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ABSTRACT
In recent years, networkmodels have been proposed as an alternative representation of psychometric
constructs such as depression. In such models, the covariance between observables (e.g., symptoms
like depressed mood, feelings of worthlessness, and guilt) is explained in terms of a pattern of causal
interactions between these observables, which contrasts with classical interpretations in which the
observables are conceptualized as the effects of a reflective latent variable. However, few investiga-
tions have been directed at the question how these different models relate to each other. To shed
light on this issue, the current paper explores the relation between one of the most important net-
workmodels—the Isingmodel fromphysics—andoneof themost important latent variablemodels—
the Item Response Theory (IRT) model from psychometrics. The Isingmodel describes the interaction
between states of particles that are connected in a network, whereas the IRT model describes the
probability distribution associated with item responses in a psychometric test as a function of a latent
variable. Despite the divergent backgrounds of the models, we show a broad equivalence between
them and also illustrate several opportunities that arise from this connection.

Introduction

The question of how observables (e.g., behaviors,
responses to questionnaire items, or cognitive test perfor-
mance) should be related to theoretical constructs (e.g.,
attitudes, mental disorders, or intelligence) is central to
the discipline of psychometrics (Borsboom & Molenaar,
2015). Despite the wide variety of constructs covered in
psychometric work and the great flexibility of mathemat-
ical representations, however, the collection of relations
between constructs and behaviors that have been envis-
aged in psychometric models is surprisingly limited. We
can think of four ways in which this connection between
constructs and observations has been construed.

First, theoretical constructs have been conceptual-
ized as inductive summaries of attributes or behaviors as
displayed by a person (Cronbach & Meehl, 1955). For
instance, one could count the total number of times a
researcher has been cited and label this quantity “scien-
tific impact.” This characterization attaches a verbal label
to an overall summary of observable features of a person,
but does not explicitly involve inference to an underlying
attribute; it simply recodes the observations in a useful
way. The statistical model most often associated with this
idea is the Principal Component Analysis (PCA) model
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(Pearson, 1901), which offers a systematic method of con-
structing a weighted sumscore that summarizes the vari-
ance in the observables. Importantly, such data-reductive
models do not typically involve an inference that goes
beyond the information present in the observations (i.e.,
if one knows the observations and the model, one knows
the component scores).

Second, theoretical constructs have been conceived of
as behavior domains (also called universes of behaviors).
In this interpretation, a construct such as, say, “addition
ability” is conceptualized as a measure on the domain
of addition (the so-called behavior domain; McDonald,
2003); for instance, as the total number of all possible
addition items that a person can solve. An addition test
may then be constructed as a finite sample of items from
this domain. Thus, in this case the construct could also be
seen as an inductive summary (namely, of the behavior
domain), but it does not coincide with the test score.
This is because the test score captures some, but not all
of the observables that constitute the behavior domain.
The required inductive inference from test score to con-
struct is then typically considered a species of statistical
generalization (Markus & Borsboom, 2013), and the
model most naturally associated with this idea is that of
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Generalizability Theory (Brennan, 2001; Cronbach,
Rajaratnam, & Gleser, 1963; Cronbach, Gleser, Harinder,
& Rajaratnam, 1972), although under certain assump-
tions this conceptualization can also imply a latent
variable model (Ellis & Junker, 1997; McDonald, 2003).

Third, theoretical constructs have been viewed as com-
mon effects of a set of observable features. For example,
Bollen and Lennox (1991) give the example of life stress,
whichmay be assessed by recording the number of stress-
ful events that a person has experienced in the past year.
The assumption that underwrites this approach is that
more stressful events generate more psychological stress
(the theoretical construct of interest), so that the num-
ber of experienced events can function as a proxy for a
person’s experienced stress. Models associated with this
idea are known as formative models (Edwards & Bagozzi,
2000). In the statistical model that this conceptualiza-
tion motivates, a latent variable is regressed on a set of
observables to statistically encode the assumption that the
observables cause the latent variable. Thus, in formative
models, the relation between indicators and construct is
causal, and the inference characterizing the measurement
process could be characterized as forward causal inference,
that is, from causes to effects.

Fourth, theoretical constructs have been considered
to be the common cause of observable behaviors. This
conception could in fact be considered to be the first
psychometric theory, as it coincides with the birth of psy-
chometric modeling: the postulation by Spearman (1904)
that the variance in cognitive test scores is causally deter-
mined by the pervasive influence of general intelligence. A
corollary of this theory is that we can infer a person’s level
of general intelligence from his or her performance on a
set of cognitive tests. The idea that we learn about a per-
son’s standing on an attribute like general intelligence by
exploiting the causal relation between that attribute and
our measures, is known as reflective measurement. The
conceptualization offered in reflectivemeasurement is, we
think, currently the most widely espoused theory among
psychologists working in fields like intelligence, personal-
ity, and attitude research. Importantly, in this model, the
relation between the theoretical construct and its psycho-
metric indicator is considered to be causal, which implies
that measurement is a species of causal inference, as it is
in the formative case—however, in contrast to the forma-
tive case, here the inference is backward (from effects to
causes). The statistical model most often associated with
reflective model is the common factor model (Bollen &
Lennox, 1991; Edwards & Bagozzi, 2000), although Item
ResponseTheory (IRT)models have also been interpreted
reflectively (Waller & Reise, 2010).

The models mentioned above have in some form or
another, all been around for at least half a century, and it
may seem that they exhaust the conceptual possibilities

for relating observables to theoretical constructs. This,
however, is not the case. Recently, a fifth conceptual
model has been added to the pantheon of psychometric
theories on the relation between constructs and obser-
vations, namely, the network model (Borsboom, 2008;
Borsboom & Cramer, 2013; Cramer, Waldorp, van der
Maas, & Borsboom, 2010). The idea that underlies this
model, first articulated by van der Maas et al. (2006) is
that observable features (e.g., symptoms of depression)
may form a network of mutually reinforcing entities
connected by causal relations. In this case, the relation
between construct and observables is mereological (a
part-whole relation) rather than causal (the observables
are part of the construct, but do not stand in a causal
relation to it). Although network models can be con-
structed in many ways, the class of statistical models
that has become associated with these models in the
past few years is the class of graphical models, in which
variables are represented as nodes, while (the absence of)
edges between nodes encode (the absence of) conditional
associations between nodes (Lauritzen, 1996).

In the current paper, we study the relation between
network models and existing psychometric models on
the relation between constructs and observations, most
importantly, the reflective latent variable model. As will
become apparent, even though the conceptual framework
that motivates the statistical representation in a psycho-
metric model may be strikingly different for network
models and latent variable models, the network models
and latent variable models turn out to be strongly related;
so strongly, in fact, that we are able to establish a general
correspondence between the model representations and,
in certain cases, full statistical equivalence. This allows
us to open up a surprising connection between one of
the most intensively studied network models in physics—
namely, the Ising (1925) model—and one of the most
intensively studied latent variable models—namely, the
Item Response Theory (IRT) model (e.g., Embretson &
Reise, 2000; Mellenbergh, 1994; van der Linden & Ham-
bleton, 1997). This opens up a newfield of research in psy-
chometrics, and offers a novel way of looking at theories
of psychological measurement.

Our primary aim is to organize the results about the
relations between network models and latent variable
models, and to study these relations from a psychometric
point of view. The structure of this paper is as follows.
First, we explain the logic of network models, starting
from the original formulation of the Ising model. Second,
we show that a particular restricted form of the Ising
model—namely, the Curie-Weiss model (Kac, 1968)—is
statistically equivalent to a particular class of Rasch
(1960) models, known as the family of extended Rasch
models (E-RMs; Tjur, 1982) and, specifically, themarginal
Rasch model (M-RM; Bock & Aitken, 1981). Third, we
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Figure . A network of statistical models with the edges showing equivalence relation between the models subject to the constraints
given on the edge labels. The edges are directed and originate from themore general model. The nodes refer to the extended Raschmodel
(E-RM), marginal Rasch model (M-RM), multidimensional two-parameter logistic model (MD-PLM), Ising model (Ising), Curie-Weiss model
(Curie-Weiss), and Logistic regression (LR).

establish a broad connection between multidimen-
sional IRT models, specifically the multidimensional
two-parameter logistic model (MD-2PLM; Reckase,
2009), and Ising models defined on an arbitrary net-
work topology. In these two sections, we will detail the
theory connecting the statistical models that are shown
in Figure 1 and illustrate this theory with new insights
that are relevant to existing psychometric theory. Finally,
we discuss new perspectives on general psychometric
problems that arise from this work and illustrate what the
model equivalence means in practice.

The Ising networkmodel from theoretical
physics

Themain character in our story is a theoreticalmodel that
was introduced nearly a century ago in the physics liter-
ature (Lenz, 1920) to describe the orientation of particles
that are placed on a square grid called a lattice graph (e.g.,
Brush, 1967; Niss, 2005). Figure 2 shows such a lattice
graph, which is a simple network that consists of n nodes
(circles) with edges (solid lines) between adjacent nodes.
Each node on the lattice graph represents a particle that
has a spin xi, i = 1, . . . , n, that is restricted to either point
up “↑” or point down “↓”. These spin randomvariables are
typically coded as xi = +1 for “↑” and xi = −1 for “↓”.1
That is, the model that was introduced by Lenz (1920),
and further studied by his student Ising (1925), describes
a nearest neighbor network of binary random variables:

p(x) = p(x1, x2, . . . , xn)

= exp
{∑n

i=1 μixi +
∑

<i, j> σi jxix j
}

∑
x exp

{∑n
i=1 μixi +

∑
<i, j> σi jxix j

} , (1)

 In statistics, it is common practice to code binary variables as x ∈ {0, 1}. We
will use the±1 coding for historical purposes and because it makes some of
the mathematics particularly simple.

Figure . A square 3 × 3 lattice where the nodes (circles) refer to
the upward “↑” or downward “↓” orientation of particles, and it is
assumed that the particles only interact with their nearest neigh-
bors (indicated with solid lines).

where the sum
∑

<i, j> ranges over all node pairs (i, j)
that are direct neighbors on the lattice graph, which are
indicated with solid lines in Figure 2, and

∑
x is the sum

over all 2n possible configurations x = (x1, . . . , xn) of n
spins. The spins tends to point upward (xi = +1) when
their main effects are positive (μi > 0) and downward
(xi = −1) when their main effects are negative (μi < 0).
Furthermore, any two spins xi and x j that are direct
neighbors on the lattice graph tend to be in the same
state when their interaction effect is positive (σi j > 0)
and tend to be in different states when their interaction is
negative (σi j < 0). This model is now known as the Ising
model, although some refer to it as the Lenz-Ising model
(e.g., Brush, 1967; Niss, 2005, 2009, 2011).

From a statistical perspective, the Ising model is a
simple nontrivial network model involving main effects
and pairwise interactions. Despite its simplicity, the Ising
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Figure . A network of five selected major depression (MD) and
generalized anxiety disorder (GAD) symptoms that are taken from
the fourth edition of the Diagnostic and Statistical Manual of Men-
tal Disorders (DSM-IV; a complete version of this network is shown
in Borsboom& Cramer, ). Irritability (I) and chronic worrying (C)
are GAD symptoms, weight problems (W) and depressed mood (D)
areMD symptoms, and sleep problems (S) is a symptomof bothMD
and GAD.

model is well known for its ability to describe com-
plex phenomena that originate from its local interac-
tions. With an estimated 800 papers written about the
Ising model every year (Stutz & Williams, 1999), it
has become one of the most influential models from
statistical physics, finding applications in such diverse
fields as image restoration (Geman & Geman, 1984),
biology (Fierst & Phillips, 2015), sociology (Galam,
Gefen, & Shapir, 1982; Galam & Moscovici, 1991), and
more recently psychology (Epskamp, Maris, Waldorp, &
Borsboom, in press) and educational measurement
(Marsman, Maris, Bechger, & Glas, 2015). For instance,
the spins may refer to the presence or absence of symp-
toms in psychopathology, and to the correct or incorrect
answers to items in an educational test.

To illustrate the model, we consider a simple example
from the psychopathology literature. In Figure 3, we show
a network of a selection of major depression (MD) and
generalized anxiety disorder (GAD) symptoms, which
are taken from the fourth edition of the Diagnostic and
Statistical Manual of Mental Disorders (DSM-IV; the
complete n = 15 variable network is shown in Borsboom
& Cramer, 2013). The network in Figure 3 consists of
two cliques of three symptoms: the GAD symptoms
irritability (I), chronic worrying (C), and sleep problems
(S) form one clique and the MD symptoms weight prob-
lems (W), depressed mood (D) and sleep problems (S)
form another. The symptom sleep problems (S) is shared
between the two disorders/cliques, which is known as a
so-called bridge symptom. Note that the two unique GAD
symptoms (I and C) have no immediate link to the two
MD symptoms (D and W), indicating that chronic worry
(C) affects having a depressed mood (D) only indirectly
via the bridge symptom sleep problems (S). Thus, the two
unique GAD symptoms are independent of the unique
MD symptoms conditional upon the bridge symptom (S),

Figure . A common cause representation of the manifest rela-
tions between GAD and MD symptoms in Figure .

as indicated in Figure 3 by an absence of edges connecting
these variables.

The (Ising) network model differs markedly from
the common cause model that is traditionally used in
psychopathology, which represents the observed depen-
dence and independence relations using latent variables
(Borsboom, 2008). Such a latent variable representation
for the five variable symptomnetwork is shown in Figure 4
and assumes the existence of two latent variables; one for
GAD and one for MD. The primary distinction between
the two conceptual models that are shown in Figures 3
and 4 is in what causes the variations in the observables
(e.g., symptoms, item scores).Whereas the common cause
model suggests that a person develops a symptombecause
he or she is depressed, the direct interaction model sug-
gests that a symptom develops under the influence of
other symptoms or (observable) external factors.

Despite the fact that these conceptual models differ
markedly in their interpretation as to what causes covari-
ances in observables, it has been previously noted that
the associated statistical models are closely related. For
example, Cox and Wermuth (2002) showed that there
is an approximate relation between the Ising model, or
quadratic exponential distribution (Cox, 1972), and the
IRT model of Rasch (1960). Moreover, Molenaar (2003,
p. 82) specifically suggested that there exists a formal con-
nection between the Ising model and the IRT models
of Rasch and Birnbaum (1968). This formal connection
between the Ising model and IRT models was recently
established and it is the aim of the present paper to detail
this connection. We first consider a simplest nontrivial
case; the fully connected Ising model and its connection
to a one-factor latent variable model.

The Curie-Weiss and Raschmodels

The Ising model’s success in physics is due to the fact
that it is one of the simplest models that exhibits a phase
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Figure . A graphical representation of the Curie-Weiss network.
The nodes (circles) refer to the upward “↑” and downward “↓”ori-
entation of particles and each particle interacts with each other
particle (solid lines).

transition (shifting from one state of matter to another;
Brout, 1968). However, the study of phase transitions with
the Ising model proved to be very difficult and enticed
the study of phase transitions in even simpler mod-
els. Most notable is the Curie-Weiss model (Kac, 1968;
Kochmański, Paskiewicz, &Wolski, 2013), also known as
the fully connected Ising model:

p(x) = exp
{∑n

i=1 μixi +
∑n

i=1
∑n

j=1 σxix j
}

∑
x exp

{ ∑n
i=1 μixi +

∑n
i=1

∑n
j=1 σxix j

}

= exp
{∑n

i=1 μixi + σx2+
}

∑
x exp

{ ∑n
i=1 μixi + σx2+

} , (2)

in which x+ = ∑n
i=1 xi refers to the sum of the node

states, that is, it is the analog of a total test score in
psychometrics. Whereas the Ising model allows the inter-
action strength σi j to vary between node-pairs, most
notably that σi j = 0 whenever node i and j are no direct
neighbors in Figure 2, the Curie-Weiss model assumes
that there is a constant interaction σ > 0 between each
pair of nodes, which induces a network such as that shown
in Figure 5.

From a psychometric perspective, it is clear that the
relations in Figure 5 also correspond to amodelwith a sin-
gle latent variable. From this perspective, it is interesting
to observe that the Curie-Weiss model is closely related
to the extended-Rasch model (E-RM; Cressie & Holland,
1983; Tjur, 1982), a particular item response model origi-
nating from educational and psychological measurement
(Anderson, Li, & Vermunt, 2007; Hessen, 2011; Maris,
Bechger, & San Martin, 2015). In the E-RM, the distribu-
tion of n binary variables x—typically the scores of items
on a test—is given by

p(x) =
∏n

i=1 β
xi
i λx+∑

x
∏n

i=1 β
xi
i λx+

, (3)

where the βi relate to the difficulties of items on the test
and the λx+ to the probability of scoring 2x+ − n out of n

items correctly. It can be shown that the E-RM consists of
two parts (e.g., Maris et al., 2015): a marginal probability
p(x+ | β, λ) characterizing the distribution of total scores
x+ (e.g., scores achieved by pupils on an educational test,
or number of symptoms of subjects in a clinical popula-
tion), and a conditional probability p(x | x+, β) charac-
terizing the distribution of the item scores/symptomatic
states given that the total score was x+. Comparing the
expression for the Curie-Weiss model in Equation (2) and
that for the E-RM in Equation (3), we see that they are
equivalent subject to the constraints:

logβi = μi

log λx+ = σx2+.

That is, whenever a quadratic relation holds between the
total scores x+ and the log of the λx+ parameters in the
E-RM, the E-RM is equivalent to the Curie-Weiss model.

It seems that we have made little progress, as the
expressions for both the Curie-Weiss model in Equation
(2) and the E-RM in Equation (3) do not involve latent
variables. This is not the case, however, as the E-RM has
been studied in the psychometric literature mostly due
to its connection to a latent variable model known as
the marginal-Rasch model (M-RM; Bock & Aitken, 1981;
Glas, 1989). Consider again Equation (2), and suppose
that we obtain a latent variable that explains all connec-
tions in theCurie-Weissmodel, such that the observations
are independent given the latent variable:

p(x | θ ) =
n∏

i=1

p(xi | θ ).

A particular example of such a conditional distribution is
an IRTmodel known as the Raschmodel2 (Rasch, 1960):

p(x | θ ) =
n∏

i=1

exp {xi(θ − δi)}
exp {δi − θ} + exp {θ − δi} ,

where the δi are commonly referred to as item difficulties.
In the M-RM, the distribution of the n binary variables x
is then expressed as

p(x) =
∫ ∞

−∞
p(x | θ ) f (θ ) dθ

=
∫ ∞

−∞

n∏
i=1

exp {xi(θ − δi)}
exp {δi − θ} + exp {θ − δi} f (θ ) dθ, (4)

 Note that we have used the ±1 coding to express the Rasch model, which
is slightly different than the usual expression for binary variables y = (1 +
x)/2 ∈ {0, 1}:

p(Yi = yi | θ , δi) = exp
{
yi(θ − δi)

}
1 + exp {θ − δi} .

This difference is only cosmetic as one can simply traverse between the two
notational schemes.
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where f (θ ) is a population or structural model for the
latent variable θ (Adams et al., 1997). This structural
model is typically assumed to be a normal distribution.
It can be shown that the marginal probability p(x) given
by the M-RM consists of the same two parts as the E-RM
(e.g., de Leeuw&Verhelst, 1986), except that themarginal
probability p(x+ | β, λ) is modeled with a latent variable
in the M-RM. Importantly, the E-RM simplifies to an M-
RM if and only if the λs constitute a sequence of moments
(Cressie &Holland, 1983; see Theorem 3 in Hessen, 2011,
for the moment sequence of a normal structural model).
This suggests that there exists an explicit relation between
a one factormodel (the unidimensional Raschmodel) and
the fully connected network in Figure 5.

Whereas the connection between the E-RM and the
M-RM has been known for many decades, the connec-
tion between the Curie-Weiss model and the M-RM was
only recently observed (Epskamp et al., in press;Marsman
et al., 2015). The relation stems from an application of the
Gaussian integral:

exp{a2} =
∫ ∞

−∞

1√
π
exp{2aθ − θ2}dθ.

Kac (1968) realized that the exponential of a square can
be replaced by the integral on the right-hand side, and
applied this representation to exp(σx2+) in the expression
for the Curie-Weiss model. We then only need a bit of
algebra to obtain the M-RM in Equation (4), with δi =
−μi.3 This is an important result as it implies the statisti-
cal equivalence of the network approach in Figure 5 and
the latent variable approach in Figure 6.

The structural model that results from the derivation is
not the typically used normal distribution, but the slightly
peculiar:

g(θ ) =
∑
x

g(x, θ ) =
∑
x

p(x)g(θ | x),

where the posterior distribution g(θ | x) is a normal dis-
tribution with mean 2σx+ and variance 2σ . That is, g(θ )

reduces to a mixture of n + 1 different normal (poste-
rior) distributions; one for every possible test score. In
the graphical modeling literature, the joint distribution
g(x, θ ) is known as a homogenous conditional Gaussian
distribution (HCG; Lauritzen & Wermuth, 1989), a dis-
tribution that was first studied by Olkin and Tate (1961,
see also; Tate, 1954, 1966). Some instances of the struc-
tural model are shown in Figure 7, which reveals a close

 That the Curie-Weiss model is a marginal Rasch model and was proposed
in the physics literature far before the Rasch model was introduced in the
psychometric literature, gives a counter-example to the maxim of Andrew
Gelman: “whatever you do, somebody in psychometrics already did it
long before” (see http://andrewgelman.com////a_longstanding/).
In fact, the Raschmodel itself was already proposed by the physicist and logi-
cian Zermelo back in  (see also Zermelo, ).

Figure . A graphical representation of the Rasch model. The
observables (squares) refer to the upward “↑” and downward “↓”
orientation of particles and each particle interacts with another
particle only through the latent variable�.

g(
θ)

Figure . Some instances of the structural model g(θ ) for the
n = 6 variable network. The solid line refers to the distribution
with σ = 0.1 and the μi equally spaced between −1 and +1. The
dashed line refers to the distribution with σ = 0.2 and the μi
equally spaced between −1 and +1. The dotted line refers to the
distributionwithσ = 0.1and theμi equally spacedbetween−0.2
and+1.

resemblance to a mixture of two normal distributions
with equal variances and their respective means placed
symmetrically about zero. For an interaction effect σ that
is sufficiently small, Figure 7 reveals that g(θ ) is close to
the typically used normal model.

The relation between the Curie-Weiss model and the
M-RM with structural model g(θ ) has been established
before in the psychometric literature on log-multiplicative
association models (LMA; Anderson & Vermunt, 2000;
Anderson & Yu, 2007; Anderson et al., 2007; Holland,
1990). However, it was not realized that the marginal
distribution p(x) (i.e., the LMA model) was a Curie-
Weiss model. In return, the Gaussian integral repre-
sentation that was introduced by Kac (1968) has been

http://andrewgelman.com/2009/01/26/a_longstanding/
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used in physics to study the Curie-Weiss model (e.g.,
Emch & Knops, 1970), and has been independently
(re-)discovered throughout the statistical sciences (Lau-
ritzen &Wermuth, 1989; McCullagh, 1994; Olkin & Tate,
1961). Here, however, it was not realized that the condi-
tional distribution p(x | θ ) is a Rasch model.

New insight I: The structural model g(θ) and
psychometric theory

The structural model and the normal posterior
distribution
Even though we have observed that g(θ ) is close to
the typically used normal structural model when σ is
sufficiently small, or can be closely approximated using
a mixture of two normal distributions otherwise (e.g.,
Marsman, Maris, & Bechger, 2012), the use of g(θ ) as
structuralmodel leads to a qualitatively differentmarginal
IRT model. For one thing, the item difficulty parameters
δi are completely identified in the M-RM with g(θ ) as
structural model, something that cannot be said in the
general case when using a (mixture of) normal distribu-
tion(s) for the structural model f (θ ). Specifically, in a
regular M-RM the item parameters δ only have their rel-
ative differences identified, but not their absolute value. It
is clear that this observation has an immediate impact on
the assessment of measurement invariance—differential
item functioning (DIF) in the IRT literature—as the
nonidentifiability imposes restrictions as to what can
or cannot be assessed in DIF analyses (e.g., Bechger &
Maris, 2015). However, that the structural model g(θ )

leads to a qualitatively different marginal IRT model is
most apparent in the simple analytically available normal
posterior distribution it implies for the latent variable.

The idea of assuming posterior normality for the latent
variable in the IRT literature can be traced back to a sem-
inal paper by Paul Holland in 1990, which also initiated
the study of LMA models in psychometrics. The topic
of asymptotic posterior normality has subsequently been
pursued by Chang and Stout (1993) and Chang (1996)
(see also; Zhang & Stout, 1997). An important result is
that if the number of variables (items) n tends to become
very large, the posterior distribution converges to a nor-
mal distribution that is centered on the true value �0 of
the latent variable (e.g., Chang & Stout, 1993), and condi-
tionally a strong law of large numbers:

� | Xn
a.s.−→ �0.

However, the posterior normal distribution g(θ | xn) that
is implied by the structural model g(θ ) does not have
the property that it converges in the traditional manner,
since the posterior variance Var(� | xn) = 2σ is constant
and does not decrease when n increases. Furthermore,
the posterior expectations E(� | xn) = 2σx+n diverge as

n grows, and it is unknown how a posterior distribu-
tion given n observations relates to a posterior distribu-
tion given n + 1 observations. It turns out that the study
of the limiting behavior of the latent variable distribu-
tion, and in particular the structuralmodel g(θ ), is related
to the study of the limiting behavior of networks for
n → ∞—known as the thermodynamic limit in physics.

The posterior distribution g(θ | x) and the study of its
limit
Two difficulties arise in the study of thermodynamic lim-
its. A first difficulty is that the network models are not
nested in n. That is, for the Curie-Weiss model p(x) we
have that the marginal distribution:

∑
xi

p(x) =
∑
xi

p(x(i), xi) = p(x(i)),

is not a Curie-Weiss model and an application of the
Curie-Weiss model on x(i) will result in a different net-
work (i.e., the Curie-Weiss model is not closed under
marginalization). A second difficulty is that the limiting
distribution tends to solutions that may be trivial from a
theoretical perspective, if σ is not properly scaled. This is
most easily seen in the conditional distribution:

p(xi = +1 | x(i)) = 1
1 + exp

{ − 2μi − 4σ
∑

j �=i x j
} ,

(5)
which is a logistic regression of the “rest score” x(i)

+ =∑
j �=i x j on xi. Observe that the regression coefficient has

a constant value that does not decrease with n, but that
the rest score tends to have larger absolute values when n
increases. That is, when n increases the conditional prob-
abilities p(xi = +1 | x(i)) tend to either 0 or 1 for every
variable i. This implies that the joint distribution p(x)
has all its probability mass on the realizations +1n and
−1n—known as the ground states of the model in physics.
Often, this behavior of the model is undesirable from a
theoretical perspective, although it can of course also be
a model in itself, for example, in psychopathology appli-
cations as noted earlier, one could consider the possibility
that growth of the problem network would lead that net-
work to get stuck in one of its ground states—for example,
would be a model for the transition from normal fluctu-
ations in psychological variables to a state of full-blown
disorder.

The difficulties in the study of the thermodynamic
limit also apply to the study of the structural model g(θ ).
Since the structural model explicitly depends on p(x),
it is clear that the problem of nonnested Curie-Weiss
models also has implications for the structural model.
To see that the scaling of σ is also important for the
structural model, observe that it has one of two forms
when μi = 0: it is unimodal when σ is sufficiently small
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θ

θ

Figure . The structural model g(θ ) for n = 6, 7, 8 in the absence
of main effects, that is, μi = 0, and with an interaction strength
σ = 0.075.

and bimodal otherwise.4 Figure 8 shows this structural
model for different values of n and a fixed value of σ ,
revealing that the value of σ for which g(θ )moves from a
unimodal to a bimodal form depends on the value of n.5

When n grows indefinitely, the two modes tend to −∞
and +∞ for every fixed σ > 0, and consequently p(x)
tends to have all probability mass on the ground states
−1n and +1n. Thus, to observe nontrivial solutions for
both p(x) and g(θ ) in the limit n → ∞, the interaction
strength σ needs to be a decreasing function of n.

It is important to scale the interaction parameter σ

with the right order and it turns out that a proper scaling6

is of order n: σn = σ/n. To see this, note first the following
variant of Kac’s equality7:

exp
{
σx2+/n

} =
∫ ∞

−∞

√
n

2
√

πσ
exp{x+θ − nθ2/4σ }dθ.

 In physics, the value σ is related to the inverse temperature, say (Kac, ):

σ = λ

κτ

where τ refers to temperature, κ to a constant value (Boltzman’s con-
stant), and λ to the scaled interaction effect. The point τC at which g(θ )

changes between the unimodal and bimodal form is known as the critical
temperature.

 See van der Maas, Kan, Marsman, and Stevenson () for the conceptual
implications of this property in the context of cognitive development and
intelligence.

 Note that there are possibly other scaling factors for which the posterior dis-
tributions converge. For instance,σn = o(n log n). However,wehave already
seen that the constant σn = o(1) provides a trivial solution. It can also be
seen that for the quadratic σn = o(n−2) all posterior distribution converge
to the priormean and themarginal p(x)becomes a uniformdistribution over
the possible configurations x.

 We have used the change of variable θ = 2 σn θ∗ .

θ

θ

Figure. The structuralmodelgn(θ ) forn = 6, 7, 8 in the absence
of main effects, that is, μi = 0, and with a scaled interaction
strength σn = σ/n = 0.45/n. We have used σ = 0.45 since then
the scaled structuralmodel forn = 6 variables shownhere is iden-
tical to the structural model for n = 6 variables in Figure .

When applied to the Curie-Weiss model with interac-
tion strength σ/n, this representation implies an M-RM
with a scaled version of the structural model: a mixture
of normal distributions g(θ | xn) with means 2σ x̄n and
variances 2σ/n. Observe that for this posterior distribu-
tion both the means and variances are scaled by n and
that the posterior distributions converge whenever each
of the 2σ X̄n tend to a unique point �0. This means that
the latent variable is defined here as the limit of 2σ X̄n on
an infinite network, and we implicitly assume that as n
increases the intermediate networks form a sequence of
models that becomebetter approximations of this limiting
network.

Before we proceed, some remarks are in order. First,
we note that even though scaling the interaction strength
by n provides interesting limiting behavior for both p(xn)
and g(θ | xn), it also implies amodel that violates a funda-
mental principle in physics (Kac, 1968), as the interaction
energy between two nodes i and j,−σnxix j, now depends
on the size of the system. Furthermore, in Figure 9 we
illustrate that the structural model gn(θ ) that results from
the derivation, has the property that it becomes more
informative as n increases. Since the structural model
gn(θ ) acts as a prior on the latent variable distribution
(Marsman, Maris, Bechger, & Glas, 2016), we observe a
prior distribution that becomes more informative as n
increases. This may be a peculiar result to the Bayesian
psychometrician.
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FromMark Kac toMark Reckase

The theory that we have developed for the Curie-Weiss
model carries over seamlessly to the more general Ising
model. Let us first reiterate the Ising model:

p(x) = exp
{∑n

i=1 μixi +
∑n

i=1
∑n

j=1 σi jxix j
}

∑
x exp

{∑n
i=1 μixi +

∑n
i=1

∑n
j=1 σi jxix j

} ,

where we have used the interaction parameters σi j to
encode the network structure. For instance, for the lattice
in Figure 2 we have that σi j is equal to some constant σ if
nodes i and j are direct neighbors on the lattice and that
σi j is equal to zero when nodes i and j are no direct neigh-
bors. Since we use the ±1 notation for the spin random
variables xi, we observe that the terms σiix2i = σii cancel
in the expression for the Ising model, as these terms are
found in both the numerator and the denominator (some-
thing similar occurs in the “usual” {0, 1} notation).

We will use the eigenvalue decomposition of the so-
called connectivity matrix � = [σi j] to relate the Ising
model to a multidimensional IRT model. However, since
the elements σii cancel in the expression of the Ising
model, the diagonal elements of the connectivity matrix
are undetermined. This indeterminacy implies that we
have some degrees of freedom regarding the eigenvalue
decomposition of the connectivity matrix. For now we
will use:

�∗ = � + cI = Q(� + cI)QT = AAT,

whereQ is thematrix of eigenvectors,� a diagonalmatrix
of eigenvalues and we have usedA = Q(� + cI)

1
2 to sim-

plify the notation. The constant c serves to ensure that
�∗ is a positive semi-definite matrix by translating the
eigenvalues to be positive. Observe that this translation
does not affect the eigenvectors but it does imply that only
the relative eigenvalues—the eigen spectrum—are deter-
mined.

With the eigenvalue decomposition, we can write the
Ising model in the convenient form:

p(x) = exp
{∑n

i=1 μixi +
∑n

r=1
(∑n

i=1 airxi
)2 }

∑
x exp

{∑n
i=1 μixi +

∑n
r=1

(∑n
i=1 airxi

)2 } ,

where we have used r to index the columns of A =
[air]. Applying Kac’s integral representation to each of the
factors exp(

∑
i airxi)

2 reveals a multivariate latent vari-
able expression for the Ising model, for which the latent
variable model p(x | θ) is known as the multidimen-
sional two-parameter logistic model (MD-2PL; Reckase,
2009). The MD-2PL is closely related to the factor ana-
lytic model for discretized variables (Takane & de Leeuw,
1987), which is whywewill refer toA as amatrix of factor-
loadings. This formal connection between Ising network
models and multidimensional IRT models proves the
assertion of Molenaar (2003), who was the first to note

this correspondence, and shows that to each Ising model
we have a statistically equivalent IRT model.

New insight II: The identification problem of the
multidimensional IRTmodel

The eigenvalue decomposition of�
That the diagonal elements of the connectivity matrix are
not identified certainly has implications for the interpre-
tation of the latent variable model. The main observation
is that there is no unique eigenvalue decomposition or
matrix of loadings A that characterize a connectivity
matrix. For instance, due to the indeterminacy of the
diagonals of the connectivity matrix, we have that for
every diagonal matrix C, the matrix �∗∗ = � + C char-
acterizes the same marginal distribution p(x). That is,
any such diagonal matrix does not alter the off-diagonal
elements of the connectivity matrix, and thus the off-
diagonal elements from �∗∗ are identified from the data.
We assume here that the diagonal matrix ensures that the
connectivity matrix �∗∗ is positive semi-definite, and use
the eigenvalue decomposition:

�∗∗ = � + C = Q∗∗�∗∗Q∗∗T = A∗∗A∗∗T.

Although this decomposition retains the off-diagonal ele-
ments from the connectivity matrix, and thus A and A∗∗

characterize the same connectivity matrix (the diagonal
elements are of no interest), it is in general unknown how
A∗∗ relates to A.

That the results can be strikingly different for different
admissible choices for the diagonal elements of the con-
nectivity matrix is illustrated in Figure 10, in which we
show the first eigenvector that corresponds to the decom-
position of a connectivity matrix � using cI (left panel)
and to a decomposition using a diagonal matrix C (right
panel). Even though these eigenvectors, and the latent
variable models that are characterized by them, are strik-
ingly different, both characterize the same marginal dis-
tribution. Apart from the difficulty that this observation
imposes on the interpretation of the multidimensional
IRTmodel, it also suggests a problemwith the identifiabil-
ity of parameters in this IRTmodel. It is clear that amatrix
of loadings holds little substance if it is not uniquely deter-
mined from the data, and one should be careful in inter-
preting the elements from such a matrix.

Nonidentification and the low-rank approximation to
AAT

That the matrix of loadings is not uniquely determined
poses a practical problem for estimating the connectivity
matrix using the latent variable representation, as we have
suggested elsewhere (Marsman et al., 2015). First, there
is no issue when we estimate a complete matrix of load-
ings since from this complete matrix of loadings we can
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Figure . The first eigenvector corresponding to a decomposition of � + cI (left panel) and the first eigenvector corresponding to a
decomposition of� + C (right panel).

construct the connectivity matrix. However, the connec-
tivity matrix is typically large and consists of a substantial
number of unknown parameters: n(n − 1)/2 to be pre-
cise. Using a well-known result from Eckart and Young
(1936), who proved that the best rank R approximation to
the full (connectivity) matrix is one where all but the R
largest eigenvalues are equated to zero, we have suggested
a low-rank approximation to the full-connectivity matrix.
However, this low-rank approximation is not uniquely
determined. We have used the diagonal matrix cI in our
decomposition, which ensures that the largest estimated
eigenvalues are also the largest eigenvalues of the com-
plete connectivity matrix. However, the indeterminacy
of the decomposition required us to consider the effect
of choosing R on the connectivity matrix, not the esti-
mated matrix of loadings. To this aim, we have used pos-
terior predictive checks (Gelman, Meng, & Stern, 1996;
Rubin, 1984), correlating the off-diagonal elements from
the observed matrix of statistics that are sufficient for �,
that is,

S = [si j] =
N∑
p=1

xpixpj,

where p indexes theN observations, with the off-diagonal
elements from the matrix of sufficient statistics computed
on data generated using different ranks of approximation.

New insight III: Differentmechanisms to generate
correlations

The common cause model, and the network or direct
interaction model provide two distinct interpretations
for the correlations that we observe in our data. In the
common cause model it is assumed that the observed
correlations are the result of an unobserved factor that is
shared among observations, and in the network approach
it is assumed that the observed correlations between

variables are the result of their direct causal influences
on each other. In theory, however, there may exist many
such possible interpretations. A specific alternative, for
instance, results from conceptualizing a theoretical con-
struct as the direct effect of observables, known as a
collider variable (Greenland, Pearl, & Robins, 1999; Pearl,
2000). Figure 11 shows such a common effect represen-
tation, in which the state of the observables X collectively
cause the effect Y ; for instance, observing major depres-
sion symptoms in a patient and the ensuing psychiatric
evaluation of depression. Even though the observables
may be marginally independent (Blalock, 1971; Bollen
& Lennox, 1991), conditioning on the common effect
results in associations between the observables (Elwert &
Winship, 2014; Greenland et al., 1999; Greenland, 2003;
Heckman, 1979; Hernán, Hernández-Diaz, & Robins,
2004). This provides us with a third possible interpreta-
tion; associations that arise through conditioning on a
common effect.

The formative model is probably the most widely
known example of a model in which the observables X
form causes of a (latent) common effect. For example,
stressful life events such as getting divorced, changing
jobs, or moving to a new home, are causes to the effect

Figure . Agraphical representation of the common effectmodel.
The observables X are the collective cause of the effectY .
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“exposure to stress” (Bollen & Lennox, 1991). The rela-
tion between the observables and the effect is usually of a
linear nature, such that the higher a person scores on these
observables, the more this person is exposed to stress.
The formative model is typically used to predict the effect
variable rather than to explain the relations between the
causes.

We can use the aforementioned selection mechanism
to form a third possible explanation for the relations
among observables. Conditioning on the common effect
in a collider model where the observables are marginally
independent and each positively affects the common
effect in a linear fashion, will result in negative asso-
ciations between the observables. For example, given
the information that a person has been diagnosed with
depression but does have a particular symptom increases
the probability that this person has any of the other
depression symptoms. Observe that the relation between
the observables and the effect does not need to be linear,
and that there exist collider models that imply other
structures for the associations among observables.

Recently, Kruis and Maris (2016) introduced the fol-
lowing collider model for the joint distribution of the
observables X and their effectY ;

p(x, y) =
n∏

i=1

exp {xiμi}
exp {+μi} + exp {−μi}

⎛
⎝ exp

{
σx2+

}
sup
x

exp
{
σx2+

}
⎞
⎠

y

×
⎛
⎝1 − exp

{
σx2+

}
sup
x

exp
{
σx2+

}
⎞
⎠

1−y

,

where the effect can take on the valuesY = 0 andY = 1,
and σ denotes the weight of Y on the Xi and is assumed
to be equal for all observables. Kruis and Maris (2016)
showed that the conditional distribution of observables
X given the effect Y , that is, p(x | Y = 1), is equivalent
to the Curie-Weiss model. This connection can also be
extended to the Ising model by replacing σx2+ with the
weighted sum (

∑
i airxi)

2, as we did before for the latent
variable representation, and introducing an effect Yr for
every eigenvector. In this manner, the structure that is
generated with an Ising model can also be generated with
this collider model.

In contrast to a linear relation between causes and
effect, the collider model that is proposed by Kruis and
Maris (2016) suggests a quadratic relation. Since the
observables take on the values xi = −1 and xi = +1,
the model implies that when more observables are in the
same state (either negative or positive) the probability of
the effect being present increases if σ > 0, or decreases if
σ < 0. It thus follows that conditioning on the effect being
present (y = 1) implies that observables have a higher
probability of being in the same state than in opposite

states, thus inducing positive associations between the
observables, given that σ > 0. When σ < 0, the oppo-
site is implied: conditioning on the effect being present
implies that variables have a higher probability to be
in opposite states, thus inducing negative associations
between the observables.

Causal versus statistical interpretations of the
equivalent models

In evaluating the theoretical status of the presentedmodel
equivalence, it is important tomake a distinction between
the conceptual psychometric model (e.g., individual dif-
ferences in a focal construct cause individual differ-
ences in the observed variables) and the statistical model
typically associated with that conceptual model (e.g.,
the observations can be described by a common factor
model). The reason that this distinction is important, is
that several conceptual models can imply the same sta-
tistical model in a given data set. For example, behav-
ior domains and reflective measurement models both can
be represented by the latent variable model. In a behav-
ior domain interpretation, the latent variable then corre-
sponds to a tail measure defined on a behavior domain
(roughly, a total score on an infinite set of items; Ellis
& Junker, 1997). In a reflective interpretation, the latent
variable corresponds to an unobserved common cause
of the items, which screens off the empirical correlations
between them (Pearl, 2000; Reichenbach, 1956). Because
multiple conceptual models map to the same statistical
model, the fit of a statistical model (i.e., a model that
describes the joint probability distribution on a set of
observables) does not license a definitive inference to a
conceptual model (i.e., a model that describes the relation
between observables and constructs), even though a con-
ceptual model may unambiguously imply a particular sta-
tistical model.

For instance, in its original field of application, the
model formulation in Equation (1) represents the phys-
ical interaction between particles. In this case, although
the model utilizes statistical terminology to describe the
relation between the particles, the model is not purely
statistical, but also expresses causal information. For
example, in the physical case, if the orientation of one
of the particles were to be fixed by an external interven-
tion, this would change the behavior of the neighboring
particles as well; in particular, a manipulation that fixes
the state of one of the particles would lead the remaining
particles to form a new Ising model, for which the fixed
particles would enter into the equation as part of themain
effects (see Epskamp et al., in press, Equation (6)). Thus,
in this case the model does not merely describe the sta-
tistical associations between a set of variables defined on
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the system, but also encodes the way in which the system
would change upon manipulations of the system. As a
result, in addition to representing statistical dependencies
in a data set, in this case the edges connecting the nodes
may also be interpreted as (giving rise to) bidirectional
causal relations. The structure in Figure 2 then encodes
a graphical causal model (Pearl, 2000), which could be
conceptually fleshed out in terms of an interventionist
framework, where by X counts as a cause of Y if an inter-
vention on X were to change the probability distribution
of Y (Woodward, 2003).

It is important to note that this causal interpretation is
not mandated by the probabilistic structure represented
in Equation (1) in itself. Statistically speaking, the model
is merely a convenient representation of a probability dis-
tribution that is described by a loglinear homogenous
association model (i.e., a loglinear model with an inter-
cept and pairwise interaction terms, but without higher
order interactions; Wickens, 1989). This loglinear model
in itself does not carry any causal information, because
it does not mandate how the system will change upon
manipulation of its constituent variables. Thus, to get to
the implication of how the system would behave under a
given intervention that fixes the state of a given variable in
the model, the statistical model has to be augmented by
causal assumptions (Pearl, 2000). These causal assump-
tions require theoretical motivation. In the classical appli-
cation of the Ising model in physics, this motivation is
given by the general theory of magnetism. In the case
of the psychopathology example in Figure 3, they could
be motivated by, for example, observations of patients,
general knowledge of the human system, or research that
involves interventions on individual symptoms.

Finally, it is useful to point out the asymmetry in mov-
ing from the conceptual model to the statistical model
versus moving in the other direction. A theoretical model
can have definite implications for the type of statistical
model that one expects to hold for the observations.
For instance, if one believes that correlated individual
differences in cognitive test scores are due to the common
influence of general intelligence or mental energy, as
Spearman (1904) did, this motivates the expectation that
a common factor model will fit the data. However, this
motivation is not unique to the common cause model. If
another researcher believes that individual differences in
cognitive test scores are correlated, because they sample
the same cognitive processes, as Thomson (1916) did, this
can (and does) also lead to the expectation that a common
factor model will describe the data. Finally, it has been
shown that the mutualism model of van der Maas et al.
(2006), in which cognitive tests measure attributes that
reinforce each other during development, also implies
the fit of a common factor model. Because each of these
models implies the same probability distribution for the

data, one cannot conclude from the fit of the statistical
model that the conceptual model is accurate.

Thus, causal interpretations do not follow from the sta-
tistical model alone, as indeed they never do. In addi-
tion, the mapping from statistical association structure
to a generating causal structure is typically one-to-many,
which means that many different underlying causal mod-
els can generate the same set of statistical relations. This
fact blocks direct inference from the statistical model to
the causal model, a problem known to SEM researchers
as the problem of equivalent models (Markus, 2002), to
philosophers as (one of the incarnations of) the problem
of induction (Hume, 1896), and to the general audience as
the platitude “correlation does not imply causality.” How-
ever, given a set of equivalent conceptual models, it is
often possible to disentangle which one is most accurate
by extending one’s set ofmeasurements, or through exper-
imental interventions for which the models imply diver-
gent predictions.

Figure 12 suggests some ways in which this may
happen. We start with two different conceptual mod-
els (represented in the middle panel). For instance, one
researcher may posit a reflective latent variable model,
which specifies correlations between observables to arise
from the pervasive influence of a common cause, while
another researcher may hold that these correlations arise
from reciprocal causal relations in a fully connected
network structure. In this case, both researchers would
expect the same probability distribution to describe the
data, which can be either represented as an IRT model
using a latent variable, or as a fully connected network of
conditional associations; this is the equivalence we have
exploited in the current paper. Yet, if the possibility to
intervene causally arises, it is still possible to disentangle
the conceptual models: for an intervention in one indica-
tor variable (which can be represented using Pearl’s do-
operator; Pearl, 2000) will change the probability distri-
bution of other indicator variables in a network model,
but not in a common cause model. Thus, the equivalence
shown here is not a full-blown equivalence of theoretical
models, but only of statistical models that describe a given
data set. Importantly, however, this does mean that causal
interventions will have to play a central role in research
that tries to distinguish common cause explanations from
network explanations of correlation patterns in the data.
Of course, this onlyworks if one has a fully reflective latent
variable model as one’s conceptual model, in which there
is no feedback between the indicator variables and the
latent variable; as soon as such feedback is allowed, the
current setup would not allow one to distinguish the con-
ceptual models.

It is important to observe that statistical equivalence
can never be fully eradicated. Even when we have a causal
intervention, that will by necessity result in a data set
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Figure . The relation between conceptual, statistical, and causal models. Two different conceptual models (middle panel) that imply the
same statistical observation model (top panel) can often still be teased apart using causal interventions (bottom panel).

that again has two possible statistically equivalent descrip-
tions, using either a multidimensional IRT model or an
Ising model. Rather than weeding out statistical equiva-
lence in general, causal interventions thus allow one to
distinguish between particular sets of conceptual models.

Network psychometrics in practice

Figure 7 illustrates that the latent variable distribution
g(θ ) that is used in theM-RMrepresentation of theCurie-
Weiss model can generate different shapes. Most impor-
tantly, the latent variable distribution resembles a normal
distributionwhen the interaction strength σ is sufficiently
low (or equivalently that the temperature τ is sufficiently
high, see footnote 4). This suggests that an M-RM with
the typically used normal latent variable model f (θ ) will
fit to data that comes from a Curie-Weiss model with a
sufficiently low interaction strength σ , but it will not fit

when σ is too high. In this case the latent variable distri-
bution g(θ ) that is used in theM-RMrepresentation of the
Curie-Weiss model becomes either skewed or bimodal,
see, Figure 7. We provide two illustrations of the practi-
cal application of the M-RM to data that comes from a
Curie-Weiss network. The first illustration confirms our
intuition that the M-RM with the typically used normal
latent variable model f (θ )will fit to data that is generated
from a Curie-Weiss model when the interaction strength
is sufficiently low, but not when the interaction strength
is too high. The second illustration demonstrates that for
cases where σ is too high the fit of the M-RM can be
significantly improved when a finite mixture of nor-
mal distributions is used as latent variable model f (θ )

instead of the usual normal distribution (Marsman et al.,
2012). Specifically, with a mixture of two normal distri-
butions we are able to generate the bimodal and skew
latent variable distributions that are observed when σ is
high.
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A serious complication in the evaluation of the latent
variable model f (θ ) is that the latent variables are not
observed. To overcome this complication, wemay replace
each of the nonobserved latent variables θ with a plausible
value θ∗ (Mislevy, 1991, 1993; Mislevy, Beaton, Kaplan,
& Sheehan, 1992). A plausible value for a person p with
an observed configuration of scores xp is a random draw
from his or her posterior distribution f (θ | xp). Observe
that replacing the nonobserved latent variables with plau-
sible values is much like imputing missing data points
(Rubin, 1987). The plausible values are used to infer about
the fit of the latent variable model f (θ ) by comparing
their empirical CDF with the CDF of the latent variable
model using the Kolmogorov–Smirnov (KS) test (e.g.,
Berger & Zhou, 2014). The reason that we use plausi-
ble values to evaluate the fit of the latent variable model
f (θ ) is two-fold. First, the true latent variable distribu-
tion g(θ ) is not known in practice, and plausible values
offer a practical alternative since they can be analyzed
as if the latent variables were observed. Second, we have
shown that themarginal distribution of plausible values is
the best estimator of the true—but unknown—latent vari-
able distribution (Marsman et al., 2016). Specifically, our
results imply that the marginal distribution of plausible
values will be closer8 to the true—but unknown—latent
variable distribution than the latent variable model f (θ ),
except when the latent variable model f (θ ) and the true
latent variable distribution g(θ ) are the same. One way to
interpret this result is that the model f (θ )—the normal
distribution—acts like a prior on the distribution of latent
variables, and that the observed data are used to update
this prior to a posterior distribution of the latent variables;
the distribution of plausible values.

Illustration I: TheM-RMwith a normal latent variable
model f (θ)

In the first illustration, we will use a Normal(λ, φ) dis-
tribution for the latent variables in the M-RM. We fix
the item difficulty parameters of the Rasch model to the
Curie-Weiss model’s main effects (i.e., δi = −μi), and
focus on evaluating the fit of the normal latent variable
model. The unknown parameters λ and φ need to be esti-
mated from the data. We will use a Bayesian approach
to estimate both the unknown model parameters and the
latent variables. To this aim, we need to specify a prior
distribution for the two unknown parameters, and here
we will use Jeffreys’s prior p(λ, φ) ∝ φ−1 (Jeffreys, 1961).
The advantage of this prior distribution is that it is rela-
tively noninformative. With the prior distribution spec-
ified, we can invoke Bayes’ rule to formulate the joint

 In expected Kullback–Leibler divergence.

posterior distribution

p(θ, λ, φ | X) ∝ p(X | θ)p(θ | λ, φ)p(λ, φ),

where the latent variable model p(θ | λ, φ) is the
Normal(λ, φ) distribution, the conditional distribution
of the observed data p(X | θ) is the Rasch model, and
X denotes the matrix of observations. In our analyses,
we generate N = 10, 000 cases from an n = 20 variable
Curie-Weiss network, such thatX is of dimensionN by n.
Observe that the joint posterior distribution is not avail-
able in closed form, butwe canmake use of theGibbs sam-
pler to simulate from it (Geman & Geman, 1984; Gelfand
& Smith, 1990).

Simulating from the joint posterior distribution
p(θ, λ, φ | X) using the Gibbs sampler boils down to
simulating from three distinct full-conditional distribu-
tions. The first full-conditional distribution is the pos-
terior distribution of the population mean p(λ | θ, φ),
which is equal to a Normal(θ̄ , φ/

√
N) distribution.

The second full-conditional distribution is the poste-
rior distribution of the population standard deviation
p(φ | θ, λ), and we find that the precision φ−2 a posteriori
follows a Gamma(N/2,

∑
p(θp − λ)2/2) distribution.

The final full-conditional distribution is that of the latent
variables p(θ | X, λ, φ), which conveniently factors in
N independent posterior distributions p(θp | xp, λ, φ),
for p = 1, . . . ,N. These posterior distributions are not
available in closed form, but Marsman, Maris, Bechger,
and Glas (2017) recently proposed an independence
chain Metropolis approach (Tierney, 1994, 1998) that is
based on the Exchange algorithm of Murray, Ghahra-
mani, and MacKay (2006) to efficiently simulate from
p(θp | xp, λ, φ).

We generated 25 data sets each for a range of interac-
tion strengths σ . For each data set, we apply our M-RM
and estimate the model’s parameters and latent variables
using the Gibbs sampler. In each case, we ran the Gibbs
sampler for 500 iterations. The average acceptance rate of
our independence Metropolis approach to simulate from
the posteriors of the latent variables was approximately
94%,which ensured that convergence of theMarkov chain
was almost immediate. Observe that the plausible values
are a by-product of our Gibbs sampler, that is, they are
the draws from the full-conditional posterior distribution
p(θ | X, λ, φ). We compute P-values from the KS-tests9

applied to the plausible values that were generated every
50th iteration of the Gibbs sampler, so that for every value

 The KS-test is a nonparametric test for the equality of two (continuous) one-
dimensional probability distributions, which can be used to compare an
empirical CDF against a reference distribution (e.g., Berger & Zhou, ).
Here,we compare the empirical CDFof plausible values against the estimated
Normal CDF (i.e., the reference distribution). The associated null-hypothesis
stipulates that the empirical CDF of plausible values coincides with the esti-
mated Normal CDF.
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Figure . The left panel shows the average P-value obtained from KS-tests comparing the empirical CDF of plausible value with the
Normal CDF for different values of the interaction strength σ . The right panel shows the true CDF of the latent variables (gray solid line),
the estimated Normal CDF (black solid line), and the empirical CDF of plausible values (black dotted line) for σ = 0.04.

of σ we obtain the P-values from 10 repetitions for each
of the 25 data sets.

The results are shown in the left panel of Figure 13,
where we plot the average P-value against the inter-
action strength σ . Observe that for σ values that are
smaller than approximately 0.027 the P-values average to
approximately 0.5, the expected P-value under H0. At
about the value σ = 0.033 the KS-test is significant at an
α-level of 0.05, which indicates that the plausible value
distribution and the normal latent variable model have
diverged. To gauge the severity of this mismatch, we
show the true latent variable distribution g(θ ) (gray solid
line), our normal latent variable model f (θ ) (black solid
line) and the empirical CDF of plausible values (black
dotted line) in the right panel of Figure 13 for σ = 0.04.
Observe that the distribution of plausible values is able to
reproduce the bimodal shape of g(θ ), where the normal
latent variable model f (θ ) cannot reproduce this shape.
However, we can also observe clear differences between
the distribution of plausible values and the true latent
variable distribution. The primary reason for this differ-
ence is that the normal latent variable model still has a
strong influence on the distribution of plausible values.
However, convergence of the distribution of plausible
values to the true latent variable distribution g(θ ) might
be improved by using a more flexible prior latent variable
model f (θ ) (Marsman et al., 2016), such as a mixture of
normal distributions.

Illustration II: TheM-RMwith amixture latent
variablemodel f (θ)

To accommodate for a bimodal or skewed distribution
of latent variables, we proposed to use a discrete mixture
of normal distributions as a latent variable model in the
M-RM (Marsman et al., 2012). Specifically, we have used

the two component mixture of normals,
p(θ | λ1, λ2, φ1, φ2, γ )

= γ pnormal(θ | λ1, φ1) + (1 − γ ) pnormal(θ | λ2, φ2),

where pnormal(θ | λi, φi) denotes the normal density with
mean λi and variance φ2

i , and showed that this mixture
can generate bimodal and skewed latent variable distri-
butions. The mixture distribution may be interpreted as
follows. Suppose that you flip a coin z that lands heads
(z = 1) with probability equal to γ and lands tails (z =
0) with probability 1 − γ . We generate the latent vari-
able θ from a Normal(λ1, φ1) distribution if the coin
lands heads, and generate the latent variable from a
Normal(λ2, φ2) distribution if the coin lands tails. This
interpretation suggests an augmented variable approach
to analyze the discrete mixture model: Introduce a binary
augmented variable z that allocates cases to one of the two
mixture components, such that

p(θ | λ1, λ2, φ1, φ2, z) =
{
Normal(λ1, φ1) if z = 1
Normal(λ2, φ2) if z = 0.

(6)
Wewill use this two-componentmixture as latent variable
model f (θ ).

We will again use a Bayesian approach to estimate
the unknown parameters of the latent variable model
f (θ ) and the latent variables. As before, we will use Jef-
freys’s approach to specify a noninformative prior for the
unknown population parameters

p(λ1, λ2, φ1, φ2, γ ) ∝ 1
φ1φ2

√
γ (1 − γ )

.

This leads to the following joint posterior distribution:

p(θ, z, λ1, λ2, φ1, φ2, γ | X) ∝ p(X | θ)

p(θ | λ1, λ2, φ1, φ2, z)p(z | γ )p(λ1, λ2, φ1, φ2, γ ),
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Figure . The left panel shows the average P-value obtained from KS-tests comparing the empirical CDF of plausible value with the
estimated Normalmixture CDF for different values of the interaction strength σ . The right panel shows the true CDF of the latent variables
(gray solid line), the estimated Normal mixture CDF (black solid line), and the empirical CDF of plausible values (black dotted line) for
σ = 0.04.

where the conditional distribution p(θ | λ1, λ2, φ1, φ2, z)
is the distribution in (6), and p(z | γ ) is a Bernoulli(γ )

distribution. Simulating from the joint posterior distri-
bution p(θ, z, λ1, λ2, φ1, φ2, γ | X) using the Gibbs sam-
pler boils down to simulating from the following five full-
conditional distributions:

(1) The full-conditionals of the N binary allocation
variables are Bernoulli distributions with success
probabilities:

p(zp = 1 | λ1, λ2, φ1, φ2, γ , θp)

=
γ 1

φ1
e
− 1

2φ21
(θp−λ1)

2

γ 1
φ1
e
− 1

2φ21
(θp−λ1)2 + (1 − γ ) 1

φ2
e
− 1

2φ22
(θp−λ2)2

,

for p = 1, . . . ,N.
(2) The full-conditionals of the latent variables p(θ |

xp, λ1, λ2, φ1, φ2, zp) are of the same form as
before, except that the “prior” on θ is the
Normal(λ1, φ1) distribution for cases where zp =
1 and the Normal(λ2, φ2) distribution for cases
where zp = 0.

(3) The full-conditionals of the two populationmeans
λ1 and λ2 are normal distributions. Specifically,
the full-conditional ofλ1 is aNormal(θ̄1, φ1/

√
n1),

where θ̄1 is the mean of the n1 cases for which z =
1 (i.e., n1 = ∑

p zp). Similarly, the full-conditional
of λ2 is a Normal(θ̄2, φ2/

√
n2), where θ̄2 is the

mean of the n2 cases for which z = 0 (i.e., n2 =∑
p(1 − zp) = N − n1).

(4) The full-conditionals of the two precision param-
eters φ−2

1 and φ−2
2 are gamma distributions.

Specifically, the full-conditional of φ−2
1 is a

Gamma(n1/2,
∑

p(zpθp − λ1)
2/2) distribution,

and the full-conditional distribution of φ−2
2 is a

Gamma(n2/2,
∑

p((1 − zp)θp − λ2)
2/2) distri-

bution.
(5) The full-conditional of the mixture probability γ

is a Beta(n1 + 0.5, n2 + 0.5) distribution.
Thus, each of the full-conditional distributions is read-

ily sampled from.
The results of our analysis with the mixture model are

shown in the left panel of Figure 14. Observe that the
P-values10 now average to approximately 0.5 across the
entire range of interaction strengths σ , which indicate
that the plausible values and the mixture model did not
diverge. The true latent variable distribution g(θ ) (gray
solid line), our mixture latent variable model f (θ ) (black
solid line) and the empirical CDF of plausible values (back
dotted line) are shown in the right panel of Figure 14
for σ = 0.04. Observe that both the mixture distribu-
tion f (θ ) and the plausible value distribution now closely
resemble the true latent variable distribution g(θ ).

We conclude that even though the data come from a
statistical model that is associated with a wildly distinct
conceptual framework, the M-RM that is associated to a
common cause interpretation fits the data remarkablywell
in practice. Especially the use of a mixture of two normal
distributions as a latent variable model provides a good fit
of the M-RM to network data, and with only three addi-
tional parameters this is a small price to pay. These results
imply that many of the methods that have been designed
to analyze binary data using marginal IRT models are
also useful to analyze binary data from a network per-
spective, and vice versa. That is, the statistical equivalence
might not only bring new theoretical insights but also
provide practical benefits. For instance, we may use IRT

 Using the estimated mixture of Normal CDFs as reference distribution in the
KS-test.
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models to handle missing observations in applications of
network models (Marsman, Waldorp, & Maris, 2016), or
may use network models to reveal the residual structure
in an IRT analysis (Chen, Li, Liu, & Ying, 2016; Epskamp,
Rhemtulla, & Borsboom, 2017).

Discussion

The current paper has explored connections between the
worlds of statistical physics and psychometrics. By estab-
lishing the equivalence of two canonical models from
these fields—the Lenz-Ising model and the IRT model—
a systematic connection has been forged that allows us to
cross-fertilize each of the fieldswith representations, tech-
niques, and insights from the other. In particular, we think
that psychometrics stands to gain from this connection,
because the network modeling framework yields a the-
oretically plausible modeling approach for dealing with
classic psychometric questions.

We have shown that Kac’s Gaussian integral represen-
tation can be used to relate the network models of Lenz
and Ising to the latent variable models of Rasch and Reck-
ase. Specifically, the models were seen to correspond to a
different factorization of the joint distribution of theman-
ifest and latent variables:

p(x | θ)g(θ) = p(x)g(θ | x),

where the latter factorization also revealed the graphical
models that were originally proposed by Olkin & Tate,
and later popularized by Lauritzen & Wermuth. We have
investigated some of the implications of these relations to
the existing psychometric theory.

That the network models of Lenz and Ising directly
relate to the IRT models of Rasch and Reckase implies
that every observed association (of binary random vari-
ables) can be given two interpretations: The associations
can be interpreted to arise from a direct influence between
variables or due to an underlying and unobserved (set
of) common cause(s). Additionally, we have shown that
the recent work of Kruis and Maris (2016) provides yet
a third possible interpretation; an observed association
that results from conditioning on a common effect. In
fact, there might be many possible ways to interpret an
observed association, and the fit of a statisticalmodel does
not guarantee that we have chosen the right one. This
urges us to be cautious with our interpretations, espe-
cially since this may have a strong influence on the type
of questions that we ask (i.e., the research that we per-
form) or, more importantly, the type of questions that
we do not ask. For instance, questions about measure-
ment invariance and correlational structure may be inter-
esting from a common cause approach but not from a

network approach, whereas researchers that take a net-
work approach are more likely to ask questions about
the dynamical aspects of a system, such as hysteresis
and critical slowing down. The observed statistical equiv-
alences make it easier to switch between the concep-
tual approaches, such that we can study different aspects
of our substantive theories. Ultimately, this will further
our understanding about the many distinct psychological
constructs that have been formulated, and how they relate
to observable behaviors.

It is also important, then, to investigate how the
network of statistical models in Figure 1 expands to
include other models. Several relations to statistical
models displayed in Figure 1 can be observed in the
psychometric-, econometric-, statistics-, and physics-
literature. For instance, relations between the item
response theory models in Figure 1 and other latent vari-
able models have been described by Takane and de Leeuw
(1987) and Thissen and Steinberg (1986), but see also the
work ofKamata andBauer (2008) andBartolucci andPen-
noni (2007), for instance. Furthermore, these IRTmodels
were also studied in relation tomodels that originate from
mathematical psychology by Tuerlinckx and de Boeck
(2005) and van der Maas, Molenaar, Maris, Kievit, and
Borsboom (2011). Similarly, we observe in the physics lit-
erature that the Ising networkmodel is a special case of the
Potts network model (Ashkin & Teller, 1943; Potts, 1952),
Markov random fields (Kindermann & Snell, 1980), and
it has also been related to the percolation theory of Broad-
bent andHammersley (1957) through thework of Fortuin
and Kasteleyn (1972). Finally, we observe that the work
described in Hessen (2012) provides an interesting exten-
sion to models for categorical random variables. With-
out trying to produce an exhaustive list of relations to
the models considered in this article, we hope that it is
clear that the network of statistical models displayed in
Figure 1 is a small subset of a formidable network of statis-
tical models. What is not clear, however, is how these sta-
tistical models that originate from distinct scientific fields
relate to one another, but the relations that have been dis-
cussed in this paper form an important first step to answer
this question.
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