one could extrapoiatéme to the month of the MCAS
exam to make a prediction about the student’'s MCAS scorey,Hedfernan, Mani & Héfernan

(2006) tried this approach with growth curve models for vidilial questions. Letting; be the
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0/1 response of studenbn question tapping KCk in montht, they considered the logistic growth
curve model

Level 1: logitP[ X = 1] = (Bo + Bu) + (B1 + Bw)(Month)

Level 2: Bo = PBoo+ & (7)

B1 = Buoten

where agairMonth is elapsed month in the study (Septembdl, October= 1, etc.) ang3y and
Bk are respective fixed#ects for baseline and rate of change in probability of calyemswering
a question tapping K&.

This model is equivalent to an LLTM-style restriction of tResch model of equation (3), where
now: (a) student proficiency is allowed to depend on tiéhe, (Boo+ £ai) + (B1o + £11)(Month); and
(b) question diiculty is allowed to depend on KC and times; = (8o + Bok) + (81 + Su)(Month).
Rather than implementing a full Q-matrix mapping of mukip{C’s onto each question as in the
LLTM of equation (4), Feng, Héernan, Mani & H&ernan (2006) assigned only the modtidult
KC in the transfer model for each question (according to Kiwmoportion correct among all
guestions depending on each KC) to that question.

They fitted the model in equation (7) using thee4 library in R (The R Foundation, 2006),
extrapolated the fitted model to the time of the MCAS exam ttaiobprobabilities of getting
each MCAS question correct (using the same madiedity reduction of the transfer model for
the released MCAS items) and summed these probabilitiesettiqh the students’ raw scores for
a 34-point subset of MCAS questions. The prediction errtesréor this method, using a subset
of 497 students who answered an average of 89 main questions89 scfolds depending on
78 of the WPI-106 KC’s, were comparable to those of the BayessdgproachMAD = 4.121,
PctErr = MAD/34 = 1212%.

One might try to improve on this prediction error by inclugidemographic and related vari-
ables, for exampl&chool, as in the hierarchical model of Feng, fllgnan & Koedinger (to ap-
pear). Whether one does so depends on one’s goals, for bethatisfer model itself, and for

the portability of the prediction system. If the transferdabis incomplete—does not adequately
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account for the cognitive challenge of answering questietiien demographic variables might
reasonably be proxies for presence or absence of KC’s unataxbfor in the transfer model. On
the other hand, if the transfer model is relatively compléten we will not need demographic
variables for this purpose, and the prediction function aerlikely to generalize to novel demo-
graphic situations.

A rather diterent approach was pursued by Anozie & Junker (2006), wheelbat the chang-
ing influence of online ASSISTment metrics on MCAS perforg@over time. They computed
monthly summaries of each of the online metrics listed inlddh and built several linear predic-
tion models, predicting end-of-year raw MCAS scores folheaonth, using all the online metric
summaries available in that and previous months. Since tlvere seven months of data, seven

regression models were built, e.g.

MCAS = o+ Bii(PctCorMain§® + B,11(PctCorScaff

T
MCAS = pBoz + B121(PctCorMain§® + B,,1(PctCorScaff

+ B12o(PctCorMain® + Boo(PctCorScaf)™

ot ©
MCAS = pos+ Biz(PctCorMain§® + Bo31(PctCorScaff

+ B13x(PctCorMain® + Bo3(PctCorScaf)™
+ B1zs(PctCorMainy® + B,s5(PctCorScaf)™

+___+€idec

where MCAS is studenti’s actual raw 54-point MCAS score, (PctCorMdim)is studenti’s
percent-correct on main questions in October, (PctCojSta$ studenti’s percent-correct on
scdfold questions in November, and so forth. All metrics in Tabjenot just PctCorMain and
PctCorScaf, were considered in these models.

Anozie & Junker (2006) used the same data set as Ayers & J(2G@86). After imputing miss-
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Figure 8: Variable selection for the monthly prediction ratsdof Anozie & Junker (2006). Vari-
ables are listed across the horizontal axis according tedyreeduction irCV-MAD. Each curve
shows the ffect onMAD of additional variables to the corresponding model in eiguai).

ing summaries (e.g. some students skipped an entire morttieoRSSISTment system and their
summaries for that month were copied forward from the mosteod month in which summary
data was available), they developed software in R (The R &ation, 2006) to perform variable
selection, using 10-fold cross-validation MAD summed asrall seven models. To enhance in-
terpretation, variable selection was done by metric, nomoynthly summary, and metrics were
included or excluded simultaneously in all seven modelss tha variable was included, all of its
relevant monthly summaries would be included in all sevgnagsion models. By constraining the
variable selection in this way, Anozie & Junker (2006) cométk the relative influence of adding

more metrics, vs. adding more months of summaries, for el@amp
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A summary of this variable selection procedure is preseimddgure 8. Variables are listed
across the horizontal axis according to greedy reducti@MAVIAD: PctCorMain was most often
added first in 100 replications of the cross-validationafale selection procedure; PctCorScaf was
most often added second in the same 100 replications, ath.dt@ve shows thefiect onMAD of
additional variables to the corresponding model in equat®): the top curve shows théfect on
MAD of adding successively more October summaries of varidblése first model in equation
(8); the next curve shows théfect onMAD of adding successively more October and November
summaries of variables to the second model in (8); and sh.fort

It is clear from inspection of Figure 8 that adding more meahtti data helps in prediction more
than adding more online metrics. Most models in the figureelsa@ble or minimunMAD’s when
five variables are included in the model: two accuracy véemlPctCorMain, PctCorScaf), two
time/efficiency variables (SeclncScaf, NumPmAllScaf), and oneatdeirelated to help-seeking
(NumHintsincMainPerMain); see Table 1 for variable defoms. The nature of these variables is
consistent with the results of Feng, filignan & Koedinger (2006; to appear) and Ayers & Junker
(2006).

We can also inspect Figure 8 above the location marked by NaotslicMainPerMain, to see
what theCV-MAD andCV-Pct Err are for all seven of the five-variable monthly model3/-
MAD ranges from approximately 8.0CV-PctErr = MAD/54 = 14.8%) for the model based on
October summaries only, to about 6.Z5M-Pct Err = MAD/54 = 11.6%) for the model based
on all seven monthly summaries of each variable. Most ofrtiovement in prediction error has
already occurred by January.

Figure 9 shows the predicted increase in the raw (54-poif@AR score corresponding to a
10% increase in each monthly summary of PctCorMain (percerect on main questions), in
each of the seven monthly monthly models above. Thtemrint models are indicated by vertical
bands and the monthly summaries relevant to each model arected by line segments. Co-
efficients significantly dterent from zero§ < 0.05) are plotted as filled points; non-significant

codficients are unfilled.
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Figure 9: Influence of each monthly summary of PctCorMaindget correct on main questions)
on MCAS prediction (Anozie & Junker, 2006). fierent models are indicated by vertical bands,
and diferent monthly summaries within each model are connecteohbységments.

Two patterns are clear in Figure 9: first, each monthly surgrganerally decreases in impor-
tance as more recent data are included in the models. Forpésatine October summary of Pct-
CorMain is a significant predictor only in the October and Biober models, and the influence that
it has on predicting MCAS scores decreases monotonicaltysache monthly prediction models.
Second, within each monthly model, the predicted influericaare recent summaries are gener-
ally at least one raw MCAS point higher than the predictediarice of less recent summaties

This may be another form of evidence of learning (increaaigevement) in the students, as time

UThis pattern is less pronounced in later months’ modelstjyphecause these models include more monthly
summaries as predictors, and the summaries tend to beatedelith one another.
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Figure 10: Influence of each monthly summary of PctCorScefognt correct on sé@ald ques-
tions) on MCAS prediction (Anozie & Junker, 2006).fl2rent models are indicated by vertical
bands, and dlierent monthly summaries within each model are connecteshbysegments.

passes during the school year (compare Figure 7).

The exception to this second pattern is the February summargh appears to have little or
no predictive value for MCAS scores. Further investigatievealed that an experiment had been
run on the ASSISTment system in February in which a “forcexfsltling” regime was compared
to the usual regime in which sfalds were only provided if the answer to the main question was
wrong. To implement the forced d8alding regime, main questions were scored wrong whether or
not the student answered correctly. Thus, many artificlally scores are present in the February
data. We believe this is why the February summary does naaapp be useful in the model.

Similarly, Figure 10 shows the predicted increase in the {@dvpoint) MCAS score corre-
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sponding to a 10% increase in each monthly summary of Pct@b Bercent correct on sald
guestions). Neither the February nor the March summaripsato be useful in any model. Al-
though we are not satisfied that we understand the behavitvedarch summary, we believe
the February anomaly is again due to the “forcedistding” experiment in February, since many
people who did not need dtald questions nevertheless were forced to answer them iru&sh
artificially inflating February PctCorScaf scores.

The first pattern seen in Figure 9 is evident in Figure 10: eaohthly summary becomes
less influential as later data is added to the models. Thendggattern, that later summaries are
more influential than earlier ones, holds to some extent énetlrlier months’ models (October
through January). But it is striking that theffldirence in influence among summaries in the same
model is now as little as 0.25 raw MCAS points (compared to iatpmr more for PctCorMain,
as described above). This may reflect the fact that the ASBERT system generally presents
scdtolding questions only when the student is unsure or doeswwkthe material well, so that

percent correct on sfalds reflects learning style or rate, rather than achieveéiaeal.

4 Comparing Predictions

A wide variety of strategies have been developed to prediCtAR scores from ASSISTment
data. Table 3 summarizes 10 prediction models discussédsichapter and gives theMAD and
PctErr scores. Several conclusions can be drawn from this table.

First, there appears to be a tradfdmetween accurately modeling student-to-student variatio
proficiency, vs. including online metrics from Table 1. Frample, rows 4 and 5 of the table com-
pare two models based on three months’ student data: a mradkirtg three monthly summaries
of five online metrics (Anozie & Junker, 2006, December mideid a 62-KC Bayes net model
(Anozie, 2006, December model). TMAD prediction errors for the two models are quite com-
parable, 7.00 and 6.68 respectively. Similarly, rows 8 andripare regression on percent correct

on all (main and sd®ld) ASSISTment questions, a pretest score, and two onleteics (Feng,
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Table 3: Comparison of methods for predicting MCAS scoresfASSISTment data.

Number of Number of CV- Max Raw CV-
M odel Months Data Predictors MAD MCAS Score Pct_Err
Direct Bayes Net predictiéfl 7 39 4.50 30 15.002-(®)
(Pardos et al., 2006)
Regression on PctCorMain 4 1 5 8.00 54 14.81

online metrics (Anozie & Junker,
2006, October model)

Regression on PctCorMain (Ay- 7 1 7.18 54 13.30
ers & Junker, 2006)

Regression on PctCorMain 4 3 15 7.00 54 12.96
online metrics (Anozie & Junker,
2006, December model)

Regression on number of KC’s 3 1© 6.63 54 12.58
learned in Bayes Net (Anozie,
2006, December model)

Logistic Growth Curve Model 7 78 4.219 34 12.129)
for Questions (Feng, Hiernan,
Mani & Heffernan, 2006)

Regression on PctCorMain 4 7 35 6.25 54 11.57
online metrics (Anozie & Junker,
2006, April model)

Regression on PctCorAll, Pretest 7 4 5.530 54 10.250)
+ two online metrics (Feng, Hef-
fernan & Koedinger, 2006)

Regression on Rasch proficiency 7 1@ 5.90 54 10.93
(Ayers & Junker, 2006)

Regression on Rasch proficiency 7 6@ 5.24 54 9.70
+ 5 online metrics (Ayers &
Junker, 2006)

@ within-sample, not cross-validated.

®) Using fixedg; = 0.10, s; = 0.05 andry = 0.50. Subsequently, Pardos, Fengfidman & Hefernan (2006) showed
that approximately 3 percentage points of tAtt_Err is attributable to prediction bias due to lack of model fit.

© Number of KC’s was estimated after fitting 300-item, 62-KQ\NBImodel using MCMC (approx. 600 parameters).

@ proficiencies were estimated after fitting 354-item Rasctehosing MCMC (approx. 355 parameters).
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Heffernan & Koedinger, 2006), with regression on student prrficy computed from the Rasch
model (Ayers & Junker, 2006). THdAD scores are again comparable, 5.53 and 5.90 respectively.

Second, greater complexity in the student proficiency modelbe helpful, as pointed out in
the detailed analyses reported in Pardos et al. (2006) aRdng, Hé&ernan, Mani & Héfernan
(2006); however a simpler proficiency model that accuradelyounts for ASSISTment question
difficulty, such as the Rasch model fitted by Ayers & Junker (20€&), substantially improve
prediction error. In addition, combining a good proficiemmapdel with suitable online metrics
produces the best prediction model.

Third, while the various methods have ultimately producagrovements in prediction error,
it seems diicult to get the error below approximately 10% of the maximwagible raw MCAS
score. There is, in fact, some evidence that this is appratgiy the best possible prediction error
for predicting MCAS scores. To examine this question, Fétefiernan & Koedinger (to appear)
computed the split-haPct Err of the MCAS, using the MCAS scores of ASSISTments students,
to be approximately 11%. Ayers & Junker (2006) derived a fderfor the MSE (mean-square
error) of prediction of one test from another, based on thesital true-score theory reliabilities
of the two tests, and used this formula to bound the MAD. Ushegpublished reliability of the
2005 MCAS exam, and the distribution of reliabilities of tharious samples of ASSISTment
guestions seen by students, they estimated that the opgddBlI for predicting the 54-point raw
MCAS score using classical true-score models should be eatgrthan approximately 5.21, or
equivalently an optimaPct Err of about 9.65%. Thus the bound that we are reaching empyrical
in Table 3 may be close to the limit of what is possible, giviea teliabilities of the MCAS and
ASSISTment data.

5 Discussion

The ASSISTment System was conceived and designed to hedpratan teachers address the

accountability demands of the public education system oways. First, ASSISTments provide
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ongoing benchmarking of students that can be used to psdicess on end-of-year accountability
exams, while providing some instructional benefit—not iatlet spent with ASSISTments is lost
to testing. Second, the system can provide feedback togescm students’ progress in specific
areas or on specific sets of KC’s. Anecdotal evidence sugtfest teachers are positive about the
system, and students are impressed with its ability to tifaek work. In addition, the ASSISTment
system has provided a very useful testbed for developimgitg system architecture, authoring
systems, and online cognitive modeling and predictionrietdgies.

This chapter has dealt primarily with this prediction fuootof the ASSISTments system.
Our work has shown that a variety of prediction models cankweell for this purpose. There
is clearly a tradefd between using cognitiyesychometric models that appropriately account for
guestion dificulty, vs. using online prediction metrics measuring shigleefficiency and help-
seeking behavior. The best approaches combine these tas &irlata.

Turning to teacher feedback, Figure 11 shows a knowledggoaents report for teachers,
based on creditinglaming the most diicult KC involved in each correghcorrect ASSISTment
guestion (similar to Feng, Hiernan, Mani & Hé&ernan’s, 2006, max-tficulty reduction of the
transfer model). Currently we are beginning to focus siaismodeling work on improving the
modeling underlying these reports. For example, Cen, Kagti& Junker (2006a) model learning
curves using ideas of Draney, Pirolli and Wilson (1995) elgselated to the logistic Rasch and
LLTM models (equations (3) and (4) above). This approachataa be used to determine when
the error rate on each KC is low enough that further pracgaesficient for the student (Cen,
Koedinger & Junker, 2006b). Another approach combines tievedge tracing algorithm of
Corbett, Anderson & O’Brien (1995) with Bayes Net (DINA) nmadd (Junker & Sijtsma, 2001);
the key issue in deciding which approach to pursue will ofreetibe model fit and interpretability.

Another aspect of the project is that the ASSISTment systerst iIserve a variety of stake-
holders, and not all of them need or want reports at the sawed & granularity. Indeed, the
ASSISTment project has worked with fourfidirent transfer models, from a one-variable Rasch

model, which is likely best for predicting MCAS scores, tod%1KC Bayes Net model, which may
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Figure 11: Classroom-level KC'’s report for teachers in tH@SASTment system. Student-level
gradebook information is also available in the system.

be closer to optimal for providing teacher feedback. As tI&SKSTment system is considered in
multiple States and other jurisdictions, additional tfansnodels will be needed, that are aligned
to those States’ learning standards. As a way of managiagdmplexity, a mapping tool has been
developed to help map KC'’s and groups of KC’s in one transiaidehto those in another transfer
model. This is helpful, but it does not obviate the need tamrefo different stakeholders using
different models of student proficiency.

The multiple transfer-model problem becomes more acuteebesidering the information

that sc#fold questions provide for inferences about students. It beapossible to write séld
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guestions that tap one KC at a time in a particular transfetehdut the same questions may tap
more than one KC at a time in a finer-grained transfer modethey may tap bits and pieces of
KC's in a transfer model that is not a proper coarsening oneefient of the transfer model used to
develop the sdéold questions. In addition, question developers sometinrés scdfolds based
on KC-related goals, and sometimes based on tutorial gimalexample reframing part or all of
a question to look at the same KC in dfdrent way. This may make KC learning look look less
stable than it really is, since students’ KC-related bebraig also influenced by thefectiveness
of the tutorial reframing. In part to understand this, we @werently building some true one-KC

guestions to investigate the stability of KC’s across goest
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