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1 Introduction

The understanding of the main functions of the brain, those that preside over the transmis-
sion and the elaboration of the sensory stimuli, the memorization and the classification of
the information, have multiple repercussions of practical and immediate nature, from the
disciplines in medical field, like the study of the cerebral dysfunctions, to those in computer
science-technological field, as an example the study of the automatic systems for elaboration,
memorization, classification and acknowledgment of information.

Because the neurons are the primary functional unit of the nervous system, the study of

their behavior is important to understand how the brain functions. Neurons are electrically
excitable cells that process and transmit information. They typically respond to a stimulus
by producing complex spike sequences that reflect both the intrinsic dynamics of the neuron
and the temporal characteristics of the stimulus. The action potential (spike) generation
also depends on the recent history of cell firing. For a few milliseconds just after an action
potential has been fired, it may be virtually impossible to initiate another spike. This is
called the absolute refractory period.
Moreover neurons can fire in two distinct modes, tonic and burst. This firing mode strongly
affects the nature of the signal that is relayed to the cortex. In tonic mode, a cell’s firing rate
quite accurately and linearly reflects the amplitude and duration of an excitatory input. In
contrast, burst firing is characterized by high-frequency of action potentials and represents
a less linear relay of its input. The complexity of their behavior doesn’t permit to describe
the spiking patterns deterministically, so that they are treated probabilistically. The statis-
tical characteristics of the spiking patterns are rich in information on the neuron’s way of
functioning, and for this they are studied in depth.

The signal emitted from the neurons for the passage of the information runs along path-
ways that connect the various zones of the brain. Neuronal processing in cerebral cortex
and signal transmission from cortex to brain stem have been studied extensively, but little
is known about the feedback pathways that ascend from brain stem to cortex.

In this context Professor Peter L. Strick, Co-director of the Center for the Neuronal Basis
of Cognition (CNBC) at the University of Pittsburgh, discovered the existence of an as-
cending pathway coursing from the superior culliculus (SC) to the frontal eye field (FEF)
via mediodorsal thalamus(MD), using anatomical methods. Dr. Marc Sommer, Assistant
Professor in the department of Neuroscience at the CNBC, and his lab, discovered what this



pathway does (sends feedback information about orienting to the FEF). One of the main
goals of his lab is to understand it even better, and compare it with other feedback pathways.
Their overall hypothesis is that the pathway from SC has an influence on FEF neurons. To
test this hypothesis, they look for evidence of its strength. Do MD and FEF neurons respond
as if dominated by the influence of SC? Or do MD and FEF neurons act differently from the
SC, implying they get big influences from other inputs too (such as visual cortex)? They are
trying to answer these questions by studying the statistics of firing patterns: the inter-spike
interval (ISI) distributions, the probability density of the time interval between two adjacent
spikes.

Our role in this project has been to estimate the ISI distribution that reflects the influence
of the refractory period and the ability of some cells to fire in the two distinct modes, tonic
and burst. Two models are considered, a simpler one where the ISI are modeled utilizing
the sum of a normal distribution, that capture the effect of the refractory period, and an
exponential distribution, that represents the ”true” ISI; the second is a mixture model, that
is a combination of other probability distributions, in this case is given by the sum of a
normal distribution and a mixture of two exponential distributions, to allow to reproduce
the tonic and burst behavior. Once estimated the parameters for the two models for every
neuron, pertaining to the three brain areas cited , we performed goodness of fit test for each
model and model selection test for classifying the neurons as able to fire in the two modes
or not. The goal is to understand if the characteristic of firing in tonic and regular mode is
predominant only in one part of the brain, or if this feature influences the behavior of the
neurons along the pathway.

2 Data Set

Our data set is composed of all single neuron data from three different part of the brain;
superior culliculus (SC), frontal eye field (FEF) and mediodorsal thalamus(MD).

For every neuron we have the ISI distribution, that is the distribution of the time interval
between two spikes expressed in microseconds (ms), during the control period with two
different time windows, one of 100 ms, the other one of 350 ms. For time window equal to
100, we have 24, 47, and 20 data files for SC, FEF, and MD, respectively. And for time
window equal to 350, we have 34, 72, and 39 data files for SC, FEF, and MD, respectively.
In the control period the behavior of the neurons is not effected by any external factor, such
as visual stimuli, permitting to have a good idea of their natural functioning.

The FEF is located in prefrontal cortex, the part of the cerebral cortex (or gray matter)
that is important for making decisions. The main function of the FEF is to integrate lots of
information (vision, memory, state of the body) and come to a decision about where to look
next. It gets heavy input from the primary visual cortical areas further back (posterior) in
the cerebral cortex. Also it gets major input from the pathway of interest: it gets direct
projections from mediodorsal thalamus (MD), from neurons that in turn get input from the
superior colliculus (SC).

MD is a zone of the thalamus. The thalamus is a large mass of gray matter deeply
situated in the forebrain. All information that reaches the cerebral cortex (gray matter) of
the brain from below must be relayed by neurons of the thalamus. In general, MD thalamus



is reciprocally interconnected with all of the prefrontal cortex (the decision area of cortex).
So in diseases like schizophrenia where prefrontal cortex is damaged, MD is damaged by
association. The part of MD that is connected with the FEF is a tiny, concentrated volume
of neurons.

The SC sits on top of the brainstem. In general, it is critical for orienting the body.
All animals, even the lowest lizards and frogs, have an SC or something very much like it.
Activity in the SC causes the eyes and head to move, as if looking for something. This is
"orienting”, or directing the computational power of the whole brain toward a specific object
of interest in the world. The SC gets massive information from all over the brain and sends
commands down to the lower brainstem centers that move the eye muscles and neck muscles.
The SC is interesting in this study because it, also, sends a big projection up to the MD,
onto relay neurons that in turn project to the FEF. This pathway goes "the wrong way”
— instead of helping to orient the body, it seems to be sending information to the cerebral
cortex, "telling” the cortex that the body or eyes are about to move.

3 Experiment

During the experiment, the monkey faced a tangent screen on which visual stimuli were
projected by an LCD monitor. Visual stimuli were 0.3 by 0.3 blue or red spots ((0.6¢d/m?))
with dim ambient room light. Personal computers controlled the presentation of visual
stimuli and recorded at 1 kHz the eye position the occurrence of action potentials, and the
timing of task events.

Each task is composed of 3 parts, the control period, the visual stimulus and the move-
ment. The control period is at the very beginning of the trial. This is when the animal is
just looking around, just waiting, and not engaged in a formal task. Then there is the usual
stimulus given by the spotlight, and in the end the saccade movement. A rapid intermittent
eye movement occurs when the eyes fix on one point after another in the visual field. At
the end of each trial, the monkey is rewarded. The Control data, the data from the control
period, are critical because they tell us how much the processes of the neurons fluctuate in
the steady state, when nothing in particular is happening in the visual world or with regard
to eye movements.

More specifically, the data we have consist of (1) Control 100, (2) Control 350, (3) Entire
Trials, (4) Fixation, (5) Mem, (6) Sac, and (7) Vis. (1) and (2) are explained in the previous
paragraph, and the difference is the width of time window; thus, Cont350 has longer ISIs
and larger data sets. (3) Entire Trials contain all the ISI in each trial from start to end. (4)
Fixation is a time period when the monkey is steadily looking at the central fixation spot,
waiting for the peripheral visual target to appear. (5) Mem is a 200ms period when the
monkey remembers the location of the visual target. (6) Sac is a 100ms period leading up
to the start of the saccadic eye movement. And (7) Vis is a 100ms period during the visual
response of the neurons. And we are given those 7 types of data sets for each of the three
different brain areas, FEF, SC, and MD. Although there are 7 types, we will focus on (1)
and (2) for those three brain areas.



4 Methods

4.1 Single and Dual Process Models

As with other types of memory-less situations, inter-spike intervals (ISIs) have an exponen-
tial distribution. However, an ISI consists of two components: 1) refractory period and 2)
actual ISI. A refractory period is a time interval when a neuron fires a spike and takes a rest
for sometime, and it cannot fire another spike during a refractory period. And refractory
periods are considered to be normally distributed. Actual ISIs are the ones that have an
exponential distribution. Thus, we are considering a convolution model of a normal (with
mean p and variance o2) plus an exponential (with mean 3), which we call the single process
model. The probability density function is;
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where @ is the cumulative distribution function of a standard normal. Thus the model has
three parameters, and we will estimate them by taking the maximum likelihood approach.
See Appendix A for the details of deriving the function.

Another underlying assumption is that a neuron has two stages that it switches between
with some probability, and therefore it has two exponentials for the actual ISI. We call it
the dual process model. Now the probability density function is as follows (we use rate
parameters A for this model to avoid confusion with 3 in the single process model);
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And p is the probability that an ISI comes from the exponential with A\;. This model has 5
parameters, and we again will take the maximum likelihood approach to estimate them. The
rate estimate for the burst mode should be larger than that of the regular mode, because a
larger rate means more spikes in a unit time period.

To determine the ”goodness” of our estimators we looked for their consistency and how

fast they should converge to the true values of the parameters (more details in the Appendix).
For doing that we looked at the mean squared error M .SE and at the rate at which it decreases
as n, the sample size, increases.
As we can see from the Figure 1, M SE for the model with three parameters, (i, o, 3), it
decreases rapidly, from a value of MSFE = 3067 with a simple size n = 30 to a value of
MSE = 85 for n = 50, only 20 data points more, but really a better estimate. Currently,
we do not have the same kind of plot for the dual model, but the estimate indicates that we
need more than 100 observations to attain the same accuracy as the single model.

4.2 Analysis

Now we show how these two models actually fit with one data set. Applying the grid search
to find the best initial values and then using nlm function in R, we find estimates to be:
B =12.02, i = 4.502, 02 = 5.129, Xo = 0.1059, X; = 0.0590, p = 0.3414. The dotted line
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MSE vs Sample Size
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Figure 1: MSE for the single process model
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Figure 2: Two estimates

describes the density estimate for the single process model, and the line for the dual model.
As can be seen in the plot, the two models have produced similar lines. In fact, many of the
data sets give two lines very close to eath other. R R

The second data set shown here have estimates; [ = 25.72, 1 = 1.938, 02 = 0.3492 |
o = 0.0966, A\ = 0.0228, p = 0.4599. In this data set, the two models give somewhat
different density estimates. It can be checked even visually.
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Figure 3: P-values for KS test for the single (left) the dual model (right) in Cont100 FEF
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Figure 4: Histogram of the AIC difference

4.2.1 Kolmogorov-Smirnov test

First, we see whether or not those two models fit our data adequately by applying the
Kolmogorov-Smirnov test. The details of this method is described in Appendix A. Figure 4
shows the p-values for testing the single process model for Cont100 FEF data sets. Those
p-values that are smaller than 0.05 mean that the single process model does not fit those
data files adequately. 26% of the Cont100 FEF data files resulted in the acceptance of the
single model. Figure 5 shows that the dual process model fit 95% of the data files adequately,
which indicates the improvement made by applying the dual process model rather than the
single process model. Other acceptance percentages for Cont100 are: 12.5% for SC single,
100% for SC dual, 65% for MD single, and 100% for MD dual.

4.2.2 AIC (Akaike Information Criterion)

Our goal is to find the best model for ISI ditributions of each neuron, so that we can
classify neurons based on the ability of having one or two modes . One of the measurements
often used in model selection is AIC, which is defined as AIC = —2[ + 2k, where [ is the
loglikelihood and £ is the number of parameters in the model, and the second component is
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Figure 5: P-values for LRT for FEF Cont100

the penalization term. The smaller the AIC value is, the better the fit is. The plot shows
the difference between the two models’” AIC scores in the Cont350MD data files. A large
difference indicates that the dual process model fits far better than the single process model.
For this analysis, we employ the ordinary interpretation; that is, we choose the model that
gives a smaller AIC value. Thus, those neurons whose AIC difference values are greater than
0, we would choose the dual process model. However, this method does not provide us with
the significance of the difference, i.e., we would not know how big a difference should be in
order for us to prefer one model over the other. Thus we move on to the loglikelihood ratio
test in the subsequent subsection.

4.2.3 LRT

Because the single is the nested model of the dual process model, that is, we can set p = 0 in
the dual model and construct the single model, we decide to use the loglikelihood ratio test
(see the appendix for details) to measure the preference of one model over the other. Figure
7 shows taht 45% of the neurons in the FEF data have p-values greater than 0.05, which
indicates that the single model is adequate for those neurons. For 58% of the neurons in SC,
the single model is adequate enough, and the percentage for MD is 70%. By comparison, we
notice that the AIC conclusions agree with those from LRT.

5 Conclusion and Further Work

As noted in the analysis section, 42% of SC, 30% of MD, and 55% of FEF preferred the dual
process model over the single process model. Dr. Marc Sommer noted that if the influence
of the SC is strong, then the ISI statistics of MD and FEF neurons should be similar to those
of SC neurons. And that is not what we are observing in our analysis, thus our plausible
interpretation is that the effect of the SC is rather weak. And this statistically different
activity pattern indicates that MD probably has some inputs from an area different from
SC, and that FEF probably has a somewhat large number of inputs from some area besides



SC.

For future studies, it might be interesting to see similarities and differences of the prob-
ability of switching between the two modes (regular and burst) betweeen the neurons be-
longing to the same area and between different brain areas, or to investigate the possibility
of two different distributions for the two modes instead of sharing one distribution as in our
analysis. We can also compare the regular and bursty Poisson rates. It may be worth trying
the local variation, which measures how much variation exists between adjacent ISIs, as was
done in Shinomoto, S., Shima, K., and Tanji, J. (2003). We may try other data files such as
Entire Trial that are different parts of the experiment.



6 Appendix A

6.1 Single Process Model Probability Density Function
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Now, with letting the ® denote the cumulative ditribution function of the standard
normal, the cumulative distribution function of X =Y + 7 is;
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6.2 Dual Process Model Probability Density Function

Here we have two exponentials, Zy and Z; with rate parameters Ay and A\, respectively. Now
let Z be the mixture of Z, and Z;, with p equal to the probability that the ISI comes from
Z1. Now,
fz(2) = (1 = p)Aoe % + pAre ™2
And
Fa(z) = (1= p)(1 — ™) + p(1 — ™)
And following the same way as the single process model we derive;
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6.3 MSE
The quality of a point estimate can be assessed by the mean squared error (MSE), defined by

MSE = Ey4(6, — 0)?
where the F(.) refers to the expectation with respect to the distribution

fz1,.yxy;0) = Hf(x“G)
i=1
that generate the data.
The MSE can be written as

MSE = bias?(6,,) + Vy(6,,)
where the bias of an estimator is defined as
bias(6,) = Ey(6,) — 0

that is én is unbiased estimator for 8 if £ (én) = Q Vy is the variance of Ehe estimator.
If the bias — 0 and V — 0 as n — oo then 6, is consistent, that is 6,, — @

6.4 Kolmogorov-Smirnov test

The objective of the Kolmogorov-Smirnov test is to test whether a sample of a random
variable belongs to a predefined distribution. The null hypothesis must therefore specify
both the type of distribution function and its parameters (the null hypothesis states that
the sample belongs to the distribution specified). The alternative hypothesis is that the
assumed probability distribution function does not match the underlying one. The idea
behind the Kolmogorov-Smirnov test is quite simple: the maximum difference between the
assumed cumulative pdf and the random sample to be investigated is used to decide whether
the random sample belongs to the distribution or not.

Hy: F(x) = F*(x)versusH; : F(x) # F*(x)

where F'(x) is the unknown distribution of the random sample, F' % (z) is a completely
specified hypothesized distribution function.
The test statistic is

T = supy|F"(x) — S(z)]

where S(x) is the empirical distribution function based on the random sample. The hypoth-
esis regarding the distributional form is rejected if the test statistic, T, is greater than the
critical value obtained from a table.
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6.5 Likelihood Ratio Test

The likelihood ratio test (LRT) is a statistical test of the goodness-of-fit between two models.
A relatively more complex model is compared to a simpler model to see if it fits a particular
dataset significantly better. The LRT is only valid if used to compare hierarchically nested
models. That is, the more complex model must differ from the simple model only by the
addition of one or more parameters. Adding additional parameters will always result in a
higher likelihood score. However, there comes a point when adding additional parameters
is no longer justified in terms of significant improvement in fit of a model to a particular
dataset. The LRT provides one objective criterion for selecting among possible models. The
LRT begins with a comparison of the likelihood scores of the two models:

Hy : 0 € OqversusHy : 0 ¢ ©g

The likelihood ratio statistic is

~

A= 2% In(L(0) — L(f))

where 6 is MLE and éo is the MLE when 6 is restricted to lie in ©y. This LRT statistic
approximately follows a chi-square distribution. To determine if the difference in likelihood
scores among the two models is statistically significant, we next must consider the degrees
of freedom. In the LRT, degrees of freedom is equal to the number of additional parameters
in the more complex model. Using this information we can then determine the critical value
of the test statistic from standard statistical tables. Let be r the dimension of © and ¢ the
dimension of Oy, the p — value for the test is P(xZ_, > A).

11



7 Appendix B

7.1 FEF
7.1.1 Table Single Model Parameters

[Betal [mu] [sigma2] [AIC1]

[1,] 39.062624 13.0347225 4.875880e+01 1095.1111
[2,] 38.509874 2.0000000 0.000000e+00 573.7698
[3,] 11.880683 4.5499695 3.862719e+00 1990.2017
[4,] 10.088239 2.8087864 1.285473e+00 2986.7135
[5,] 41.746190 1.0000000 0.000000e+00 1339.5263
[6,] 14.270501 1.4897776 1.412534e-01 1972.4921
[7,] 80.203210 0.9999774 6.797027e-12 964.6248
[8,] 18.277497 16.9142854 4.260597e+01 619.5444
[9,] 51.256247 1.9933752 1.306169e-06 499.1577
[10,] 41.695355 0.9970054 2.981541e-07 1163.8121
[11,] 58.994392 3.0000000 0.000000e+00 825.8489
[12,] 52.149339 2.0000000 0.000000e+00 1449.9618
[13,] 48.022097 8.3929515 1.022317e+02 1076.6798
[14,] 25.964210 10.8206077 5.403232e¢+01 716.1899
[15,] 15.784871 18.7089556 6.122811e+01 1354.3673
[16,] 19.568485 13.4720522 1.183412e+02 659.7940
[17,] 44.491678 4.7634015 2.416910e+00 952.0969
[18,] 64.303464 0.9999996 3.964176e-15 600.4982
[19,] 23.229100 13.0481308 1.134024e+02 918.5775
[20,] 46.695716 1.0000000 0.000000e+00 799.3718
[21,] 61.476264 10.8711940 2.288113e+01 1230.3036
[22,] 66.663929 5.3079070 3.926950e+00 748.1119
[23,] 83.781881 13.7444353 2.342257e+01 630.6179
[24,] 62.287660 2.0000000 0.000000e+00 704.7687
[25,] 53.400991 1.9995470 6.468826e-09 841.2774
[26,] 25.727960 5.2510480 5.173978e+00 1242.9454
[27,] 12.626594 4.5956722 5.565605e+00 1203.9505
[28,] 28.331412 2.0000000 0.000000e+00 723.8683
[29,] 24.609877 0.9999835 4.860356e-12 926.6361
[30,] 28.067006 1.0000000 0.000000e+00 1156.0944
[31,] 22.217185 4.6751731 2.543645e+00 1088.8175
[32,] 38.018648 1.0000000 0.000000e+00 728.3061
[33,] 23.728661 3.0000000 0.000000e+00 745.9241
[34,] 24.750514 1.0000000 0.000000e+00 1731.6387
[35,] 58.496745 0.9998031 1.202825e-09 644.8517
[36,] 37.184239 2.0000000 0.000000e+00 1510.2096
[37,] 107.907354 2.0000000 0.000000e+00 896.3578
[38,] 40.736143 4.7688067 3.237915e+00 3841.4170
[39,] 54.269191 1.0000000 0.000000e+00 1993.5001

[40,] 25.076871 3.8136660 1.454863e+00 4604.1729
[41,] .490961 9902576 1.298844e+00 2826.9347
[42,] 21.828436 9541726 6.559869e-01 1520.7607
[43,] 20.790653 0000000 0.000000e+00 2108.1077
[44,] 18.495728 9999168 3.640647e-10 907.0343
[
9

w

[45,] 50.262091 0000000 0.000000e+00 706.8473
[46,]1 92.052472 8352836 9.818312e+00 2182.5778

W RN W

7.1.2 Table Dual Model Parameters

[mu] [sigma2] [1ambda0] [1ambdail] [pl [A1C2]

[1,] 13.5083000 5.311701e+01 2.825114e-02 0.017821942 0.154113872 1099.0357
[2,] 1.9999980 0.000000e+00 4.573641e-02 0.009672969 0.205499694 566.9869
[3,] 5.5160695 5.353270e+00 1.684912e-01 0.045365778 0.309136171 1973.8901
[4,] 3.3012966 1.940270e+00 1.514881e-01 0.046434316 0.200510486 2967.2054
[5,] 1.9043631 7.265421e-01 7.050211e-02 0.017034321 0.564926505 1333.1381
[6,] 1.5099486 1.437391e-01 4.741900e-02 0.081384893 0.776957507 1975.5994
[7,] 0.9999997 1.184162e-18 1.245627e¢-02 0.014427789 0.000000000 968.6246
[8,] 16.9142795 4.260595e+01 5.633855e-02 0.054712062 1.000000000 623.5444
[9,] 2.0000000 0.000000e+00 1.968439e-02 0.019387101 0.244450370 503.1436
[10,] 2.2378945 1.700582e+00 3.995973e-01 0.016998157 0.713715623 1143.0756
[11,] 10.0283578 7.256514e+01 3.265431e-02 0.014796480 0.550865440 834.2688
[12,] 5.0547359 9.289091e+00 5.501381e-02 0.010220937 0.382195053 1433.4914
[13,] 2.0000000 0.000000e+00 1.837726e-02 0.001497171 0.000000000 1069 .2880
[14,] 10.8205748 5.403188e+01 2.134022e-01 0.038514547 1.000000000 720.1899
[15,] 19.4382177 6.542693e+01 1.194626e-01 0.058814743 0.774447936 1358.2650
[16,] 13.4720448 1.183414e+02 1.977609e-01 0.051102539 1.000000000 663.7940
[17,] 4.7634042 2.416945e+00 8.878085e-06 0.022476096 1.000000000 956.0969
[18,] 1.0000000 0.000000e+00 1.358898e-02 0.005952781 0.000000000 603.4319
[19,] 13.0481071 1.134022e+02 2.045422e¢+00 0.043049414 1.000000000 922.5775
[20,] 1.0000000 0.000000e+00 2.944950e-02 0.014487605 0.355156052 802.3161
[21,] 21.4259860 9.986689e+01 1.235042¢-01 0.011846944 0.561169794 1223.7910
[22,] 5.3079097 3.926978e+00 1.500062e¢-02 0.020509056 0.000000000 752.1119
[23,] 13.7444337 2.342252e+01 5.647105e-02 0.011935755 1.000000000 634.6179
[24,] 1.9998953 5.724611e-10 3.243456e-02 0.014516921 0.836844386 708.5717
[25,] 2.0000000 0.000000e+00 4.289480e-01 0.015617084 0.824380728 827.2849
[26,] 5.2510286 5.173849e+00 4.809048e-02 0.038868175 1.000000000 1246.9454
[27,] 4.8500946 6.216481e+00 2.074269e-02 0.086869644 0.976548577 1205.3775
[28,] 7.2405246 1.934100e+01 1.227334e-01 0.013076429 0.189286916 702.9093
[29,] 2.4474205 1.545160e+00 3.353323e-01 0.027474571 0.618622545 911.0308



[30,]
[31,]
[32,]
[33,]
[34,]
[35,]
[36,]
[37,1
[38,]
[39,]
[40,]
[41,]
[42,]
[43,]
[44,]
[45,]
[46,]

-

RFONNDWWRROINWR®WO K K

.0000000
4878056
9999966
0000000
3488477
2222284
6126590
0000000
7870663
8303412
5567310
9902546
7145452
6785860
1431243
.0000000
.0000005

000000e+00
180916e+01
000000e+00
000000e+00
608960e+00
732080e-01
696596e+00
000000e+00
877436e+00
932640e-01
360976e+00
298846e+00
639459e+00
196889e+00
202974e-01
000000e+00
.999999e-01

.169344e-02
.370141e+00

529014e-01
516455e-01
587819e-01
243056e-02
848503e-02
914640e-01

837406e-01
008225e-01
864559e-01
167457e-02
443124e-02
208502e-01
037639e-02

.053572e-02

7.1.3 P-value LRT

[1]

8l
[15]
[22]
[29]
[36]
[43]

9
1
9
1
5
4
5

.629912e-01
.000000e+00
.501509e-01
.000000e+00
.530529e-05
.775986e-01
.662137e-15

4.555275e-03
.929410e-01
000000e+00
000000e+00
178125e-09
.000000e+00
.371580e-04

DO ;R ©

7.1.4 AIC.diff

.161836 -75.498690

[1]  3.924578
91 3

[171  4.000000

[25] -13.992506

[33] -13

[41] 4

7.2

7.2.1

para

[1,]
[3,]
[4,]
[5,]
[6,]
7,1
[s,]
[9,]
[10,]
[11,]
[12,]
[13,]
[14,]
[15,]
[16,]
[17,]
[18,]
[19,]
[20,]
[21,]

7.2.2

[1,]
[3,]
[4,]
[5,]
[s,]
7,1
[8,]
[9,]
[10,]
[11,]
[12,]
[13,]
[14,]
[15,]
[16,]
[17,]
[18,]
[19,]
[20,]
[21,]

50.

52.
.91160 13.
.77800 11.
.42325 12.
.0940281

DO N WO

1
1

o
oW W

22.

o
© » o

16.
31.

~

R
=

-6.782939
.985832 -20.736499

2.933725
4.000000

3.

4
1
9
2.
2
6

885094e-05
.251454e-06
.000000e+00
.061913e-01
397778e-06
.799991e-07
.642542e-09

-16.311556 -19.508120
8.419889 -16.47
4.000000 2.94
1.426989 -20.95
3.811493 2.52:

.000000 -19.608017 -61.617883 -10.71

MD

[,1]
.02995
26410
.05906
.98072
.71627
56861

.49971
.22854
.19840

o oo

.49936
.08407 2
.03822
.63179

oo Nwm

[,1]
.9473537
.0000000
.9999477
.9998081
.9999764
3284465
.3484040
.9887099
.4773237
.2993622
4333701
.9999995
.3798274
4294940
3947949
2710860
.0000000
2888430
.0273356
.0912019

DO O N W

3554463
.37644 15.
.58283 17.
.1322195
.7730740
.9999995
. 7398857
.75266 13.
.80009 12.

Table Dual Model Parameters

P WROWOMMWNRONARNNNO®O R

[,2]
0000000
9995055
9994438
7939384
9999924
3284458
3484033
4751479
7832858

3798551
5637251

0273355
6265777

[,2]
383339e+01
000000e+00
104028e-11
427304e-09
631542e-11
118841e+01
464151e+02
206088e+01
840279e+01
229718e+01
419375e+02
519541e-15
238717e+01
312570e+01
271649e+01
993065e+01
000000e+00
2563721e+01
213534e+00
244419e+02

[,3]

0.000000e+00  803.
6.636818e-09 762.
6.757432e-09 618.
1.235673e+02 734.
5.355286e-13 883.
2.118841e+01 691.
1.464151e+02 1067.
2.810922e+01 1568.
6.567710e+01  882.
1.545615e+01 1165.
.9659030 3.477637e+01 745.
7.309088e+01  725.
3.238749e+01 1114.
5.623039e+01 1086.
1.911403e+01 577.
7.349038e+01  769.
8.165745e-15 733.
8.153185e+00 1055.
3.213531e+00 429.
7.665927e+01  751.

[,3]
02377980
01739834
01125320
01701458
06028010
02118186
01361083
03784151
02103454
19190659
89147867
01104315
00000000
02505904
30087491
06570523
00756635
01153576
08424686
03311890

O0O0O000000O0O0O0OO0O0O0O0O0O0O0O0O

0
0
0
0
0
0
0
0
779609e-02 0.
0
0
0
0
0
0
0
0

.078763539 0.848022588 1121.9367
.025845220 0.386561497 1066.9355
.015696313 0.544566360 705.2735
.027432886 0.539176499 732.7623
.018019337 0.327339084 1656.1400
.033369190 0.437759150 648.6631
.020501069 0.581068395 1512.7316
.009977697 0.648098530 844.7044
010687826 0.197597756 3815.2400
.012551909 0.655351185 1917.1887
.027785668 0.552920414 4578.5782
.286453298 0.725187531 2830.9347
.018864240 0.216460075 1501.1527
.025184352 0.082694558 2046.4898
.025526204 0.326135564 896.3173
.008606348 0.341781222 673.1877
.016244909 0.001000148 2188.3951
7.857360e-06 5.549352e-03 6.399451e-01
0.000000e+00 3.588345e-05 3.359719e-03
5.867612e-01 1.000000e+00 5.898613e-01
1.238731e-04 1.000000e+00 2.762345e-01
1.348746e-06 1.876527e-04 0.000000e+00
0.000000e+00 3.746130e-07 1.000000e+00
1.000000e+00
-6.388148  3.107254  3.999867

0469 -7.391796 4.000000 3.897731
4264 -6.512543  4.000000  4.000000

9055

999335e-01
000000e+00
214713e-03
803733e-06
100522e-01
.474538e-06

~N ©Wwo R ©

4.000000
4.000000
3.802990

-15.605284 -34.157646 -21.881936 -23.032670

2031 -51.653382 -26.176959 -76.311345 -25.594745

6986

[,4]
9060
3000

[,4]
02377971
05346827
15437137
06829477
01760765
01902276
01589532
01165287
04456930
02726907
01297792
04433577
02996122
04204949
01431054
01908100
02120206
04810870
04210054
00565785

OO0O00000000O00OO0O0OO0OO0O WO OO

-33.659542

OHOO0OO0OO0OOHROOOOOKRKLHOOOOO

[,5]
88618735
10777727
02052455
00000000
42843999
00000000
00000000
30036238
55018045
60658268
52203606
00000000
00000000
56986798
55462704
68210503
96508006
79823284
00000000
06919773

5.817275

Table Single Model Parameters

809.
765.
620.
730.
879.
695.
1071.
1564.
885.
1166.
743.
725.
1118.
1089.
576.
772
737.
1047.
433.
T47.



7.2.3 P-value LRT

pv

[1] 1.000000000 0.703113899 0.374798659 0.015295182 0.020120268
[7] 1.000000000 0.017112280 0.697042004 0.266815287 0.039945769
[1211.000000000 0.891832908 0.056759329 0.639376195 0.792220954

[1811.000000000 0.021370494

7.2.4 AIC.diff

[1] 5.626276 3.295527 2.037267 -4.360435 -3.812055 4.000000

[8] -4.135918 3.278181
[156]-1.737871 3.105475 3.534170 -8.507103 4.000000 -3.691488

7.3 SC

7.3.1 Table Single Model Parameters

45.
50.
87.
51.
32.
52.
62.
46.
35.
30.
57.
85.
33.
31.
51.
44.
48.
35.
23.
44.

02995 3.0000000 0.000000e+00 803.9060
26410 2.9995055 6.636818e-09 762.3000
05906 1.9994438 6.757432¢-09 618.3203
98072 9.7939384 1.235673e+02 734.8279
71627  0.9999924 5.355286e-13 883.1592
56861 6.3284458 2.118841e+01 691.3976
91160 13.3484033 1.464151e+02 1067.3172
77800 11.4751479 2.810922e+01 1568.9805
42325 12.7832858 6.567710e+01 882.5781
49971 5.0940281 1.545615e+01 1165.4986
22854 5.9659030 3.477637e+01 745.7010
19840 6.3554463 7.309088e+01 725.1996
37644 15.3798551 3.238749e+01 1114.0493
58283 17.5637251 5.623039e+01 1086.0713
49936 5.1322195 1.911403e+01 577.8589
08407 27.7730740 7.349038e+01 769.0687
03822 0.9999995 8.165745e-15 733.8073
63179 5.7398857 8.153185e+00 1055.7285
75266 13.0273355 3.213531e+00 429.4320
80009 12.6265777 7.665927e+01 751.5885

1.357603 -2.440465 0.573160 4.000000

7.3.2 Table Dual Model Parameters

oON R WO

2

13.
13.
14.
11.
2

o N

15.
18.
16.
31.

~ e

13.
17.

9473537
0000000
9999477
9998081
9999764
3284465
3484040
9887099
4773237
2993622

.4333701
.9999995

3798274
4294940
3947949
2710860

.0000000
.2888430

0273356
0912019

1.383339e+01
0.000000e+00
6.104028e-11
2.427304e-09
2.631542e-11
2.118841e+01
1.464151e+02
4.206088e+01
7.840279e+01
5.
1
7
3
6
8
9
0
1
3
1

229718e+01

.419375e+02
.519541e-15
.238717e+01
.312570e+01
.271649e+01
.993065e+01
.000000e+00
.253721e+01
.213534e+00
.244419e+02

0.02377980
0.01739834
0.01125320
0.01701458
0.06028010
0.02118186
0.01361083
0.03784151
0.02103454
0.
0
0
0
0
0
0
0
0
[
0

19190659

.89147867
.01104315
.00000000
.02505904
.30087491
.06570523
.00756635
.01153576
.08424686
.03311890

0
0
3
0
0
0
0
0
0
0.
0
0
0
0
0
0
0
0
0
0

7.3.3 P-value LRT

1.000000000 0.703113899 0.374798659 0.015295182
1.000000000 0.017112280 0.697042004 0.266815287
1.000000000 0.891832908 0.056759329 0.639376195
1.000000000 0.021370494

7.3.4 AIC.diff

5.626276 3.295527

.02377971
.05346827
.15437137
.06829477
.01760765
.01902276
.01589532
.01165287
.04456930

02726907

.01297792
.04433577
.02996122
.04204949
.01431054
.01908100
.02120206
.04810870
.04210054
.00565785

2.037267 -4.360435 -3.812055

0.88618735
0.10777727
0.02052455
0.00000000
0.42843999
1.00000000
1.00000000
0.30036238
0.55018045
0.
0
0
1
o]
0
0
Y]
o]
1
0

60658268

.52203606
.00000000
.00000000
.56986798
.55462704
.68210503
.96508006
. 79823284
.00000000
.06919773

0.020120268 1.
0.039945769 0.
0.792220954 0.

809.
765.
620.
730.
879.
695.
1071.
1564.

1166.
743.
725.

1118.

1089.
576.
772.
737.

1047.
433.
747.

5323
5956
3576
4675

000000000
180248291
001923610

4.000000 4.000000

-4.135918 3.278181 1.357603 -2.440465 0.573160 4.000000 3.771047
3.105475 3.534170 -8.507103 4.000000 -3.691488

-1.

737871

1.000000000
0.180248291
0.001923610

4.000000
3.771047

14
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