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Abstract. Complex designs are often used to select the sample which is followed over time in a 

panel survey. We consider some parametric models for panel data and discuss methods of 

estimating the model parameters which allow for complex schemes. We incorporate survey weights 

into alternative point estimation procedures. We also consider variance estimation using 

linearization methods to allow for complex sampling, and indicate connections with established 

asymptotically distribution free (ADF) methods. The behaviour of the proposed inference 

procedures are assessed in a simulation study, based upon data from the British Household Panel 

Survey. There appear to be some advantages of using the weighted maximum likelihood (ML) point 

estimation method compared to the weighted ADF method. Variance estimation methods that allow 

for clustering tend to lead to improvements in terms of bias. However, the variance estimator for the 

weighted ML estimator performs better than the ADF variance estimators. 
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1. Introduction  

A broad class of ‘regression-type’ models has found a wide range of useful applications with panel 

survey data (Baltagi, 2001; Wooldridge, 2001; Diggle et al., 2002; Hsiao, 2003). Such data often 

consist of repeated observations on the same variables for the same individuals across equally 

spaced waves of data collection. The ‘regression-type’ models considered here are broadly 

concerned with representing the relationship between one of the variables, treated as dependent, and 

a number of the other variables, treated as covariates. A typical example of the kind of panel survey 

considered here is the British Household Panel Survey (BHPS), in which a sample of households 

was selected at wave one and then individuals in this sample were followed up repeatedly at annual 

intervals.  

It is common for the selection of the initial panel sample at wave one to involve a complex 

sampling scheme. For example, stratification and multistage sampling were employed in the 

selection of the initial BHPS sample. In addition, sample individuals are often selected with unequal 

probabilities and weights are constructed to compensate for these unequal probabilities as well as 

for different forms of wave nonresponse and other complexities (Kalton and Brick, 2000). There is 

a limited consideration of the treatment of such sampling schemes in the panel data model literature, 

especially in relation to the clustering of individuals (Wooldridge, 2001).  

Since the 1960s, there have been a number of articles in the survey sampling literature that 

examined regression analysis for cross section complex survey data. Some key ideas are set out in  

Kish and Frankel (1974), Fuller (1975), and Binder (1983). Other important contributions are 

Konijn (1962), Brewer and Mellor (1973), Shah, Holt and Folsom (1977), Holt, Smith and Winter 

(1980), Scott and Holt (1982) and DuMouchel and Duncan (1983). Skinner, Holt and Smith (1989) 

and Chambers and Skinner (2003) provide overviews. Methods that permit survey features, such as 

unequal probability selection, stratification and multistage sampling, to be handled appropriately 
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have therefore been developed in the cross section data model context, and include for example a 

pseudo maximum likelihood approach for point estimation, and linearization methods for variance 

estimation.  

In this paper we shall extend these methods to consider estimation of panel data models 

parameters, allowing for complex sampling designs. We shall discuss methods of statistical 

inference for models with parametric assumptions about the covariance structure of errors over 

time. We shall incorporate survey weights into alternative point estimation procedures, including 

maximum likelihood, generalized least squares and asymptotically distribution free (ADF) 

approaches. We shall also consider standard error estimation approaches using Taylor series 

linearization methods to allow for complex sampling, and indicate connections with some 

established ADF methods. We shall adopt an aggregate modelling strategy (Skinner, Holt and 

Smith, 1989) rather than a multilevel covariance modelling approach. For developments of the latter 

approach see Müthén and Satorra (1995, Section 5). 

Some previous work on estimation for panel data models under complex designs has been 

undertaken by Feder, Nathan and Pfeffermann (2000), who propose combining multilevel 

modelling, time series modelling and survey sampling methods; Sutradhar and Kovacevic (2000), 

where a generalised estimating equations approach is developed by considering an autocorrelation 

structure in a multivariate polytomous longitudinal survey data context; Skinner and Holmes 

(2003), who study two approaches for dealing with sampling effects, either considering the repeated 

observations as multivariate outcomes and adopting weighted estimators that account for the 

correlation structure, or considering a two-level longitudinal model and to modify weighting 

strategy proposed by Pfeffermann et al. (1998); and Skinner and Vieira (2005), who presented some 

empirical evidence that the variance-inflating impacts of complex sampling schemes can be higher 

for longitudinal analyses than for corresponding cross-sectional analyses. 

This paper is organized as follows. The basic structure of the data and sample are described in 

Section 2. The models are given in Section 3. Point estimation methods, including weighted 
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estimation of covariance matrices are reviewed in Section 4. Estimation of model parameters using 

least squares methods and pseudo maximum likelihood estimation are also considered. The paper 

proceeds in Section 5 to consider variance estimation methods, by adopting Taylor series 

linearization methods to allow for complex sampling and also considering ADF variance estimation 

techniques. Two simulation studies, based upon data from the British Household Panel Survey, will 

be presented in Section 6 to assess the behaviour of the different estimation procedures. We make 

brief remarks in the concluding discussion in Section 7. 

 

2. Sampling and Data 

We suppose that the data consist of the values ity of an outcome variable and q×1  vectors of values 

itx  of covariates for each individual i in a sample, denoted s, and each wave of data collection 

1, ,t T= � . The sample is assumed to be selected from a specified finite population at wave 1 

according to a probability design for which the inclusion probability iπ  of each individual i  in s is 

known and the sample and the population are fixed thereafter. We suppose that sampling 

weights, iw , are available for estimation and that, by default, these are the reciprocals of the sample 

inclusion probablities iπ . We shall sometimes write {1,..., }s n= , without loss of generality, where n 

is the sample size. For simplicity, we shall not refer to nonresponse, treating the data as complete. 

In practice, this will not be the case and s may be interpreted as the set of individuals providing 

values ity  and itx  at each occasion, where the iw  include some adjustment for nonresponse. 

 

3. Models 

We consider standard kinds of models for the repeated measurements (Ware, 1985; Diggle et al., 

2002, Chapters 4 and 5; among others) in which the ity  obey the linear model: 

( ) x itityE = ,        (1) 
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where itx  is treated as fixed (or conditioned upon),  is a q×1 vector of unknown parameters (and 

we make no distinction between the realised ity  and the underlying random variables). We allow 

for serial correlation in the measurements by writing the repeated measurements for individual i as 

the 1T ×  vector ( )′= iTii yy ,,1 �y  and allowing for non-zero off-diagonal elements of the 

covariance matrix Σ  of this vector: 

      ( ) }]][{[cov ′−−==Σ yyy iiiii XXE ,    (2) 

where ( )́´,´,1 iTiiX xx �=  is the qT ×  matrix of covariate values. 

We consider two possible structures for the matrix Σ . The first is referred to as the uniform 

correlation model (UCM), where all the off-diagonal elements of Σ  are 2
uσ  and all the diagonal 

elements are 2 2
u vσ σ+ . This corresponds to the multilevel model:  

itiitit vuy ++= x        (3)  

where  iu  and itv  are random effects with zero means and variances 2
uσ  and 2

vσ  respectively, which 

are uncorrelated over time. In this case the correlation between ity  and ’ity  for any two occasions t  

and ’t  for ’t t≠  is given by 2 2 2/( )u u vρ σ σ σ= + . 

In our second structure, referred to as the AR1 model, the correlation is allowed to decay over 

time. We again assume that all diagonal elements are 2 2
u vσ σ+  but now suppose that the covariance 

between ity  and ’ity  for occasions t  and ’t  takes the form 2 2cov(y , ) t t
it it u vy σ γ σ′−

′ = + , where γ  is an 

additional parameter ( | | 1γ < ). This model corresponds to the following first-order autoregressive 

process for the itv : 

ititit vv εγ += −1 ,        (4) 

where the itε  are mutually independent residuals with zero mean and variance 2 2 2(1 ) vεσ γ σ= −  

(Crowder and Hand, 1990; Jones, 1993). Note that in both models it is assumed that Σ  does not 

depend upon i. 
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To emphasise the fact that the covariance matrix Σ  takes a particular parametric structure for 

each model, we write ( )Σ=Σ , where  is a 1b×  parameter vector. In particular, ( )′= γσσ ,, 22
vu  

for the AR1 model and ( )′= 22 , vu σσ  for the UCM model. Note that the UCM model is a special 

case of the AR1 model where 0γ = .  

We have so far only made assumptions about the correlation of the ity  between different time 

points t but not between different individuals i. We shall, indeed, assume that the parameter vector 

 governing the inter-temporal covariance matrix ( )Σ  is of scientific interest, but that any 

correlation between values of ity  for different individuals is a ‘nuisance’ . In the UCM and AR1 

models we shall assume that the correlation between ity  and ’ ’i ty  is zero for any two distinct 

individuals i  and ’i  and any two occasions t  and ’t . We shall also consider a UCM(C) model, 

where C denotes cluster, for which this correlation is given by a fixed quantity, τ , for any distinct 

individuals i  and ’i  in the same cluster and any two occasions t  and ’t  and zero otherwise, where 

the inter-temporal covariance structure ( )Σ  is the same as for the UCM model.  

 

4. Point Estimation  

We shall suppose that  is estimated following an established approach for repeated survey 

observations, as implemented for example in the software SUDAAN (Shah et al. 1997), by: 

∑∑
∈

−
−

∈

− ′




 ′=

si
iii

si
iii VXwXVXw y1

1
1ˆ        (5) 

where V  is a specified ‘working’  covariance matrix of iy  (Diggle et al. 2002, p.70) and the iw  are 

the survey weights introduced in section 2. Provided the linear model in (1) holds and V  is 

constant,  ˆ  will be consistent for  with respect to the joint model and sampling design if the 

sample size is large (c.f. Fuller, 1975; Isaki and Fuller, 1982; Liang and Zeger, 1986).  
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In the simulation study we shall suppose that V  is estimated using the UCM model as the 

working model. This just requires estimating the intra-individual correlation ρ  since 2 2 2
u vσ σ σ= +  

cancels out of the two places V  appears in (5). We shall estimate the correlation ρ  by iterating 

between GLS estimation of  and survey-weighted moment-based estimation of the intra-

individual correlation (Liang and Zeger, 1986; Shah et al., 1997). Following standard large sample 

arguments (Liang and Zeger, 1986) ˆ  will remain consistent for  even though V is subject to 

sampling variation. 

As in section 3, let  denote the 1b×  vector of parameters of interest which determine the 

covariance structure ( )Σ=Σ  of iy , as given in (2). In order to define a class of estimators , we 

first define the weighted residual covariance matrix: 

( )( )∑
∈

− ′
−−=

si
iiiiiw XXwNS yy ˆˆˆ 1       (6) 

where ∑
=

=
n

i
iwN

1

ˆ estimates the population size, N. The matrix wS  is a consistent estimator of Σ  with 

respect to the joint model and sampling design, provided that the model assumptions in (1) and (2) 

hold (Skinner, Holt and Smith, 1989). Having defined wS , we now define the class of  estimators  ̂

of  to be considered, as those that minimise different measures of ‘distance’  between wS  and ( )̂Σ  

(Jöreskog and Goldberger, 1972; Browne, 1984; Bollen, 1989). More precisely, if ( )Σ,wSF  denotes 

the fitting function, which measures the distance between wS  and Σ , then  ̂is defined as the value 

of  which minimises ( )( )Σ,wSF  across values of  in a specified b-dimensional parameter 

space.  

The simplest example of a fitting function is the unweighted least squares (ULS) function: 

( ) }]{[
2
1

, 2Σ−⋅=Σ StrSFULS .      (7) 
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The resulting ULS estimator ULS
ˆ  is uniquely defined and is consistent for , given that wS  is 

consistent for Σ  (Browne, 1982; Browne, 1984).  However, ULS
ˆ  is not in general an asymptotically 

efficient estimator of . Moreover, it is not scale invariant (Jöreskog and Goldberger, 1972) 

although this does not seem a serious problem when the elements of iy  are repeated measurements 

of the same variable. With the aim of improving efficiency, we consider also a class of generalised 

least squares fitting functions: 

{ } { }1( , ) ( ) ( ) U ( ) ( )GLSF S vech S vech vech S vech−′Σ = − Σ − Σ ,   (8) 

where vech is the vector of distinct elements of a symmetric matrix (Fuller, 1987). For the T T×  

matrices considered here, vech is of dimension 1k × , where ( 1) / 2k T T= + . The ‘weight’  matrix U 

remains to be specified. For efficient estimation, we should like U to correspond to (approximately) 

to the covariance matrix of ( )vech S , for the relevant matrix S , which is wS  in our setting. A 

traditional approach to the specification of U, which ignores the complex sampling scheme and is 

motivated by a working assumption of normality and independent and identically distributed 

observations, is (McDonald, 1980): 

   ( )KWWKU ⊗′⋅= 2 ,       (9) 

where K is the so-called transition matrix, W is any consistent estimator of Σ  (Bentler and Weeks, 

1980; Swain, 1975), and ⊗  is the right Kronecker product operator. Expression (9) may 

alternatively be written elementwise as (Joreskog and Goldberger, 1972; Swain, 1975): 

tttttttttttt WWWWU ′′′′′′′′′′′′′′′′′′ +=, ,      (10) 

where ttttU ′′′′′′,  and ttW ′  represent typical elements respectively of U and W.  

Expressions (8) and (9) imply (Browne, 1977) that ( , )GLSF S Σ  takes the form:    

( ) ( ) }]{[
2
1

, 21−
− Σ−⋅





=Σ WStrSF NORMGLS ,    (11) 
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where GLS-NORM indicates that this choice of fitting function is based upon an underlying 

normality assumption. There are two natural choices of W. The first is given by S, since this ( wS  in 

our setting) is assumed consistent for Σ . In this case we may write: 

   ( ) ( ) }]{[
2
1

}]{[
2
1

, 2121
1

−−
− Σ−⋅





=Σ−⋅





=Σ SItrSStrSF NORMGLS . (12) 

An alternative choice is to set W equal to Σ , leading to: 

   ( ) }]{[
2
1

, 21
2 IStrSF NORMGLS −Σ⋅





=Σ −

− .    (13) 

We denote the resulting estimators of  as 1
ˆ

NORMGLS−  and 2
ˆ

NORMGLS− . An alternative approach, 

not based on the working assumption of normality, is to set U equal to an estimator of the 

asymptotic covariance matrix of ( )vech S , making no assumption about the underlying distribution. 

Such an approach is often called asymptotically distribution free (ADF). See e.g. Browne (1982, 

1984).  We shall consider the use of linearization methods of variance estimation for this purpose in 

the next section, following some earlier applications of this idea in Skinner (1989), Satorra (1992), 

and Müthén and Satorra (1995).  

Another approach to estimation is achieved by adopting the pseudo-maximum likelihood (PML) 

approach (Skinner, Holt and Smith, 1989) in which a census log-likelihood (assuming independent 

and identically distributed observations) is replaced by a weighted log-likelihood given by (ignoring 

constants):  

( ) ( )∑
∈

− −Σ′−−Σ−
si

iiiii XXwN ][][log 1 yy    (14) 

If this weighted likelihood is first ‘concentrated’  by replacing  by ,̂ maximising expression (14) 

becomes equivalent to minimising the value of the following fitting function (Jöreskog,1970) :  

[ ] TSStrSFPML −Σ−Σ=Σ −− 11 log),( ,     (15) 
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with S evaluated at wS  to take account of the complex design. Alternatively, if this initial 

concentration does not take place,  could be estimated simultaneously with  by maximising 

expression (14). If N is unknown, it might be replaced in (14) by ∑
=

=
n

i
iwN

1

ˆ .    

The properties of the GLS-NORM1 and PML approaches may be compared by noting first that 

(12) may be alternatively expressed as (see Fuller, 1987, p. 334) 

   2
1

1

1
( , ) ( 1) ( 1)

2

T

GLS NORM w t
t

F S n λ−
=

Σ = − −∑ ,       

where tλλ ,,1 �  are the eigenvalues of 2/12/1 −− Σ ww SS . Similarly, (15) may alternatively be expressed as  

   1

1
( , ) (log )

T

PML w t t
t

F S λ λ−

=
Σ = +∑ .       

Moreover if the model holds, i.e. if ( )Σ=Σ , both GLS-NORM1 and PML estimators are obtained 

by minimizing (see Fuller, 1987, p. 335) ∑
=

−
T

t
t

1

2)1(λ . Thus the GLS-NORM1 and PML estimators 

may be considered asymptotic equivalent. 

Note that the computation of estimators which minimise fitting functions or maximise a pseudo 

likelihood generally involves numerical solution of equations, obtained by differentiating the fitting 

functions. Several alternative methods for performing the numerical solution are possible. In the 

simulation study in section 5, we adopted an iterative Newton type algorithm, similar to that 

suggested by Pourahmadi (1999). Alternative methods include: (i) a Nelder and Mead (1965) 

method; (ii) a quasi-Newton method or variable metric algorithm, proposed simultaneously by 

Broyden, Fletcher, Goldfarb and Shanno in 1970 (see Nocedal and Wright, 1999); (iii) a conjugate 

gradients method (Fletcher and Reeves, 1964); (iv) Byrd et al. (1995) method, which is a 

modification of method (ii); and (v) a stochastic global optimization method proposed by Belisle 

(1992). Our experience is that methods (i) to (iii) provide virtually the same results as those given 

by the Newton type algorithm we used, but that methods (iv) and (v) had difficulties in yielding 

converged solutions even for the largest sample sizes.  
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5. Variance estimation 

In this section, we consider variance estimation for two purposes: first, to determine possible 

matrices U to use in the generalised least squares fitting function in (8) and, secondly, for the 

purpose of estimating standard errors of the estimators of  considered in the previous section.  

As a preliminary step, we consider estimation of the variances and covariances of the elements 

of wS , i.e. we seek to estimate the asymptotic covariance matrix of the vector ( )wvech S . To 

establish the asymptotic covariance matrix with respect to both the sampling design and the 

underlying model requires defining a sequence of populations, sampling designs and samples. We 

suppose that this sequence is such that there exists a non-negative definite matrix C such that the 

limiting distribution of )}()({ Σ− vechSvechn w  is normal with a mean vector consisting of zeros 

and covariance matrix, C (c.f. Isaki and Fuller, 1982), i.e.  

),0(N)}()({ CvechSvechn kLw →Σ− .    (16) 

We seek an estimator of the asymptotic covariance matrix 1n C− . From (6), we may write 

∑∑
−

−

−





=

n

i
ii

n

i
iw wwSvech

1

1

1

ˆ][ c       (17) 

where ( )iii vechc ′= ˆˆˆ  and y ˆˆ iii X−= . In order to employ the linearization method of variance 

estimation (Woodruff, 1971; Wolter, 1985), we linearize expression (17) to obtain: 

( ) ∑
=

−+=
n

i
iwzw nSvech

1

1 uµ� ,     (18) 

where ( )wziiwi w µµ /1 cu −= − , ( )iii vechc ′= , y ~
iii X−= , )(

1

1∑
=

−=
n

i
iiz wnE c , 1

1
( )

n

w i
i

E n wµ −

=
= ∑  

and )̂lim(
~

p= . 
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A linearization variance estimator of the asymptotic covariance matrix of ( )wvech S  is then 

obtained by estimating the variance of the linear statistic ∑
=

−
n

i
in

1

1 u , allowing for the complex 

design, and then replacing iu  by )/ˆ(ˆ 1 www iii zcu −= −  where 1

1

n

i
i

w n w−

=
= ∑  and ∑

=

−=
n

i
iiwn

1

1 cz . 

For example, consider a multistage stratified sampling scheme that involves sampling primary 

sampling units (PSUs) with replacement at the first stage within H strata independently, and 

sampling with or without replacement at subsequent stages. In this case, we rewrite ∑
=

−
n

i
in

1

1 u  as 

∑∑∑
= = =

−
H

h

m

j

n

i
hji

h hj

n
1 1 1

1 u , where the triple suffix refers to elements within PSUs within strata, hm  is the 

sample number of PSUs in stratum h, nhj is the sample number of elements in PSU j in stratum h, 

and hjiu  is the 1×k  vector for element i in PSU j in stratum h. An estimator for the covariance 

matrix of ∑∑∑
= = =

−
H

h

m

j

n

i
hji

h hj

n
1 1 1

1 u  under this sampling scheme, assuming the hjiu  are observed and ignoring 

finite population corrections, is given by (Shah et al., 1995) 

( ) ( ) ( )∑ ∑∑∑∑
= =

++
−

= = =

−













−







−′−=







 H

h
h

m

j
lhlhjvhvhjh

lv

H

h

m

j

n

i
hjiL mmnn

hh hj

1 1
,,,,

2

,1 1 1

1 1v uuuuu , 

          (19) 

where ∑
=

+ =
hjn

i
hjihj

1

uu , ∑
=

+
−=

hm

j
hjhh m

1

1 uu  and the subscripts v and l denote respectively ( )ttv ′= ,  and 

( )ttl ′′′′′= , . Finally, to obtain a linearization estimator ( ){ }wL Svechv  of ]}[var{ wSvech , the values 

hjiu  in (19) need to be replaced by values hjiû , defined in the same way that iû  was defined above 

in terms of iu . The asymptotic validity of this variance estimator depends on each hm  being large if 

H is regarded as fixed. 

In the special case when the population consists of only one stratum and each individual i is a 

PSU, we rewrite (19) as  
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( ) ( ) ( )]1[v
1

,,
,1

1 −



 −′−=



 ∑∑

==

− nnn
n

i
llivvi

lv

n

i
iL uuuuu  

where ∑
=

−=
n

i
in

1

1 uu . When iu  is replaced by iû , we find u  reduces to zero and the linearization 

estimator of ]}[var{ wSvech  is: 

{ }
( )( )

( )( )2
L   2

1

1

ˆ ˆ ˆ ˆv (S )
1

n

w i it it w tt it it w t tn i

i
i

n
vech w S S

n w
ε ε ε ε′ ′ ′′ ′′′ ′′ ′′′

=

=

= − −∑
− ∑

, (20) 

corresponding to the estimator proposed by Browne (1984) when the sampling weights are constant. 

Replacing U by ( ){ }wL Svechv  in (8) gives a fitting function and a point estimator which we 

denote ( , )GLS LF S− Σ  and LGLS−
ˆ  respectively. In the classical setting of independent and identically 

distributed observations the latter estimator is usually referred to as the ADF estimator. The 

estimator may allow for the complex design both through weighting in wS  and through the choice 

of linearization variance estimator ( ){ }wL Svechv . 

We now turn to the estimation of the variance of GLS estimators of . Assuming (16) and 

using linearization again (Skinner and Holmes, 2003), the asymptotic variance of the GLS estimator 

based upon the fitting function in (8) with a specified matrix U is: 

( ) ( ) ( ) 1111111ˆvar
−−−−−−− ∆∆′∆∆′∆∆′= UCUUUn ,    (21)  

where 
( )[ ]{ }

∂
Σ∂=∆ vech

. 

The linearization estimator of this variance is then obtained by replacing ∆  in (21) by ∆̂ , 

defined as ∆  evaluated at ˆ= , and by replacing 1n C−  by a variance estimator ( ){ }wL Svechv  as 

discussed above.  When there are no covariates, this approach corresponds to estimation methods 

proposed by Skinner (1989), Satorra (1992), Müthén and Satorra (1995) and Skinner and Holmes 

(2003).  

If U is chosen to be consistent for 1n C− , expression (21) reduces in the limit to: 
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( ) ( ) 111ˆvar
−−− ∆∆′= Un  .      (22) 

Let us now consider estimation of the asymptotic covariance matrix of the PML point estimator 

PML
ˆ . Following Binder (1983), we may write this asymptotic covariance matrix as:    

( ) ( )[ ] ( )[ ] ( )[ ] 11 varˆvar −−= IIPML ,     (23) 

where ( ) is the 1×b  pseudo-score function with jth element given by: 

( ) ( ) ( ) ( )[ ] ( ) ( )












∂
Σ∂Σ−ΣΣ=

∂
∂

= −−

j

11

j
j θθ

φ w
PML Str

F
,  (24) 

using (14), and ( )I  is the bb ×  pseudo information matrix ( ) ( ) ∂∂−=I . To estimate the 

asymptotic covariance matrix of PML
ˆ  it is therefore necessary to estimate the covariance matrix of 

( ). We may write:  

 

( ) ( ) ( )

∑

∑

=

=− +











∂
Σ∂Σ=

n

i
i

n

i
iji

w

zw
tr

1

1

j

1
j ,      (25) 

where ( ) ( ) ( ) iiiz 1

j

1
j

−− Σ
∂
Σ∂Σ′−=
θ

  .          (26) 

Linearizing the ratio in (25) gives: 

( ) ( ) ( ) ∑
=

−






−++












∂
Σ∂Σ=

n

i ww

a
i

w

a a
n

tr
1

j
j

j

j

1
j

11
µµ

µ
µ
µ

φ   

where iii zwa jj = , ( )jj aEa =µ and ∑
=

−=
n

i
iana

1
j

1
j . 

The covariance matrix of ( ) may thus be approximated by   

  ( ) 




= ∑

=

−
n

i
in

1

1var}var{ u� ,        

where iu  is the 1b× vector with jth element given by: 
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





−⋅

w

a
i

w

a
µ
µ

µ
j

j

1
.       (27) 

This covariance matrix may be estimated for a complex design as above, for example using 

(19), where iu  is, as above, replaced by iû , which is obtained by replacing  by  ̂and i  by î  in 

(26) to give îjz , setting iii zwa jj ˆˆ =  and replacing ia j , jaµ  and wµ  in (27) by ia ĵ , ∑
=

−
n

i
ian

1
j

1 ˆ  and w  

respectively. The linearization estimator of the variance of PML
ˆ  is then obtained from (23) by 

replacing ( )[ ]var  by this estimator and by replacing  by  ̂ in ( )I . 

Notice that the evaluation of the information matrix ( )I  requires differentiating ( )PMLF  and 

hence ( )Σ  with respect to  twice. Some simplification is achieved by assuming that the model is 

correct, i.e. that [ ] ( )Σ=wSE . If we then replace the information matrix in (23) by  

  ( ) ( )






∂
∂−= EI

~
, 

which is asymptotically equivalent, we find from (24) that the jkth element of ( )I
~

 may be 

expressed as:  

( ) ( ) ( ) ( ) ( )











∂
Σ∂Σ

∂
Σ∂Σ= −−

k

trI
θθ

1

j

1
jk

~ , 

and we only need to differentiate ( )Σ  once.  

 

6. Simulation with BHPS data 

In this section we shall assess the properties of the point and variance estimation procedures of 

sections 3 and 4 using a simulation study. In order to consider realistic values for simulation 

parameters, e.g. , 2
uσ , 2

vσ , and 2
ησ , we shall adopt regression analysis of the form discussed in 

section 2, based upon a model considered by Berrington (2002), with individual women as units of 

primary analytic interest and a measure of attitude to gender roles as the outcome variable, y.  
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The data come from waves 1, 3, 5, 7 and 9 (collected biannually between 1991 and 1999) of the 

British Household Panel Survey (BHPS) and these waves will be coded 1,..., 5t T= =  respectively. 

Respondents were asked whether they ‘strongly agreed’ , ‘agreed’ , ‘neither agreed nor disagreed’ , 

‘disagreed’  or ‘strongly disagreed’  with a series of statements concerning the family, women’ s 

roles, and work out of the household. Responses were scored from 1 to 5.  Factor analysis was used 

to assess which statements could be combined into a gender role attitude measure. The attitude 

score, ity , considered here is the total score for six selected statements for woman i at wave t. 

Higher scores signify more egalitarian gender role attitudes. Covariates for the regression analysis 

were selected on the basis of discussion in Berrington (2002) and include economic activity, which 

distinguishes in particular between women who are at home looking after children (denoted ‘family 

care’ ) and women following other forms of activity in relation to the labour market. Variables 

reflecting age and education are also included since these have often been found to be strongly 

related to gender role attitudes (e.g. Fan and Marini, 2000). All these covariates may change values 

between waves. A year variable (scored 1, 3, …, 9) is also included. This may reflect both historical 

change and the general ageing of the women in the sample. 

The BHPS is a household panel survey of individuals in private domiciles in Great Britain 

(Taylor et al., 2001). Given the interest in whether women’ s primary labour market activity is 

‘caring for a family’ , we define our study population as women aged 16-39 in 1991. This results in 

a subset of data on n = 1340 women. This subset consists of the longitudinal sample of women in 

the eligible age range for whom full interview outcomes were obtained in all five waves. 

The simulation study involves simulating D replicate samples. Each replicate is thus based upon 

that BHPS subset, and drawn according to a specified sampling scheme, where the values itx  are 

held fixed at their values in the underlying dataset, but where the values ity  are simulated from 

specified models, independently for each replicate. The models considered initially are the UCM 

model and the UCM(C) model from Section 2, with parameters set at the values obtained from 
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fitting these models to the BHPS subset and errors following either the normal distribution or a t 

distribution.  

 

6.1 Point estimators  

We first suppose the replicate samples are obtained by srs without replacement with size simn , 

which are 1340, 500, 200 and 100. For simplicity, we shall not attempt to allow for the impact of 

either stratification or unequal probability sampling. Clustering is thus the only complex sampling 

feature considered here via the UCM(C) model. In this subsection, we aim to present results based 

on 1000=D  replicates. 

Five point estimators were considered: ULS, GLS-NORM1, GLS-NORM2 and PML, defined in 

(7), (12), (13) and (15) respectively, and GLS-L, defined by (8) with U given by the estimator in 

(20). It was in fact found that the ULS and PML estimation methods produced virtually identical 

results for the UCM model and similar results for other models, a finding corresponding to that of   

Bollen (1989, p. 112). We therefore do not present the ULS results and focus instead on the 

remaining four estimators, assessing their properties in terms of relative bias and coefficient of 

variation (cv), estimated from the replications of the simulation study.  

Table 1 presents results produced when the UCM model with normal errors is used both to 

generate the ity  values and as a basis for model fitting. The parameter vector ( )′= 22 , vu σσ  contains 

two parameters of interest. In this case, we might expect the estimators 1
ˆ

NORMGLS− , 2
ˆ

NORMGLS−  and 

PML
ˆ  which exploit the normality to outperform the estimator LGLS−

ˆ  which does not. In fact we 

observe little difference between the performance of this estimator and that of 1
ˆ

NORMGLS− . We do 

observe that 2
ˆ

NORMGLS−  performs consistently better than 1
ˆ

NORMGLS−  (if only slightly) with respect 

to relative bias and possibly with respect to coefficient of variation. The estimator PML
ˆ  has a 

similar performance to 2
ˆ

NORMGLS−  with respect to coefficient of variation and displays different 

patterns of relative bias. 
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We repeated the simulation in Table 1 using the AR1 model and found similar results, which are 

not reported here.    

In terms of the asymptotic equivalence between GLS2 and PML methods, we observe that there 

is not a large difference between the mean square error (mse) results when comparing these two 

methods, in a situation with sample size 1340. That, of course, is less clear for simulations with 

smaller samples sizes.  

We next consider the impact of clustering, with the data now generated from the UCM-C 

model. The UCM model continues to be the fitted model. We considered both normal and t-

distributed errors and present the results for t-distributed errors in Table 2. We expect the main 

difference between Table 2 and Table 1 to be an increase in cv from the clustering, but we also 

notice a modest increase in relative bias. We again find that 2
ˆ

NORMGLS−  performs consistently better 

than 1
ˆ

NORMGLS−  with respect to relative bias, but this is now not necessarily the case with respect to 

cv. As the sample sizes increase, we note that again 2
ˆ

NORMGLS−  and PML
ˆ  appear to be the preferred 

methods with respect to relative bias. There does not appear to be a great difference between all 

four methods with respect to cv. Simulation results produced for AR1 model fitting in the current 

situation, which are not presented again, generally agreed with results presented in Table 2.     

We focus on the impact of clustering in Table 3, where the inflation of mean squared error 

(MSE) arising from the incorporation of cluster effects in the data generation process is considered, 

in the case when 100=simn  and the errors are t distributed. There are no major differences between 

the estimation methods in terms of the MSE inflation, although the impact appears to be least for 

the  GLS-L method.   

Overall, these simulation results produced for the ADF method GLS-L generally agree with 

Bollen (1989, p. 432), Satorra (1992), Yuan and Bentler (1997), and Olsson, Foss, and Troye 

(2003), where it is recommended that those methods should be adopted only in situations with large 

sample sizes (1000 or more), for dealing with situations where departures from normality conditions 

are evident. We may emphasize that ADF methods have in several situations had good general 
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performance, even though these methods have not shown ‘good’  levels of bias. PML point 

estimators have in general produced very good performance in terms of bias and variance, even in 

situations where the normality assumption was violated, as reported for example by Satorra and 

Bentler (1986).  

 

6.2 Variance estimators  

We now consider the properties of the linearization variance estimators denoted vL in section 4.  We 

restrict attention to their use in the estimation of the variance of the two point estimators: 1
ˆ

NORMGLS−  

and PML
ˆ . To provide benchmarks for comparison, we also consider the variance estimator, nvar (.) , 

which is based upon the assumption of both normality and independent and identically distributed 

observations, and the estimator dfvar (.)  which allows for non-normality but still assumes 

independent and identically distributed observations . The subscript n denotes naïve. In the case of 

1
ˆ

NORMGLS− , nvar (.)  and dfvar (.)  are obtained from (22) and (21) respectively, with U given by (10) 

and wW S= . In the case of PML
ˆ , nvar (.)  is given by ( )[ ] 1−I . 

To evaluate the properties of these variance estimators, we drew a new set of replicate samples 

in which a two-stage sampling scheme was used, with simple random sampling with replacement at 

each stage. The 1340 elements were divided into 47 PSUs. The number of sampled PSUs, simm , was 

varied from 47=simm  to 20=simm  and 15=simm . The number of selected secondary sampling units 

(SSUs) in the jth selected PSU is denoted sim
jn .  

The UCM-C model was used to generate the values of ijty  now using 000,10=D  replicates. 

The parameters of the UCM-C model were the same as in the simulations in section 5.1. , except 

that there were some different choices for 2
ησ : 15.0C,  2 ≅sim

ησ , 45.0C,  2 ≅sim
ησ , and 75.0C,  2 ≅sim

ησ ; to 

enable the evaluation of effects of different impacts of clustering on the variance estimation 

procedures. The fitted model was taken as the UCM model. 
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Table 4 displays results produced when considering 47=simm  and 15=sim
jn . The first three 

variance estimators do not take the clustering into account and, as anticipated, clearly underestimate 

the variance. The degree of underestimation increases with 2
ησ , i.e. the more clustering the more 

downward relative bias.  

Both methods that allow for clustering have improved properties in terms of relative bias, 

compared to the first three methods. They are still biased downwards, however, corresponding to 

other findings for linearization variance estimation (Wolter, 1985, Chapter 8; Kott, 1991). 

Furthermore, these two methods had larger variances than the first three methods, as expected 

(Kott, 1991; Korn and Graubard, 1995), as a result of the reduced degrees of freedom for variance 

estimation. Moreover, the cvs for both ( )PMLL
ˆv  and ( )1

ˆv NORMGLSL −  appear to have a slight 

tendency of increasing with larger impacts of clustering. This pattern however is not observed for 

the first three methods, which seem to have variances which do not vary greatly with 2
ησ .  

Table 5 includes results that were produced when considering 20=simm  and 15=sim
jn , i.e. 300 

cases. Under this situation, the linearization variance estimators which allow for the complex 

sampling again led to noticeable improvements in terms of relative bias when compared to methods 

that ignored the sampling scheme. The smaller number of sample clusters does, however, seem to 

have led to some increases in relative bias, although these are still smaller than the cvs. Neither the 

relative bias nor the cv were found to vary greatly with 2
ησ .  

Table 6 includes results that were produced when 15=simm  and 10=sim
jn , i.e the number of 

SSUs selected per cluster was further reduced, and the sample size was diminished to 150. further 

increases in relative bias were observed although again the relative biases were smaller than the cvs. 

As in Table 5 there was no strong relationship between either the relative bias or the cv with 2
ησ .   

In summary, the linearization method which allows for clustering appears to perform reasonably 

well for both point estimators considered here for a range of possible clustering effects, although 
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there is a tendency for the variance to be underestimated if the number of sampled clusters is small, 

say twenty or below. 

 

7. Conclusion 

This paper has proposed some methods of making inference about parameters in panel data models, 

allowing for complex sampling schemes. Methods have been evaluated using a simulation study 

based upon data from the BHPS. The study indicated that: (i) overall most of the proposed methods 

perform satisfactorily under clustered designs; (ii) ADF methods do not always perform as we 

expected, although often these had the smallest variance, were generally less sensitive to clustering, 

and had the best performance for stronger departures from normality; and (iii) ML and PML 

estimators produced satisfactory performance in terms of bias and variance, even when the 

normality assumption was violated.  

Methods for variance estimation for GLS and PML point estimators were considered. Under the 

complex survey data approach, we extend ADF variance estimation methodology developed by 

Skinner (1989). In addition, we proposed a method for estimating the asymptotic covariance matrix 

of the PML. Results of a second simulation study suggested that: (iv) methods that do not take the 

sampling scheme into account underestimate the variance, in some situations very gravely; (v) 

underestimation tend to increase rapidly with inflations in the impacts of clustering; (vi) ADF 

methods that allow for clustering and take the sampling design into account tend to lead to 

noticeable improvements in terms of relative bias when compared to methods that ignore the 

sampling scheme characteristics, in situations where the sample size is over around 200 cases; and 

(vii) the variance estimator we propose for estimating the variance of the maximum likelihood point 

estimator has an evidently better performance in terms of bias than those proposed estimating the 

variance for the GLS estimators.   
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100=n  200=n  500=n  1340=n  

Estimator 
rel bias cv  rel bias cv  rel bias cv  rel bias cv  

2
ûσ  -16.76% 17.77% -9.21% 12.14% -3.40% 7.16% -1.42% 4.29% 

1ĜLS NORMθ −  
2
v̂σ  -9.70% 8.41% -4.68% 5.56% -1.74% 3.39% -0.74% 1.90% 

2
ûσ  -6.43% 17.69% -3.77% 11.77% -1.18% 7.12% -0.60% 4.27% 

2ĜLS NORMθ −  
2
v̂σ  6.41% 7.19% 3.51% 5.20% 1.59% 3.27% 0.47% 1.88% 

2
ûσ  -15.79% 19.44% -9.23% 12.76% -3.41% 7.19% -1.46% 4.33% 

ĜLS Lθ −  
2
v̂σ  -9.89% 9.04% -4.60% 5.83% -1.72% 3.44% -0.74% 1.93% 

2
ûσ  -9.94% 17.18% -5.61% 11.68% -1.92% 7.08% -0.88% 4.26% 

P̂MLθ  
2
v̂σ  0.89% 6.84% 0.74% 5.09% 0.47% 3.25% 0.06% 1.87% 

 
Table 1 – Properties of point estimators when both fitted model and true model are UCM. 
 

 

100=n  200=n  500=n  1340=n  
Estimator 

rel bias cv  rel bias cv  rel bias cv  rel bias cv  
2
ûσ  -16.73% 29.27% -8.75% 22.07% -4.05% 12.10% -1.63% 7.54% 

1ĜLS NORMθ −  
2
v̂σ  -12.30% 10.98% -7.13% 8.08% -2.65% 5.23% -1.02% 3.28% 

2
ûσ  -7.11% 29.26% -3.32% 22.28% -1.78% 12.17% -0.76% 7.53% 

2ĜLS NORMθ −  
2
v̂σ  9.45% 14.00% 4.83% 9.92% 2.18% 6.08% 0.92% 3.66% 

2
ûσ  -21.82% 29.11% -13.00% 18.55% -6.16% 11.72% -2.56% 7.44% 

ĜLS Lθ −  
2
v̂σ  -17.18% 11.74% -11.54% 8.23% -5.58% 5.16% -2.75% 3.21% 

2
ûσ  -10.33% 28.91% -5.16% 22.00% -2.54% 12.10% -1.05% 7.53% 

P̂MLθ  
2
v̂σ  1.56% 10.84% 0.62% 8.62% 0.51% 5.55% 0.26% 3.47% 

 
Table 2 – Properties of point estimators when fitted model is UCM and true model is UCM-C with t distributed errors 
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Estimator UCM model AR1 model 

2
ûσ  1.44 1.46 
2
v̂σ  0.89 0.93 ÛLSθ  

γ̂  - 1.01 
2
ûσ  1.27 1.27 
2
v̂σ  0.93 0.92 1ĜLS NORMθ −  

γ̂  - 1.01 
2
ûσ  1.52 1.53 
2
v̂σ  0.95 1.06 2ĜLS NORMθ −  

γ̂  - 1.10 
2
ûσ  1.22 1.23 
2
v̂σ  0.86 0.89 ĜLS Lθ −  

γ̂  - 0.82 
2
ûσ  1.44 1.45 
2
v̂σ  0.89 0.99 P̂MLθ  

γ̂  - 1.04 
  

 
Table 3 – Ratios of MSEs of estimators with data generated from UCM-C model (numerator) and from UCM model 
(denominator) (n=100 and t-distributed errors).  
 

 

rel bias ( )( )θ̂varcv  
Variance Estimator 

15.02 =ησ  45.02 =ησ  75.02 =ησ  15.02 =ησ  45.02 =ησ  75.02 =ησ  

)ˆvar( 2
uσ  -0.39% -7.75% -11.43% 14.07% 14.27% 14.54% ( )ˆvarn PMLθ  

)ˆvar( 2
vσ 1.78% -2.44% -0.30% 8.54% 8.54% 8.59% 

)ˆvar( 2
uσ  -1.54% -8.96% -12.47% 10.71% 11.14% 11.37% ( )1

ˆvarn GLS NORMθ −
 

)ˆvar( 2
vσ -5.18% -10.25% -7.14% 5.39% 5.54% 5.47% 

)ˆvar( 2
uσ  -1.51% -9.07% -12.60% 14.13% 14.34% 14.61% 

( )1
ˆvardf GLS NORMθ −

 
)ˆvar( 2

vσ -4.14% -9.20% -6.01% 8.62% 8.70% 8.69% 

)ˆvar( 2
uσ  0.27% -4.58% -3.55% 24.65% 25.41% 26.85% ( )ˆ

L PMLv θ  
)ˆvar( 2

vσ 2.53% -2.35% 0.99% 22.01% 21.86% 21.98% 

)ˆvar( 2
uσ  -0.85% -6.02% -4.91% 24.78% 25.51% 27.00% ( )1

ˆvL GLS NORMθ −
 

)ˆvar( 2
vσ -3.48% -9.13% -4.80% 22.33% 22.24% 22.43% 

  

 
Table 4 – Properties of variance estimators, when UCM is fitted model, UCM-C is true model, 47=simm  and 15=sim

jn  

. 
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rel bias ( )( )ˆvarcv θ  

Variance Estimator 
15.02 =ησ  45.02 =ησ  75.02 =ησ  15.02 =ησ  45.02 =ησ  75.02 =ησ  

)ˆvar( 2
uσ  -5.17% -5.25% -4.69% 38.07% 39.03% 40.75% 

( )ˆvL PMLθ  
)ˆvar( 2

vσ  -1.54% -0.69% -0.49% 33.55% 33.79% 34.44% 

)ˆvar( 2
uσ  -7.31% -7.60% -6.55% 38.42% 39.17% 40.83% 

( )1
ˆvL GLS NORMθ −

 
)ˆvar( 2

vσ  -14.17% -12.87% -12.23% 34.26% 34.39% 35.00% 
  

 
Table 5 – Properties of variance estimators, when UCM is fitted model, UCM-C is true model,  

20=simm  and 15=sim
jn . 

 

 

rel bias ( )( )ˆvarcv θ  

Variance Estimator 
15.02 =ησ  45.02 =ησ  75.02 =ησ  15.02 =ησ  45.02 =ησ  75.02 =ησ  

)ˆvar( 2
uσ  -5.48%  -6.11%  -4.87%  47.86% 47.80% 50.19% 

( )ˆvL PMLθ  
)ˆvar( 2

vσ  -3.41%  -2.68%NS -1.38%NS 41.05% 40.43% 40.87% 

)ˆvar( 2
uσ  -9.26%  -9.63%  -8.64%  48.57% 48.09% 50.85% 

( )1
ˆvL GLS NORMθ −

 
)ˆvar( 2

vσ  -23.34%  -24.21%  -21.92%  42.07% 41.22% 41.86% 
  

 
Table 6 – Properties of variance estimators, when UCM is fitted model, UCM-C is true model, 15=simm  and 

10=sim
jn . 

 


