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Asymptotic Properties of Maximum Likelihood 
Estimators and Likelihood Ratio Tests Under 

Nonstandard Conditions 
STEVEN G. SELF and KUNG-YEE LIANG* 

Large sample properties of the likelihood function when the true pa- 
rameter value may be on the boundary of the parameter space are de- 
scribed. Specifically, the asymptotic distribution of maximum likelihood 
estimators and likelihood ratio statistics are derived. These results gen- 
eralize the work of Moran (1971), Chant (1974), and Chernoff (1954). 
Some of Chant's results are shown to be incorrect. 

The approach used in deriving these results follows from comments 
made by Moran and Chant. The problem is shown to be asymptotically 
equivalent to the problem of estimating the restricted mean of a multi- 
variate Gaussian distribution from a sample of size 1. In this represen- 
tation the Gaussian random variable corresponds to the limit of the 
normalized score statistic and the estimate of the mean corresponds to 
the limit of the normalized maximum likelihood estimator. Thus the 
limiting distribution of the maximum likelihood estimator is the same as 
the distribution of the projection of the Gaussian random variable onto 
the region of admissible values for the mean. 

A variety of examples is provided for which the limiting distributions 
of likelihood ratio statistics are mixtures of chi-squared distributions. 
One example is provided with a nuisance parameter on the boundary 
for which the asymptotic distribution is not a mixture of chi-squared 
distributions. 

KEY WORD: Boundary. 

1. INTRODUCTION 

The purpose of this article is to derive large sample 
properties of the likelihood surface under conditions sim- 
ilar to CramCr's (1946) but allowing the true parameter 
value to be on the boundary of the parameter space. The 
results are stated in terms of properties of maximum like- 
lihood estimators in the loose sense. By analogy to Kull- 
dorf (1957), we define any point in the parameter space 
at which a local maximum of the likelihood function occurs 
to be a maximum likelihood estimator in the loose sense. 
The results presented include the existence of a consistent 
maximum likelihood estimator, the large sample distri- 
bution of that estimator, and the large sample distribution -
of likelihood ratio statistics. 

Previous work in this area includes that done by Moran 
(1971) and Chant (1974), who investigated the large sam- 
ple distribution of maximum likelihood estimators. Moran 
considered the special case of a rectangular parameter 
space with at most two coordinates of the parameter on 
the boundary. Chant described the relationship between 
the ~ ( ~ 1  test and tests based on maximum likelihood es-
timators. In discussing their results, both Moran and Chant 
mentioned the asymptotic equivalence of this problem 
with the problem of estimating the restricted mean of a 
multivariate Gaussian distribution. The approach taken 
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here may be considered a rigorous development of these 
comments. 

Let f (x; 8) be the probability density function of a ran- 
dom variable X indexed by 8 = ( 4 ,  . . . , 8,), where 8 
takes values in the parameter space 0 ,  a subset of RP.We 
assume that distinct values of 8 correspond to distinct prob- 
ability distributions. Let XI, . . . , X, be N independent 
observations on X and denote the log-likelihood function, 

log f (Xi; 8), by 1,(8). We assume the almost sure ex- 
istence of the first three derivatives of 1,(8) with respect 
to 8 on the intersection of neighborhoods of the true pa- 
rameter value and 0 .  If the true parameter value, denoted 
by 00, is on the boundary of 0 ,  the derivatives of 1,(8) are 
taken from the appropriate side. Moreover, on the inter- 
section of neighborhoods of 8, and 0 ,  N-l times the ab- 
solute value of the third derivative of 1,(8) is bounded by 
a function of XI, . . . , X, whose expectation exists. We 
denote the first two derivatives of 1,(8) by UN(8) and 
-I,(8), respectively. Finally, the expectation of N-'IN(8), 
denoted by I(8), is assumed to be positive definite on 
neighborhoods of 8, and at 8, is equal .to the variance- 
covariance matrix of N-'I2 UN(e0). 

2. 	 CONSISTENCY AND WEAK CONVERGENCE OF 
THE MAXIMUM LIKELIHOOD ESTIMATOR 

Following Chernoff (1954), we offer the following def- 
inition: 

oefinirion.q-he set 0 c R P  is approximated at 4 by 
a cone with vertex at &, if 

(1) inf Ib - yII = o(lb - Ooll) for all y E 0 
xscn 

and 

(2) inf Ib - yll = o(lb - Ooll) for all x E C,. 
~ s n  

Recall that a cone with vertex at 80, C, is a set of ~ o i n t s  
such that if x E C then a(x - 60) + 80 E C, where a is 
any real, nonnegative umber. Let C - $ denote the set 
obtained by translating a cone, C, with vertex at 8, so that 
its vertex lies at the origin. From now on we will assume 
that is regu1ar be a cone 
with vertex at 8,. This condition is mild enough to encom- 
pass a wide variety of shapes for a.For instance, it is easy 

show that a sphere may be approximated at a point by 
the plane tangent to the sphere at that point. 

We first give a consistency result for the maximum like- 
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lihood estimator when Oo is on the boundary of In. For this 
result we require that near 00,R behave like a closed set. 
Specifically, we will assume that the intersection of In and 
the closure of neighborhoods centered about Oo constitute 
closed subsets of RP. 

Theorem 1. If the foregoing conditions hold, then with 
probability tending to 1as N + co there exists a sequence 
of points in R,  8,, at which local maxima of 1,(6') occur, 
and that converges to 0, in probability. Moreover, 
wl2((e, - eo) = op(i) .  

Proof. Pick 6 > 0. Since the intersection of R and the 
closure of a 6 neighborhood about 0, is closed, lN(6') must 
have a local maximum on this set. If it can be shown that 
this maximum occurs at a point in R at a distance from e0 
less than 6 with probability tending toward 1, then the 
existence and consistency of 8, will follow immediately. 
This may be shown by proving that 1,(6') < lN(6',) with 
probability tending toward 1 for all 0 in In that are at a 
distance 6 from Oo. The same argument used by Lehmann 
(1983, pp. 429-432), which relies on a Taylor series ex- 
pansion of 1,(6') about Bo, may be used to establish this 
inequality. The root-N consistency then follows from ar- 
guments in Chernoff's (1954) lemma 1. 

To show weak convergence of 8,, we proceed in two 
steps. First, a quadratic approximation to 1,(6') is made 
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We now derive a representation for the asymptotic dis- 
tribution of N ~ I ~ ( $  - 0,). 

Theorem 2. Let Z be a random variable with a multi- 
variate Gaussian distribution with mean 6' and covariance 
matrix Z-1(6'0), where 6' is restricted to lie in C, - 8,. Let 
F denote the distribution of the maximum likelihood 
estimate of 6' based on a single realization of Z when 
6' = 0, hereafter denoted by 8. Then under the conditions 
given previously, the limiting distribution of ~ " ~ ( 8 ,  - 8,) 
equals F. 

Proof. Two approximations are made. First, R is ap- 
proximated by C, as the set over which lN(6') is maximized. 
This is justified by the root-N consistency of 8, and the 
definition of approximating cones given previously. The 
second approximation, justified in Lemma 1, replaces 
1,(6') by the quadratic form 

This expression is maximized over values of 6' in C, or, 
equivalently, values of N1I2(B - 8,) in C, - Oo. The result 
follows upon noting that the limit law of N1I2ZN is multi- 
variate Gaussian with mean 0 and covariance matrix 
z- l(0,). 

Although the representation given in Theorem 2 reduces 
the general problem of computing the limiting distribution 

that maximizes this quadratic function, 6' and the value of 
8,, is shown to be asymptotically equivalent to 8,. The problems, the solution to the simpler problem in any given 
large sample distribution of 8, is then derived by argu- case might still be rather arduous. We now offer several 
ments similar to those of Chernoff (1954). special cases in which the representation given in Theorem 

imay be used to compute the limiting distribution of 
Lemma 1. Under the conditions stated in Section 1 

of ~ ~ ~ ~ ( 8 ,  - 0,) to a single class of considerably simpler 

N1I2(ON- 0,).
such that 0 6' and for all - Bo = Op(N-lI2), two times 

N-llN(B) - N-11N(6'0) is equal to 

where Z, = N-1Z-1(6'0)UN(6'0). Moreover, if R is convex 
in a neighborhood of 8, then ~~ '~18,8,I = op(l), where -

Case 1. Suppose that 0, is an interior point of In. Then 
Cn - Oo = RP. The maximum likelihood estimator, 8, in 
the previous representation equals Z,  so F is multivariate 
Gaussian >with mean 0 and covariance matrix Z-l(Oo). 

Case 2. Suppose that In = R1 x ..- x cR,,where Ri 
are closed intervals in R1 and Bol is a left endpoint of In1 

in R at which the first term in (2.1) is 6' is the value of 8, 
maximized. 

Proof. Expression (2.1) follows from a Taylor series 
expansion of 1,(B) about Bo and a reexpression in terms of 
2,. To show that ~ ~ ~ ~ 1 8 ,8,I = op(l), let g,(B) denote-
the first two terms in expression (2.1) and let rN(6') denote 
the last term. Because g, is a positive definite quadratic 
function, the desired result will follow from the convexity 
of R upon showing that lgN(8N) - gN(dN)I is op(N-l). By 
using (2.1) we have 

Since gN(dN) - gN(dN) is negative, it follows that it must 
be bounded in absolute value by rN(8,) - ~ ~ ( 8 , ) .This 
term is seen to be Op(N-3'2) by the results of Theorem 1 
and by noting that the same arguments used in Theorem 
1may be applied to demonstrate the root-N consistency 
of 8,. 

and Boi are interior points of Ri for 2 5 i rp. Then Ca -
8, = [0, co) x Rp-l and 8 has the representation 

where Zij = ZiJ(O0)are elements of the matrix I-l(Bo). Upon 
noting that the elements of the vector in the second term 
in (2.2) and the event {Z1 < 0) are independent, we see 
that this representation corresponds to the result described 
in Moran's (1971) theorem 1and Chant's (1974) case (i). 
The vector in the second term in (2.2) is simply the pro- 
jection of Z onto the half-plane {Z1 r 0), where the pro- 
jection is taken according to the metric defined by Z(Oo). 

In the previous example, the fact that 8 is multivariate 
Gaussian conditional on 81 = 0 stems from the fact that 
the event {Z1 < 0) and components of 8 in the second 
term of (2.2) are independent. This independence between 
elements of 8 and events characterizing which coordinates 
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of 8 are zero does not obtain when there is more than one 
coordinate of on the boundary. For example, let p = 

2, C, = [0, m) x [0, m), and 001 = OO2 = 0. Then 8' may 
be written as (0, O), (0, Z2 - (Z21/Z11)Z1),(Z1 - (Z12/Z22)Z2, 
0), or (Z1, Z2) depending in which of four regions (Z,, Z,) 
falls. The regions are given by {Z1 - (Z12/Z11)Z2< 0, Z2 
- (z21/z11)z1< O), {Z2 - (z21/z11)z1> 0, z1< O), {Z1 -
(Z12/Z22)Z2> 0, Z2 <01, and {Z1 > 0, Z2 >01, respectively. 
Simple calculation of the distribution of Z, - (Z21/Z11)Zl, 
say, conditional on (Z,, Z,) falling in the second region 
demonstrates the nonnormality of the components of the 
distribution of 8, although if P1= 0, the components are 
half-normal. A counterexample to Chant's theorem 2, in 

to the case in which O0 is a boundary point of R. We will 
assume from now on that both R and R0 are regular enough 
to be approximated by cones with vertices at eO. 

Theorem 3. Let Z be a random variable with a multi- 
variate Gaussian distribution with mean 0 and covariance 
matrix Z-l(Oo), and let Cooand C,, be non-empty cones 
approximating Ro and In1 at 6'0, respectively. Then under 
the regularity conditions given in Section 1, the asymptotic 
distribution of the likelihood ratio statistic, -2 In AN, is 
the same as the distribution of the likelihood ratio test of 

C,,E 6' versus the alternative 8 E C,, based on a single 
realization of Z when 6' = 6'0. 

The proof follows immediately from the approximations which he states that all components of the mixture are 
multivariate Gaussian, may be constructed by taking the 
original estimation to correspond t; the asimp- 

described in Section 2 and Chernoff's (1954) theorem 1. 

The asymptotic representation of the likelihood ratio 
totic representation given previously. Then for every N, 
the maximum likelihood estimator has the representation 
given previously and, therefore, in the limit does not have 
a distribution corresponding to a mixture of multivariate 
Gaussians. 

The error in Chant's proof appears in the specifications 
of the inequalities that characterize the configuration of 
di7s equal to zero. In the counterexample, for instance, 
Chant computed the second component of the mixture 
as the distribution of Z2 - (Z21/Z11)Zl conditional 
on {Z1 < 0) rather than conditional on {Z1 < 0, Z2 -
(z21/z11)zl> 0). 

Case 3. Suppose that R is as in Case 2, Bol, . . . , OOq 
are left endpoints of In1, . . . , R,, and BOi are interior 
points of Ini (q + 1 < i < p). There are 24 possible con- 
figurations of the first q coordinates of 8, where the con- 
figuration is taken to mean which coordinates of 8 are 
zero. The ith such configuration is characterized by a 
set of inequalities satisfied by q linear combinations 
of Z ,  denoted by {Liz > 0). In addition, given the ith 
configuration, 8 is simply the projection of Z, PiZ, 
onto the appropriate edge of C, - eO.Pi = Z -
Z-1(6'0)Bi[BfZ-1(6'o)Bi]+
Bf, with Bi a diagonal matrix with 
ones as diagonal elements corresponding to coordinates 
of 8 that are zero, and zeros otherwise. Thus 8 may be 
written as EP,ZZ{L,Z > 0) and the distribution of 8, F(.) 
may be written as x i ~ [ ~ i ~ i  > O]PIPiZ 5 (.)ILiZi > 01. 

statistic given by Theorem 3 may be written as 

SUP { - ( z  - e)fz(eo)(z- 0))
BECn-Bo 

- SUP {- ( 2  - O)'Z(B0)(Z - O)), (3.1)
eEc%-eo 

where Z has a multivariate Gaussian distribution with 
mean 0 and covariance matrix I-'(8,). It is convenient to 
rewrite (3.1) as 

inf 112 - e112 - inf 112 - 8112 (3.2)
eeC0 OEC 

with c = (8 : 8 	= A1I2PT6' for a11 0 € C, - O0) and 
C,,€ 6' 	to= {(e = A112PT6'for a11 : (e eO}, where 2 has-


a multivariate Gaussian distribution with mean 0 and iden- 
tity covariance matrix and PAPT represents the spectral 
decomposition of Z(B0). Once the problem is changed to 
2 and the new parameter sets, probabilities can be com- 
puted using the standard Gaussian distribution. Note that 
the probability structure is retained through orthogonal 
transformations of 2 .  

We now present some special cases in which the rep- 
resentation given by (3.2) is used to calculate the distri- 
bution of likelihood ratio statistics. We will assume from 
here on that R = R1 x x Rp, where the Ris are either 
closed, half-open, or open intervals in R1. In these ex- 
amples we partition the parameter vector into four com- 

will represent the 6' ponents: the first q coordinates of 
3. 	 LARGE SAMPLE DISTRIBUTION OF LIKELIHOOD 

RATIO STATISTICS 

In many problems, it is desired to test the hypothesis 
that e0lies in a subset of In, denoted by Ro, versus the 
alternative that e0lies in the complement of In0 in R,  de- 
noted by R1. When Ro is an r-dimensional subset of In, 8, 
is a boundary point of both Ro and R1 but e0is an interior 
point of In, and under suitable regularity conditions, the 
asymptotic distribution of the likelihood ratio test statistic, 
-2 In AN, is x2on p - r df. Chernoff (1954) provided a 
representation of the asymptotic distribution of -2 In A, 
when Ino and R, both have the same dimension as R,  Oo 
is a boundary point of both R, and In, ,and 8, is also interior 
point of 0.The following thebrem generalizes these results 

parameters of interest, with true values on the boundary; 
the next s coordinates of 6' are parameters of interest that 
have true values not on the bdundary; the next t coordi- 
nates of 6' will represent nuisance parameters with true 
values on the boundary; and finally the last p - q -
s - t coordinates of 6' will represent nuisance parameters 
with true values not on the boundary. Thus 0 may be 
written as (el, . . . , O,, O,+,, . . . , e,+,, 6'q+,+1,. . . , 
eq+s+t,eq+s+t+l,. . . ,ep) and the parameter configuration 
for the special cases described subsequently can be char- 
acterized by the four-tuple (q, s, t, p - q - s - t). We 
consider likelihood ratio tests of the hypothesis O1 = Bol, 
0, = eO2, 6'q+s = 6IOq+,with eq+,+l, . . . ,0, left unspecified. 

Case 4. Suppose that the parameter configuration is 
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given by (0, s, 0, p - s), so there are no parameters on 
the boundary. Then 6 = RP and tois a p - s dimensional 
subspace of RP. By representing 2 in terms of a new 
orthonormal basis for RP in which the last p - s basis 
vectors span co,  we have Equation (3.2) reducing to 

which has a chi-squared distribution on s df. 

Case 5. Consider the parameter configuration (1,0,0,  
p - 1). Then after an orthonormal transformation, 
we have = [O, 03) x Rp-l and to= {O} x Rp-l. Thus 
Equation (3.2) can be reduced to 

i:z(Zl > 0). 

Consequently, the asymptotic distribution of -2 In AN can 
easily be seen to be a 50 :50 mixture of X; and x:. A typical 
example of this kind is the variance component problem 
(Miller 1977), in which we are interested in testing the 
existence of a single random effect. 

Case 6. Consider the parameter configuration (1, 1 ,0 ,  
p - 2). Then, after an orthonormal transformation, 
we have t = [O, m) x Rp-l and to= {O} x {O) x Rp-'. 
Equation (3.2) can be expressed as 

i:z(i,  > 0) + i s ,  

which has a 50: 50 mixture of X! and X$ as its distribution. 
By using the variance component problem as an illustra- 
tion, we are testing in this example that the random effect 
is null and the mean is equal to po, a constant, simulta- 
neously while leaving the other parameters, such as the 
error variance, totally unspecified. 

Journal of the American Statistical Association, June 1987 

In Cases 5 and 6 we take advantage of the fact that there 
is only one boundary parameter and it occurs as a param- 
eter of interest. Cases 7 and 8 show that the asymptotic 
distribution of the likelihood ratio statistic may become 
considerably more complicated once the aforementioned 
conditions do not hold. This distribution is most conve- 
niently expressed as a mixture, with the components of 
the mixture identified with different regions of RP into 
which 2 may fall. 

Case 7. Consider the parameter configuration (2, p ,  
0, 0). The shaded region in Figure 1 represents t ,  and 
tois the origin. In the shaded region, the likelihood ratio 
test reduces to 2: + z$,which has a X; distribution. In 
regions 1 and 3, (3.2) yields squared Gaussian variables 
and, therefore, has a X: distribution. Finally, Equation 
(3.2) reduces to zero in region 2. Note that the angle in 
C is less than 180". This is true because the convexity 
of C, - 0, is preserved under the linear mapping into 
t.The mixing probability, p ,  for the shaded region can 
be calculated as 

(1 O)PTA112A112 P 
cos-

IIAll'P(P)II IIA1"P(DII 

where the Zij's are the (i, j )  entries of the information 
matrix Z(OO). Thus the asymptotic distribution of -2 In AN 
is a mixture of x;,x:, and X$ with mixing probabilities 1 
- p ,  4,and p ,  respectively, where p 5 1 from the previous 
angle result. 

Case 8. Consider the parameter configuration (1,0, 1, 
0). There are six different regions that must be considered. 

Figure 1. Diagram of the Parameter Space for Case 7. The shaded region, C, represents admissible parameter values under the alternative 
hypothesis. Under the null hypothesis, the parameter is located at the origin. The asymptotic distribution of the likelihood ratio test is a mixture 
of xg, x:, and x$ distributions with mixing probabilities depending on the angle in C. 
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The shaded region in Figure 2 represents c ,  and dois the ing probabilities calculated from the information matrix, 

half-line in the same direction as the vector LI~/~P(Y) with as in Case 8. 

endpoint at the origin. In regions 1, 2, and 6, Equation When the information matrix is diagonal, the orthogonal 

(3.2) can be expressed as Z: + z;, a single squared nor- 
mal random variable, and z;, respectively. In regions 3, 
4, and 5, (3.2) may be written as JJY2JJ, JJY2J1- z?, re-
spectively, where Y is the projection of 2 onto A1I2P(h). 
The distribution of these quantities conditional on z being 
in the associated regions is not chi-squared. If a represents 
the angle in region 3, then by straightforward calculation 
the probability of (3.2) exceeding the value y2 conditional 
on z being in region 3 is seen to be 

@(x tan a)d@(x) - @(y)[l - @(y cot a)] 

where a(-)is the standard Gaussian cumulative distribu- 
tion function. The conditional distribution of (3.2) for re- 
gion 5 has the same form. In a similar but more tedious 
calculation, the probability of (3.2) exceeding the value 
y2 conditional on z falling in region 4 is given by 

structure of Ca - 0, and Ca, - 0, is retained upon trans- 
formation to c and Co, respectively. This makes explicit 
evaluation of Equation (3.2) much easier. 

Case 9. Suppose that Z(Oo) is diagonal. Then = 
fil x fi2 x . - -x fip, where fii is either [0, w) or (-w, 
m) depending on whether the true value for the ith coordi- 
nate of the parameter vector is on the boundary or not. 
Similarly, Co = fiol x -- .  x fiop, where CIOi = (0) for 
i s i s q  + sandfioi = fiiforq + s + 1 S i s p . B e c a u s e  
of the orthogonal structure of these sets, the projection 
of 2 onto these sets may be performed coordinatewise. 
Equation (3.2) may then be reduced to 

Thus the asymptotic distribution of the likelihood ratio 
statistic is a mixture of x2distributions on s ,  . . . , q + s 
df, where the mixing probability for the X: component is 
( ; i - ~ 2 - ~ .  

4. DISCUSSION 
{ I - [ ~ ~ ~ ~ o ( ~ ( ~ ,  u tan a o ( x ~ o ~ c Y ) ~ o ~ ~ ) }U, C Y ) ) ~ O ( X ) - ~  

3 

{I-[O(x cot c ~ ) d O ( ~ ) }  

where f(x, u, a )  = [(x2 + y2)lI2- x sin a]/cos a with a 
representing the angle in region 4. In principle, tests could 
be constructed from these distributions together with mix- 

Recently, Shapiro (1985) investigated the asymptotic 
distribution of a class of test statistics (which includes like- 
lihood ratio statistics) for the special case in which 0, is 
on the boundary of R, but is an interior point of CI. By 
using virtually the same approach as in this work, Shapiro 
characterized this asymptotic distribution as a mixture of 
chi-squared distributions. When 0, is an interior point of 

Figure 2. Diagram of the Parameter Space for Case 8. The shaded region, C, represents admissible parameter values under the alternative 
hypothesis. The half-line in the same direction as the vector A1I2Pfi)with endpoint at the origin represents admissible parameter values under 
the null hypothesis. The asymptotic distribution of the likelihood ratio test may be represented as a mixture of distributions. Some of the mixed 
distributions are x2  and others are not. 



610 

R, the second term in expression (3.2) is identically zero. 
This repres,entation then corresponds to Shapiro's Lemma 
2.2. It is interesting to note that our Cases 5-7 and Case 
9 do not satisfy Shapiro's assumptions yet still yield a mix- 
ture of chi-squared distributions. Case 8, in which a nuis- 
ance parameter is on the boundary, demonstrates that the 
asymptotic distribution is not always a mixture of chi- 
squared distributions. 

It has been suggested that it is possible to derive the 
previous results by a slightly different approach. If the 
family of probability distributions given in Section 1can 
be embedded in a larger class of distributions such that 
$0 is an interior point of the parameter space within this 
larger class, then asymptotic properties of the maximum 
likelihood estimator within this larger class of models 
may be derived by standard methods. In fact, a referee 
has suggested that one can always "reflect" the para- 
metric distributions across the boundary to create this 
larger problem. Projection of an asymptotic representa- 
tion of this estimator onto the original parameter space 
may then be used to represent the maximum likelihood 
estimator in the original problem. This is fundamentally 
the same approach as the one used here in that the variable 
being projected onto CQ - $0 in Theorem 2, N1I2ZN,is 
asymptotically equivalent to the "unrestricted maximum 
likelihood estimator." The feature that characterizes the 
solution to the problem is the process of projection itself 
rather than the exact source of the Gaussian random vari- 
able that is being projected. 

Although the distribution of a likelihood ratio statistic 
may be derived for any fixed $0 in R,, this distribution is 
generally different for different $0 in no.These distribu- 
tions typically vary over R0in a discontinuous way when 
some of the nuisance parameters may be on a boundary. 
For example, consider Case 5 with p = 2 and Case 8. The 
asymptotic distributions for these two cases are quite dif- 
ferent, yet the only difference between the two cases is 
whether the true value of the nuisance parameter is on 
the boundary or not. This discontinuity can also affect the 
quality of the asymptotic approximation, since this de- 
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pends on the proximity of the nuisance parameter to the 
boundary relative to the precision with which the param- 
eter can be estimated. One can imagine a situation in which 
the nuisance parameter is not on the boundary but is close 
enough so that the distribution for a given finite sample 
corresponds more closely to Case 8 than to Case 5. 

Because the distribution may vary over Ro, there may 
be some difficulty in determining a critical value that will 
give correct asymptotic size. One possibility is to compute 
critical values corresponding to every $0 in .noand then 
use the largest of these values. Another approach would 
be to use estimates of the nuisance parameters to identify 
the possible location of $0 within noand use critical values 
associated with this location. One possibility for doing this 
is to use critical values corresponding to the analogous 
multivariate normal testing problem, where the true values 
of the nuisance parameters and covariance matrix are 
taken to be equal to the maximum likelihood estimates 
and observed information matrix, respectively. This ap- 
proach might also enhance the asymptotic approximation 
to the finite sample problem. 

[Received October 1984. Revised August 1986. ] 
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