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Abstract. This paper reviews the development of several recent tools
from computational harmonic analysis. These new systems are presented
under a coherent perspective, namely, the representation of bivariate func-
tions that are singular along smooth curves (edges). First, the represen-
tation of functions that are smooth away from straight edges is presented,
and ridgelets will be shown to provide near optimal nonlinear approxi-
mations to these objects. Motivated by the limitations of the ridgelet
methodology, new representation systems, namely, monoscale ridgelets
and curvelets – both of which use the ridgelet transform as a building
block – will be introduced. Curvelets are shown to provide concrete and
constructive optimal nonlinear approximations to smooth functions with
twice differentiable singularities. In addition these approximations are
obtained simply by thresholding the curvelet series.

§1. Introduction

Throughout the sciences, sparse representations of classes of objects are of-
ten sought because of the well-known applications of sparsity to problems
ranging from data compression and statistical estimation to feature detec-
tion. Indeed, finding sparse representations together with rapid algorithms to
compute them is one of the main objectives of a rapidly growing field, com-
putational harmonic analysis (CHA). In this paper, we will argue that CHA
has not really addressed the problem of efficiently representing smooth mul-
tivariate functions with sharp discontinuities, like smooth images with edges.
Motivated by this gap in the literature, we present a collection of new rep-
resentation tools that efficiently represent smooth functions that are singular
along curves. Here, the tone is expository; details may be found in the cited
references. In this paper, attention is restricted to the two-dimensional situa-
tions although extensions to higher dimensions exist, or are anticipated.
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The Wavelet Miracle

One of the most appealing features of wavelet systems is their ability to provide
efficient representations of spatially inhomogeneous functions, i.e., functions
that may be discontinuous, spiky, etc. In Mallat’s words “bases of smooth
wavelets are the best bases for representing objects composed of singularities,
when there may be an arbitrary number of singularities, which may be located
in all possible spatial positions” [8]. For instance, on the unit interval define

f(t) = H(t− t0) g(t), t ∈ [0, 1], (1)

where H is the Heavyside H(t) = 1{t>0} and g is a smooth arbitrary function
with compact support and finite Sobolev norm ‖g‖W s

2
(see [1] for the classical

definition of L2 Sobolev norms). Then, the number of Fourier coefficients of
f exceeding 1/n in absolute value is bounded below by c · n, regardless of
the degree of smoothness of f away from the singular point t0. This means
that a lot of different terms are needed to obtain good partial reconstructions;
keeping the n largest terms in the Fourier series gives only an L2 error of ap-
proximation of order n−1/2. (Throughout the paper, it will always be implicit
that the error is measured in the L2 norm.) In contrast, the sparsity of the
wavelet coefficient sequence of f is in some sense the same as if f were not sin-
gular. In effect, the number of wavelet coefficients exceeding 1/n is bounded
by C n2/(2s+1) giving rates of approximation of order n−s corresponding to
the nonlinear bandwidth of W s

2 Sobolev balls. This remarkable adaptivity
property is what we call the “wavelet miracle.”

The Curse

Unfortunately, wavelets can deal with point-like singularities, but are seriously
challenged by line-like singularities in dimension two. Let us for instance
consider the object

f(x1, x2) = H(x1 cos θ0 + x2 sin θ0 − t0) g(x1, x2) (x1, x2) ∈ [0, 1]2, (2)

where, again, g is a bivariate function taken from the Sobolev space W s
2 ; f is

singular on the line x1 cos θ0 +x2 sin θ0 = t0, but smooth otherwise. Then, the
number of wavelet coefficients exceeding 1/n is now of the order n. Hence,
partial n-term wavelet reconstructions will only converge at a rate n−1/2,
regardless of the almost everywhere degree s of smoothness. The edge limits
the speed of convergence. This result is intuitively not very surprising as
wavelet bases are made of local isotropic oscillatory bumps at various scales,
and are not adapted to represent long elongated structures like edges.

This clearly raises an important question: in two dimensions (and, more
generally, in arbitrary d dimensions) can we develop a representation enjoying
the same adaptivity features as wavelets in dimension one?
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§2. Ridgelets and Linear Singularities

In [3], Candes introduced a new tiling of the frequency plane that led to the
construction of ridgelet frames. We say that a collection (ϕn) is a frame of a
Hilbert space H if there exist two constants A,B > 0 such that for any element
of H, we have

A ‖f‖2H ≤
∑
n

|〈f, ϕn〉H |2 ≤ B ‖f‖2H .

When A = B, the frame is said to be tight. A collection (ϕn) that verifies
the frame property is of course complete and there is a very concrete way to
reconstruct f from the datum of its coefficients (〈f, ϕn〉H). Generalities about
frames can be found in [11].

Let ψ be a univariate oscillatory function and ψj,k(t) = 2j/2ψ(2jt − k).
The ridgelet frame ψj,`,k is a collection of ridge functions given by

ψ̂j,`,k(ξ) = ψ̂j,k(|ξ|)δ(θ − 2π 2−j`) + ψ̂j,k(−|ξ|)δ(θ + π − 2π 2−j`)

in the frequency domain [3] (δ denotes the dirac distrbution).
Donoho [9] modified the ridgelet construction by essentially replacing the

discretization of the angular variable with a periodic wavelet transform result-
ing in an orthonormal basis. He called these new basis elements orthonormal
ridgelets. In the remainder of this paper, we make the choice of the orthonor-
mal ridgelets although all the results and constructions that follow would hold
true if one were to use ‘pure ridgelets.’

As stated in [9]: Such a system can be defined as follows: let (ψj,k(t) :
j ∈ ZZ, k ∈ ZZ) be an orthonormal basis of Meyer wavelets for L2(IR) [12],
and let (w0

i0,`
(θ), ` = 0, . . . , 2i0−1; w1

i,`(θ), i ≥ i0, ` = 0, . . . , 2i−1) be an
orthonormal basis for L2[0, 2π) made of periodized Lemarié scaling functions
w0
i0,`

at level i0 and periodized Meyer wavelets w1
i,` at levels i ≥ i0. (We

suppose a particular normalization of these functions.) Let ψ̂j,k(ω) denote
the Fourier transform of ψj,k(t), and define ridgelets ρλ(x), λ = (j, k; i, `, ε)
as functions of x ∈ IR2 using the frequency-domain definition

ρ̂λ(ξ) = |ξ|− 1
2 (ψ̂j,k(|ξ|)wεi,`(θ) + ψ̂j,k(−|ξ|)wεi,`(θ + π))/2. (3)

Here the indices run as follows: j, k ∈ ZZ, ` = 0, . . . , 2i−1 − 1; i ≥ i0, i ≥ j.
Notice the restrictions on the range of ` and on i. Let λ denote the set of all
such indices λ. It turns out that (ρλ)λ∈Λ is a complete orthonormal system
for L2(IR2). Hence, we have a new decomposition of the form

f =
∑
λ

〈f, ρλ〉ρλ.

Ridgelets turn out to be optimal for representing functions with linear
singularities. Indeed, let us consider the template (2). The following theorem
is proved in [4].
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Theorem 1. Let g ∈ W s
2 (IR2) and f(x1, x2) = H(x1 cos θ0 + x2 sin θ0 −

t0) g(x1, x2). Then the sequence (αλ = 〈f, ρλ〉) of orthonormal ridgelet coeffi-
cients of f satisfies

#{|αλ| ≥ 1/n} ≤ C n1/(s+1) ‖g‖W s
2

for some constant C not depending on f . As a consequence, the n-term
approximation fn – obtained by keeping the terms corresponding to the n
largest coefficients in the ridgelet expansion – satisfies

‖f − fn‖ ≤ C n−s/2 ‖g‖W s
2
.

Hence, the theorem states that we obtain a rate of approximation as if
the object were not singular, simply by thresholding the orthonormal ridgelet
expansion. Whereas the singularity caused partial wavelet reconstructions to
converge very slowly, its effect on the approximation rate of truncated ridgelet
series is ‘harmless.’

§3. Ridgelets and Curved Edges.

Theorem 1 considered linear singularities and it seems natural to ask whether
similar results will hold if one replaced the singularity along a straight line
with one along an arbitrary curve γ. To simplify our exposition, consider the
simple case of a singular function defined on the unit square by

f(x1, x2) = g(x1, x2) 1{x2≤γ(x1)}, (4)

where g is a smooth function and γ is smooth curve. Then the ridgelet coef-
ficient sequence of such an object is in general not sparse:

#{λ, |αλ| ≥ 1/n} ≥ c n.

Thus, the speed of convergence of the best n-term ridgelet approximation is
only of order n−1/2. It is interesting to observe that the degree of approxima-
tion of both wavelet and ridgelet partial reconstructions is the same, although
they correspond to radically different systems of representation. Ridgelets are
elongated and directional, whereas wavelets are isotropic and local.

The limitations that we presented in this section motivate the refinements
and new tools that we are about to introduce.

§4. Monoscale Ridgelets

The approach developed in this section builds on Theorem 1. The idea here
is to take advantage of the optimal representation of linear singularities by
localizing the ridgelets. A detailed exposition is provided in [5].

For an integer s ≥ 0 and integers k1, k2, we let Q be the dyadic square
defined by Q = [k1/2s, (k1 + 1)/2s) × [k2/2s, (k2 + 1)/2s). The collection of
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all dyadic squares at scale s will be denoted by Qs. The idea is to smoothly
localize the function f we wish to represent near each of the dyadic squares
of Qs. We choose an orthonormal partition of unity wQ; that is, a collection
of windows such that w2

Q is a partition of unity∑
Q∈Qs

w2
Q = 1.

The following details a way of making up such an orthonormal partition:
take a C∞ univariate window ν supported in [−3/4, 3/4] such that ν(t) = 1
on [−1/2, 1/2]; define vQ = ν(2sx1 − k1) ν(2sx2 − k2); and renormalize the
windows vQ with

wQ = vQ/(
∑
Q∈Qs

v2
Q)1/2.

It is then clear that the wQ’s obey the desired condition.
Define the rescaling operator TQg by

TQg = 2sg(2sx1 − k1, 2sx2 − k2),

which is an isometry of L2. Throughout this section, s is arbitrary but fixed.
Monoscale ridgelets are defined as follows: let ρλ be an orthonormal ridgelet
basis and define

ψQ,λ(x1, x2) = wQ(x1, x2)(TQρλ)(x1, x2);

the collection
{ψQ,λ, Q ∈ Qs, λ ∈ Λ} (5)

is what we call the monoscale ridgelet dictionary.
It is easy to check that the monoscale ridgelet dictionary is a tight frame

of L2(IR2) as we have a Parseval relationship

‖f‖22 =
∑
Q∈Qs

∑
λ

〈f, ψQ,λ〉2.

Standard arguments show that we then have the decomposition

f =
∑
Q∈Qs

∑
λ

〈f, ψQ,λ〉ψQ,λ, (6)

with equality holding in an L2 sense.
We add an “extra layer of coarse scale coefficients” to eliminate various

artifacts. Consider a standard multiresolution analysis that is adapted to
the unit square [7] so that the set of translates {2s ϕ(2s · −k)}, k = (k1, k2),
ki = 0, 1, . . . , 2s − 1 is orthonormal. Let P0 be the orthogonal projector onto
Vs, the span of the ϕs,k’s; i.e.,

P0f :=
∑
k

〈f, ϕs,k〉ϕs,k :=
∑
k

βs,kϕs,k. (6)
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The following Pythagorean relationship holds:

‖f‖22 = ‖P0f‖22 + ‖(I − P0)f‖22. (7)

Finally, define the coefficients

αs,µ = 〈Rf, ψQ,λ〉 µ = (Q,λ), Q ∈ Qs, λ ∈ Λ. (8)

Definition 1. The monoscale ridgelet transform with base scale s is the
mapping from functions f ∈ L2(IR2) to the amalgamation of coefficients (βs,k)
and (αs,µ).

Note that we again have a partial isometry

‖f‖22 =
∑
k

|βs,k|2 +
∑
µ

|αs,µ|2,

thanks to the Pythagorean relationship (7).
Let us return now to the main theme of this paper, and study the ef-

ficiency of monoscale ridgelets to represent objects that are singular along
curves. Suppose that one is interested in constructing an n-term approxima-
tion of the function f in (4). Without loss of generality, we will suppose that
n is of the form n = 22J+1. We simply expand f in the monoscale ridgelet
dictionary (5) with s = J as a choice of base scale; that is, we define the
n-term approximation by

fn = P0f +Rn/2f, (9)

where Rn/2f is the partial reconstruction of the residual Rf obtained by
keeping the terms corresponding to the n/2 = 22J largest coefficients αJ,µ.

It is interesting to observe that the choice of the base scale s of the
monoscale dictionary depends on the number n of terms we wish to keep in
the approximant. We have the following result [5]:

Theorem 2. Let g ∈ W s
2 (IR2) and f(x) = g(x) 1{x2≤γ(x1)}, with γ being

three times differentiable. Let fn be the n-term approximation defined by (9).
Then,

‖f − fn‖2 ≤ C max(n−s/2, n−3/4).

This simple approximation scheme provides optimal rates of convergence
as long as s ≤ 3/2; that is, approximation bounds as if f were not singular.
In some sense, one is allowed to say that unlike wavelets, ridgelets can be
adapted to provide efficient representations of curved singularities. There is
a critical value s = 3/2 of the smoothness parameter, however, beyond which
the method saturates; as s increases, the approximation rate is blocked at
n−3/4. Nevertheless, this represents already a substantial improvement over
wavelet approximations whose convergence rates are blocked at n−1/2.
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Better results are theoretically possible. For instance, let F(C) be a
model of smooth images with twice differentiable edges defined as follows:

F(C) = {f : f satisfies (4) with ‖g‖W 2
2
≤ C and ‖γ‖Ċ2 ≤ C}.

The condition ‖γ‖Ċ2 ≤ C states that the homogeneous Hölder norm of order
2 is bounded by C. In other words, γ is differentiable and its first derivative
satisfies the Lipschitz condition |γ′(u) − γ′(v)| ≤ C |u − v|. For this class
of objects, it can be shown that there are reasonable ways of constructing
approximations converging at the rate n−1 log n. Monoscale ridgelets do not
attain this optimal rate.

§5. Curvelets and Curved Singularities

The curvelet transform – introduced by Candes and Donoho in [6] – is the
last of the representation tools that we will review. Whereas the monoscale
ridgelet transform involved taking ridgelet coefficients with a fixed base scale
s, the curvelet transform spans all possible scales s ≥ 0. A useful slogan is that
the curvelet transform is obtained by filtering and then applying a multiscale
ridgelet transform. The multiscale ridgelet dictionary is the collection of the
monoscale dictionaries at all possible scales s ≥ 0; i.e.,

{ψµ := ψQ,λ, s ≥ 0, Q ∈ Qs, λ ∈ Λ}. (10)

The curvelet transform requires the use of a sequence of filters that we
now describe. Let Φ0 and Ψ2s, s = 0, 1, 2, . . . satisfy the following properties:

• Φ0 is a lowpass filter and is concentrated at frequencies |ξ| ≤ 2;
• Ψ2s is bandpass and concentrated at frequencies |ξ| ∈ [22s−1, 22s+3];
• the filters satisfy

|Φ̂0(ξ)|2 +
∑
s≥0

|Ψ̂2s(ξ)|2 = 1.

Existence and constructions of such filters are well-known. The last relation-
ship implies that the transformation of f into a bank of functions

f 7→ (P0f = Φ0 ∗ f,∆0f = Ψ0 ∗ f,∆1f = Ψ1 ∗ f, . . . ,∆sf = Ψ2s ∗ f, . . .)

is a partial isometry in the sense that

‖f‖22 = ‖P0f‖22 +
∑
s≥0

‖∆s ∗ f‖22.

Equipped with both a multiscale ridgelet dictionary and a sequence of
filters, define the curvelet coefficient αµ of f by

αµ = 〈∆sf, ψQ,λ〉, Q ∈ Qs, λ ∈ Λ. (11)
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Thus, the coefficient αµ is interpreted as the multiscale ridgelet coefficient of
a piece of f containing information at frequencies near 22s. We would like to
point out that there is a quadratic scaling relationship between the scale 2s of
the multiscale ridgelet and the frequency content, localized around the corona
of radius 22s, of the piece that is analyzed. This relationship is the key feature
of the curvelet transform.

We proceed a little bit differently for the piece of f containing information
at low frequencies P0f . Recall the orthogonal collection of Lemarié-Meyer
scaling functions Vk(x1, x2) = V (x1 − k1, x2 − k2), for k = (k1, k2) ∈ ZZ2. We
make the choice of a base scale so that V̂0(ξ) = 1 for |ξ| ≤ 4/3; and we make
sure that the span of the translates Vk contains the range of the projector
P0f . We define the coarse scale curvelet coefficients by

βk = 〈P0f, Vk〉, k ∈ ZZ2.

It will be more convenient to use a single notation to index the set of
curvelet coefficients; the notation M ′ will stand for the union of M and k ∈
ZZ2. When µ ∈M ′ \M , we let αµ = βk.

Definition 1. The curvelet transform is the mapping that associates the
coefficients sequence αµ, µ ∈M ′ to an arbitrary square integrable function f .

We will call curvelets those elements σµ defined by

σµ = ∆sψQ,λ, Q ∈ Qs, λ ∈ Λ, (12)

with an obvious modification for the piece corresponding to the low frequen-
cies, σµ = P0Vk.

The collection of curvelets is then a tight frame for L2(IR2)

‖f‖22 =
∑
µ∈M ′

〈f, σµ〉2, (13)

and, of course, we have the decomposition

f =
∑
µ∈M ′

〈f, σµ〉σµ (14)

with equality in an L2 sense.
Let fn be the truncated n-term curvelet series

fn =
∑
µ∈M ′

αµ1{|αµ|≥|α|(n)}σµ. (15)

The following theorem is proved in [6].

Theorem 3. Let g ∈W s
2 (IR2) and f(x) = g(x) 1{x2≤γ(x1)}, with γ being two

times differentiable. Let fn be the n-term approximation (15). Then,

‖f − fn‖2 ≤ C n−1(log n)1/2.

Again, we have a very concrete procedure that achieves rates of approxi-
mation that cannot be fundamentally improved. A detailed discussion about
the optimality of this result is in [6].
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§6. Conclusion

In this paper, we presented a connected set of ideas originating in the ridgelet
transform and culminating in the curvelet transform. We have shown how
these representations provide efficient representations of objects that are sin-
gular along curves. These tools, however, may have several other potential
applications.

Because of space limitations, we set aside questions related to the prac-
ticability of these new methods. We would like to point out that fast al-
gorithms have been developed to implement the ridgelet, monoscale ridgelet
and curvelet transform. We will report on the numerical aspects of these
transforms in a separate paper.
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