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Introduction

We are working on a neuroscience project with Dr. MARC SOMMER, an as-

sistance professor in the department of neuroscience at Center for the Neural

Basis of Cognition (CNBC) at University of Pittsburgh. His lab studies how

different brain areas interact with each other. Most of their work focuses on

the circuits that allow us to see and move our eyes. Using neurophysiologi-

cal methods on a single neurons recording, electrical microstimulation, and

reversible inactivation, they study signal processing in the brains of awake,

behaving rhesus monkey.

The goal of this project is to understand if there is any relationship be-

tween the structure of the spikes of the signals propagate from the neurons

and their function. Because neurons represent and transmit information by

firing sequences of spikes in various temporal pattern, we will try to identify

and classify neurons based on firing spikes characteristics. The neurons typi-
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cally respond to a stimulus by producing complex spike sequences that reflect

both the intrinsic dynamics of the neuron and the temporal characteristics

of the stimulus. Neuronal responses can vary from trial to trial even when

the same stimulus is presented repeatedly, for this reason they are typically

treated probabilistically, and characterized, for example, from the probabil-

ity that a spike occurs at a particular time during a trial. Another useful

statistic for characterizing spiking patterns is the inter- Spike interval (ISI)

distribution, the probability density of the time intervals between adjacent

spikes. The spike waveform widths and the spontaneous firing rate, the rate

of spontaneous activity of the neuron (that is, activity not caused from stim-

uli) can give us additional information about the neurons identity. There are

two major types of neurons, inhibitory and excitatory. Inhibitory neurons

have short spike periods, on the other hand, excitatory neurons some what

longer spike periods. Inhibitory neurons have high spontaneous firing rates,

while the excitatory have lower ones. Because the statistical charactestics of

the spike patterns are therefore rich of information, our work will be to study

these for identifying and classifying neurons in subcategories, concentrating

on the characteristics of the ISI distribution.

Experiment

During the experiment, the monkey faced a tangent screen on which visual

stimuli were projected by an LCD monitor. Visual stimuli were 0.3×0.3 blue
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or red spots ((0.6cd/m2)) with dim ambient room light. Personal computers

controlled the presentation of visual stimuli and recorded at 1 kHz the eye

position the occurrence of action potentials, and the timing of task events.

Each task is composed of 3 parts, the control period, the visual stimulus

and the movement. The control period is at the very beginning of the trial.

This is when the animal is just looking around, just waiting, and not engaged

in a formal task. Then there is the usual stimulus given by the spotlight, and

in the end the saccade movement. A rapid intermittent eye movement, as

that which occurs when the eyes fix on one point after another in the visual

field. At the end of each trial, the monkey is rewarded.

The Control data, the data from the control period, are critical because

they tell us how much the processes of the neurons fluctuate in the steady

state, when nothing in particular is happening in the visual world or with

regard to eye movements.
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Data

Our dataset is composed of all the single neuron data from one brain struc-

ture, the mediodorsal thalamus (MD). All of these data were from the Control

period of the task. There were inserted certain numbers as delimiters, i.e.

labels to show where one trial ends and the next one begins. Here is the

code: 7773, 8883, and 9993 show the ends of trials. So if you see something

like

12

15

222

5

197

7773

132

4

21

7773

12

29

8883

8883

144
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etc., this means that there were five sequential ISIs during the Control period

of the first trial: 12, 15, 222, 5, then 197. Then the trial ended (7773) and

the monkey did something else for a few seconds. Then another trial began

in which the following ISIs occurred during the Control period: 132, 4, and

21. Then that trial ended (7773). Sometimes there is no ISI during a trial

(hence the two 8883s in a row). Sometimes there is only 1. Considering

the structure of the dataset, we have decided to ignore this subdivision, and

working on each file as it is a big task, and not a sequence.

Even if we have the ISI distribution for 40 neurons, we decided to carry

out our analysis only for 24 of them, because we think that we need at least

30 data points for each neuron for having a significant estimate. Moreover,

because these data come from a specific time period lasting 100 ms, every

data point greater than 100 ms have to be excluded.
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Analysis

A stochastic process that generates a sequence of events, such as action

potentials, is called a point process. In general, the probability of an event

occurring at any given time could depend on the entire history of preceding

events. If there is no dependence at all on preceding events, so that the

events themselves are statistically independent, we have a Poisson process.

The Poisson process provides an extremely useful approximation of stochastic

neuronal firing. In particular we are assuming that the process that generates

a sequence of spikes is the homogeneous Poisson process, for which the firing

rate is constant over time.

The probability density of time intervals between adjacent spikes (ISI) for

a homogeneous Poisson spike train is an exponential. This is why we start

our analysis by trying to fit the exponential model.

First we plotted the histogram and the QQ-plot for all the 24 neurons

separately. Here the histogram and the QQ-plots are shown for 4 neurons

with data points more than 100. In the histogram plots, in Figure 1, the

green line corresponds to the nonparametric density estimate and the blue

line is the estimated exponential density. It is clear that the peaks of these

two density estimates are different. The peak for the non parametric density

is shifted to the right of the exponential density in all four plots. The left tail

of the nonparametric density is totally different from the exponential density.

From this plot we can say that the exponential model might not be adequate
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in this case.
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Figure 1: Histogram
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Next we look at the QQ-plots for these four neurons in Figure 2. For the

neurons X15 and X40 the right tail is uniformly lower than the estimated

exponential density whereas for X4 the left tail is substantially different. So

the QQ-plot also confirms that the exponential model is not adequate in this

case.
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Figure 2: QQ plot
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Now we do some quantitative analysis. We calculated the coefficient of

variation for all the neurons. If they really come from exponential distribu-

tion then their coefficient of variation should be close to 1. We constructed

a confidence interval for the coefficient of variation based an the 24 neurons

and it is of the form [0.5612426, 0.6491892]. We can see that 1 does not fall

in this interval. So this also suggests that the exponential model might not

be a good fit in this case.
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Figure 3: Plot for p-value of Kolmogorv Smirnov test
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We do the Kolmogorov-Smirnov test for all the 24 neurons. The p-values

for all the 24 tests are plotted in Figure 3. Here we can see that most of the

p-values are below 0.05, which means that the null hypothesis that they come

from an exponential distribution is rejected. That means from these tests we

can infer that most of the neurons do not follow an exponential distribution.

Since we want the same probability model for all the neurons we can infer

that exponential model does not fit well in this case. Because the exponential

assumption doesn’t seem to be good enough from our analysis, we are trying

to understand better how a neuron can fire.

The action potential (spike) generation also depends on the recent history

of cell firing. For a few milliseconds just after an action potential has been

fired, it may be virtually impossible to initiate another spike. This is called

the absolute refractory period. This could be a reason why a model based

only on a simple exponential distribution cannot be a good assumption for

the distribution of the ISI.

Conclusion

From the analysis conducted so far, we can infer that an exponential model

is not adequate to describe the ISI distribution.If we consider the influence

of the refractory period on the ISI distribution, we can think to a mixture

model that reflects the cumulative effect of the refractory period and the

distribution of the ISI.
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In the literature, the refractory period is assumed to be distributed nor-

mally with a lower end point at 0 since a length cannot be a negative value.

And actual ISI’s are distributed as exponential. Thus we are now aiming to

estimate a mixture model comprising of the normal and exponential distri-

butions from the data.

In addition to refractory period, neurons’ bursting behaviors will have to

be considered. A neuron produces spikes both on a regular basis and on an

irregular basis, switching the two modes with some probability. And each

mode is assumed to be distributed as an exponential. Therefore, our model

now has a combination of a normal and two exponentials. We will use the EM

algorithm to estimate the parameters of all the distributions in the mixture

model. Finally, we are going to move on to classification of the neurons.
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