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1 Introduction

Galaxies are enormous, gravitationally-bound collections of stars, inter-stellar gas and dust,
and dark matter. They generally contain between 107 and 1012 stars. Galaxies are con-
stantly changing through gravitational interactions with the gas, dust, and other galaxies in
their local environment. These encounters cause galaxies to change significantly through-
out their lifetimes. The result is a diverse collection of galaxy morphologies throughout the
observable universe. Studying galactic morphologies can give astronomers insight into the
subtleties of galactic interaction dynamics and can provide details of the long-term trends
in galactic evolution.

Galaxies are generally classified into three main groups based on morphology: ellipticals
(E’s), spirals (S’s), and irregulars (Irr’s) (Figure 1). Spiral galaxies are further split into
regular spirals (S’s) and barred spirals (SB’s). The main classes of galaxies are in turn
divided into sub-groups based on either the ellipticity of E-type galaxies or the tightness of
the spiral arms (curvature) of S-type galaxies. This galactic classification scheme was first
proposed by Edwin Hubble in 1936 [9].

Hubble believed both that galaxies evolved morphologically in an isolated environment
and that the overall trend in galactic evolution was from ellipticals to spirals. Modern
theory, however, claims (with a great deal of supporting evidence) that galaxies evolve
through gravitational interactions with their surrounding environment. Additionally, as-
tronomers now believe that ellipitcal galaxies are the by-products of interactions between
spiral galaxies, which are believed to dominate the early universe.

In an ongoing effort to quickly and precisely characterize the morphological types of
potentially millions of galaxies, a collaboration led by astronomer Andrew Connolly (Google,
formerly at University of Pittsburgh) has studied methods of texture analysis to extract
important morphological features of galaxies. In doing so, the group wishes to answer two
main research questions. First, how has the distribution of galactic morphologies in the
universe changed with time? In other words, what is the general trend of galactic evolution
in the universe? In Astronomy, the further away an object is from us, the earlier in its
history we perceive it. Therefore, a deep survey of galaxies provides us an instantaneous
snapshot of the entire timeline of galactic evolution in our universe. Secondly, how does the
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local density of galaxies affect the distribution of morphological types? An answer to this
question in turn answers the more scientifically interesting question of how galactic collisions
affect galaxy morphology, since local density is a strong indicator of galactic collision rate.

Figure 1: Galactic classification scheme devised by Hubble. The three main classes of
galaxy morphology are ellipticals (E’s), spirals (S’s), and irregulars (Irr’s). Spiral galaxies
are divided into regular (S’s) and barred (SB’s) subtypes, and are further classified by the
tightness of the spiral arms.

2 The Data

Modern sky surveys have the ability to gather data on millions of galaxies. This sheer
amount of data, in the form of mega-pixel digital images, makes it impossible for as-
tronomers to manually study these objects. The classical technique of studying galactic
morphologies through visual image inspection is now infeasible. Therefore, we must devise
methods that can quantitatively extract important morphological features from galactic
images.

One survey in particular, the Sloan Digital Sky Survey (SDSS), promises to obtain
images of millions of galaxies [11]. SDSS, when completed, will optically image over a
quarter of the entire sky. In June 2005, SDSS completed its first phase, SDSS-I, a five-year
campaign that returned data on more than 675,000 galaxies. Now SDSS is in its second
phase, SDSS-II, which will last through June 2008.

Our purpose in this project is to compare methods that attempt to automatically extract
important morphological features from digital galaxy images. We have at our disposal
hundreds of galactic images with which to test these methods. Particularly, from SDSS-I
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we have RC3, a sample of over 1400 galaxies in G, R, and I bands plus the corresponding
composite images produced by combining the images from these three filters [8].

3 Methods

Our particular role in this project is to compare the ability of two different texture analysis
methods (methods that look for local spatial structure) to extract the important morpho-
logical features of galaxies. We will compare the method of oriented filters employed by
Au [1], who used the steerable pyramid algorithm of Simoncelli and Freeman [10] with the
ridge function used by Candes and Donoho [5], with the methods of curvelet decomposition
developed by a team led by Donoho [7, 3] in the ability to detect galaxy structures in digital
images. Each of these techniques is a method of extracting the anisotropic features of im-
age intensity, i.e. the axis-dependent properties of an image. For example, structures such
as lines, curves, and edges have high anisotropicity and are captured by these techniques
while point-like features have low anisotropicity and are ignored. We now briefly discuss
the mathematical details of each of the two methods.

3.1 Oriented Filters

The oriented filter method for image analysis used by Au consists of two main steps [1].
First, it performs orientation analysis of texture for nine different angles on three different
scales, and second, it merges the information elicited from these three scales to create a
unified orientation field for the image (Figure 2).

At each section of an image, and at 9 different orientations, Au characterizes the strength
of orientation by applying a 2D ridge function filter. The ridge function at position x =
(x, y)T and orientation angle θ is defined as

ρθ(x) =
2√
3
π−1/4(1− (xT r)2)e−(xT r)2/2 (1)

where r = (cos(θ), sin(θ)). The function ρθ is designed for sparse approximation of linear
singuarity in an image [5], and thus will yield high signal for directions θ that follow linear
structures.

However, Equation (1) does not have localized support. To characterize only the local
intensity structure at each location, Au applies a Gaussian window to ρθ,

ψθ(x) = ρθ(x)× 1√
2
e−1/2(x2+y2). (2)

Using this filtering scheme, Au defines the ψ discretized transform (DTψ) of a digital
image I by

Sθ,x = (DTψI)(θ,x) = I ∗ ψDθ (x), (3)

i.e. the convolution of the image intensity with the discretized version of ψθ. Note that this
transformation captures the isotropic features of an image for a single spatial scale. We
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Figure 2: Application of oriented filters to galaxy M51. Orientation analysis is performed
on three different spatial levels before being merged into one orientation field via Kalman
filtering. The three levels here correspond to further subsampling of the lowpass subband.

can then estimate the orientation angle and strength at each point x in the image for this
spatial scale by the vector r, defined as

r(x) =
∑
θ

S2
θ,xe

2iθ (4)

where i =
√
−1. In this manner, r is the sum of the signal energy vectors, and thus measures

the concentration of signal energy under the filtering scheme and at which angle this energy
concentrates most. The output of this technique when applied to a two-dimensional image
is a 2-D orient vector field.

To capture anisotropic features on different spatial scales, Au employs the pyramid
coding algorithm [10]. By applying the filter in Equation (2) for 9 different values of θ,
we achieved angular localization in the Fourier plane. To analyze the texture on different
spatial scales, we also need radial localization, which is achieved by first separating the
original image into low and highpass subbands and then further passing the lowpass subband
through the oriented filters described above. The resultant image is subsampled by a factor
of 2 (thus keeping every second pixel in each dimension) to create a coarser representation
of oriented image signal.

Au repeats this pyramid downsampling scheme down to three levels. The vector field
is estimated for each subsampled image, and then the information from each level is re-
combined into a single orient vector field representation through Kalman filtering (See [2]).
Again, refer to Figure 2 for an example of this implementation.
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3.2 Curvelets

Curvelets were developed [12, 4, 3] to address the problem of sparse representation of objects
with lines and edges. Conceptually, the 2-D curvelet transform is similar to the multiscale
pyramid scheme mentioned above, with many directions and positions at each length scale
and needle-shaped elements at fine scales. A distinguishing characteristic of the curvelet
transform is its parabolic scaling relation that at each scale 2−j , every individual element
is contained in a ridge of length 2−j/2 and width 2−j .

We define the continuous-time curvelet transform in R2 for spatial variable x = (x, y)
at scale 2−j , orientation θl, and position x(j,l)

k = R−1
θl

(k1 · 2−j , k2 · 2−j/2) by

ϕj,l,k(x) = ϕj

(
Rθl

(x− x(j,l)
k )

)
(5)

where ϕj is the Fourier transform in the domain at scale 2−j , and k = (k1, k2) ∈ Z2 is a
translation parameter.

With this definition, we can then define a curvelet coefficient of an image f at scale
2−j , orientation θl, and translation k as the inner product between f and the curvelet ϕj,l,k
defined in Equation (5) as

c(j, l, k) = 〈f, ϕj,l,k〉 =
∫
R2
f(x)ϕj,l,k(x)dx (6)

In practice, because we are using pixelated images, we employ a discretized version
of the continuous curvelet transform, the digital curvelet transform. Details of two sep-
arate implementations of the digital curvelet transform can be found in [3]. Matlab im-
plementation of this transform and its inverse transform are in the CurveLab package at
http://www.curvelet.org.

After computing the curvelet coefficients, we reconstruct the image f from the m largest
coefficients. This reconstruction, fm leaves us the prominent anisotropic features of the
original image and thresholds isotropic features such as point sources. The output, then, is
a two-dimensional intensity field, as opposed to the 2-D vector field produced by orientation
analysis. Moreover, the approximation error to the original image achieves

||f − fm||2L2 ≤ C · (logm)3 ·m−2 (7)

for a curve that is C2 except for discontinuities along C2 curves.

4 Discussion

4.1 MatLab implementation of orientation analysis

For each of the two orientation analysis techniques, I use functions created in MatLab [1, 3].
The orientation analysis routines use MatLab functions from Simoncelli and Freeman [10]
and a set of filters constructed by Au [1] (pp. 85-91) to extract the orientation fields on
three different spatial scales and then combine them into a unified vector field. I apply the
MatLab routines exactly as described by Au [1]. The output of these routines is a vector
field akin to the merged image in Figure 2. Alternatively, we could extract and merge
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information on more than 3 scales, but for now we will only consider the implementation
of Au.

The curvelet MatLab routines consist of the digital curvelet and inverse digital curvelet
transforms. After performing the digital curvelet transformation, I keep only a small pro-
portion, m, of coefficients before transforming back into the original image space. The
resultant image contains the prominent anisotropic features and thresholds the isotropic
features, such as stars. In this technique we must also concern ourselves with the tuning
parameter, m, whose value significantly changes the final intensity field (see Figure 3).

Figure 3: Original image of galaxy M51 plus three images produced by curvelet coefficient
thresholding, in order of increasing threshold level (0.002, 0.001, and 0.0001 proportion
of curvelet coefficients are used in the image reconstruction, respectively). Observe that
isotropic features, such as foreground stars, are filtered by this technique. As more curvelet
coefficients are cut, less fine details are observed, and the spiral arms are the prominent
features. When too many coefficients are thresholded, the main structures of the galaxy are
partially lost.

First-order comparisons of the two techniques have been performed with test images
of galaxies M51, M63, M64, and M65. All of these are large spiral galaxies. The images
were taken from http://www.seds.org/messier/. From these images, we find that both
techniques seem to fare similarly in extracting the spiral features of the galaxies for images
with differing quality and size. One difficulty in the curvelet method is that the tuning
parameter, m, has a different optimal value in different images (optimality being defined as
the threshold level that eliminates foreground stars but keeps the spiral structure intact).
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This is an issue that will be better solved when we start model fitting.

4.2 Further Work

The next step in this project is to apply these two methods to the spiral head-on galaxies in
the SDSS RC3 survey and then fit parametric physical spiral arm models to the output of
each method. The RC3 survey consists of 105 galaxies that are both spiral and are oriented
perpendicular to our line of sight. We do not necessarily need to restrict our attention to
galaxies that are perpendicular to our line of sight, but doing so allows us to fit a simpler
model that does not include galaxy inclination as a parameter.

For each of the 105 galaxies in our dataset we have determined both the Hubble and the
de Vaucouleurs classification (a more finely-divided modification of the Hubble scheme [6]).
Because we have already restricted our attention to spiral galaxies, we are concerned only
with the amount of curvature in the spiral arms, which is accounted for in both the Hubble
and de Vaucouleurs classification systems. If we can estimate the amount of curvature of
the spiral arms of these galaxies from the outputs of both the oriented filters and curvelet
techniques, we can then directly compare these values to the predicted curvature due to the
galaxy’s classification. This gives us a method of directly determining which method more
accurately extracts galaxy arm features.

To determine the curvature of galaxy arms from the oriented filter output (a vector field)
or curvelet reconstruction (an intensity field) we will fit the following logarithmic spiral arm
model in polar coordinates

θ = t+ k (8)
r = βeαt, 0 ≤ t ≤ T, α ≤ 0, (9)

where k, β are the initial angle and radial length, T is the winding angle of the spiral
arm, and α controls the curvature of the spiral (a smaller α means higher curvature) [1].
To fit the curve, we need to determine an appropriate objective function to minimize for
both a vector and intensity field. The optimal curvelet tuning parameter m may also be
determined during this model fitting process.

Once we fit the model in Equation (8), we can quantify the integrated curvature of the
galaxy, C, by

C =
∫ T

0

e−αt

β
√

1 + α2
dt =

1− e−αT

αβ
√

1 + α2
(10)

If we determine the value of C for each of the 105 head-on spiral galaxies, we should be
able to determine which technique, if either, is superior in extracting the spiral features of
galaxies.

This should give us insight into our longer term goal of determining which technique
should be implemented to the potentially millions of galactic images that will be captured
by the Sloan Digital Sky Survey to automatically detect isotropic features and classify the
galaxy accordingly.
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