Lowering the risk of cancer everyday:
a study on the relationships between personal facts
and plasma concentrations of risk related
micronutrients

Projectl - Applied Regression Analysis

Abstract

Previous studies suggest that low plasma concentrations of retinol,
beta-carotene, or other carotenoids may be associated with high risk
of developing certain types of cancer. We investigate now the determi-
nants of these plasma concentrations by developing an observational
study on 315 patients who underwent a surgical procedure but were
found to be sound. We show that dietary intakes of fiber, vitamins
and alcohol are related to high levels of beta carotene, while smoke,
high body mass, cholesterol and fat intake are related to lower levels
of beta carotene. We also show that plasma retinol is raised by alcohol
use, and lowered by smoke and fat intake; though the study presents
lack of fit problems. Some suggestions for future studies are made.

1 Introduction

Previous studies suggest that low plasma concentrations of retinol, beta-
carotene, or other carotenoids may be associated with high risk of devel-
oping certain types of cancer. But few other studies have investigated the
determinants of plasma concentrations of this risk lowering micronutrients.

On the other hand, there are many popular beliefs that certain personal
facts and habits can influence the risk of developing a cancer. Many of these
ideas have been proved to be true, like the fact that smoking is related to
lung cancer; but many other haven‘t yet been investigated at all.

So we are now interested in investigating what personal characteristics,
dietary factors and lifestyles lead to higher or lower levels of retinol and
betacarotene, thus lowering or increasing the risk of developing a cancer.



In this way, we would suggest a way to connect personal facts and risk of
cancer. We will develop a statistical regression analysis to do this.

Section 2 will present the data set and do some Exploratory Data Anal-
ysis on each variable. Section 3 will present some simple regression models,
to investigate the relationships between plasma level of micronutrients and
each variable. Sections 4, 5 and 6 will present a model for the prediction
of plasma, levels of, respectively: plasma retinol, beta carotene, and both of
them together. Section 7 performs a discussion of the analysis, conclusions
and recommendations.

2 The Data

The data used in this analysis was collected surveying 315 subjects who had
an elective surgical procedure, to biopsy or remove a lesion of the lung, colon,
breast, skin, ovary or uterus that was found to be non-cancerous. Fourteen
variables were recorded, among which there are the plasma levels of beta-
carotene and retinol (both in ng/ml), the dietary intake of beta carotene and
retinol (mcg per day); grams of fat, cholesterol, calories and fiber consumed
per day; the Quetelet index (the weight divided by the squared height),
smoking status, use of vitamins, sex and age of the patient. See technical
appendix A for the head of the datafile.

2.1 Plasma Retinol

The observed mean of plasma retinol was 602.8 ng/ml, with a standard
deviation of 208.9 ng/ml. We can see from the boxplot in the first graph in
Figure 1 that this variable has some high outliers (1249, 1262, 1443, 1517,
1727) and is slightly skewed. Since this is one of the response variables, we
want it to be normally distributed. From the last two graphs in Figure 1 we
can see that a log transformation of the variable works well (i.e., there is no
evidence of non-normality in the log-transformation).

2.2 Plasma Beta-Carotene

The levels of beta carotene in plasma go from a minimum of 0 to a maximum
of 1415; with a sample mean of 189.9 ng/ml and a standard deviation of 183.0
ng/ml. So plasma beta carotene has a stronger variability, in the sample,
than plasma retinol. It is surprising that there can be no beta carotene in
the blood, so it is interesting to look at the observation which achieves the
minimum:
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Figure 1: Plasma Retinol




age sex smoke quet vit cal fat fiber alc colest betad retd beta

257 40 2 1 31.24219 1 3014.9 165.7 14.4 0 900.7 1028 3061 0
retpl
257 254

So a 40 years old woman, obese (quet> 27), has a 0 level of plasma beta-
carotene together with a fairly low 254 level of plasma retinol. Nevertheless,
it seems impossible that there could be no plasma beta-carotene, and some
biological investigation should be done to see whether this is possible or not.
This is the other response variable, and outlyingness in it can be a problem!.
So we will omit this observation when using betaplasma as a response and,
usually, maintain it when it is a predictor.

From Figure 2 we can see a quantile normal plot for the variable, without
observation 257 in the model. I chose to transform this variable with a power
of .2, and the result can be seen in the lower plots. In the technical appendix
B there is some perspective on the motivations of this transformation.

2.3 Age, Sex, Dietary variables

The age of the subjects goes from 19 to 83 years, and there are only 42 males
over 315 observations. This shouldn’t be a problem, while I think will be
interesting in the future to study the levels of beta-carotene and retinol in
kids and teenagers, as old studies prove that kids are more likely to develop
certain types of cancer.

122 persons used vitamins ”often”, 82 used vitamins ”sometimes” and
111 never used vitamins.

In Figure 3 we can see a boxplot for the Quetelet index. There are some
high outliers, and a long right tail. Women with an index over 27, and men
over 28 are considered obese. We can see that 111 (32% of the observations),
were found to be obese.

The calories intake has an observed mean of 1796 and a standard de-
viation of 680. There is an high outlier, consuming 6662 calories per day.
We can expect this outlier to be informative in the analysis. 101 persons
consume more than the 2000 threshold of recommended calories intake per
day. It is interesting to notice that only 31 of this 101 are obese (in the
sense determined by the Quetelet index).

There is nothing particularly interesting to notice about fat, cholesterol,
beta-carotene and fiber intake: there are some high outliers and a light

!Cfr handout on outliers, http://www.stat.cmu.edu/brian/707/, more details in tech-
nical appendix B
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Figure 2: Beta-Carotene
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Figure 3: Quetelet index

positive skewness.

The intake of retinol is more skewed, as can be seen in the first two
graphs in Figure 4. The very high outlier is 6901, while the minimum is 30.
I decided to use a log transformation of this variable in the analysis, and
the reasons are explained in the technical appendix B.

2.4 Alcohol Use

We can see from Figure 5 that the average number of drinks consumed per
week has a very long right tail. There are 111 observations with a 0 average,
and 50% of the observations consume less than .3 drinks per week, while the
three higher values observed were 35,35 and an amazing 203. I guess it is
possible that an alcoholic could consume 203/7=29 drinks per day. This is
the observation:

age sex smoke quet vit cal fat fiber alc colest betad retd beta
62 65 1 3 23.37617 3 6662.2 164.3 11.3 203 603 2893 1364 96
retpl
62 317
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Figure 5: Alcohol

This man is a current smoker, non obese but consuming more than six
thousand calories per day; and has a low level of plasma retinol and a very
low level of plasma beta-carotene. We can make the hypothesis that a
consistent part of the high number of calories consumed by this man comes
from alcohol; so, in a sense, the value of “cal” is a validation for the value
of “alc”, and vice-versa. This is the same outlier observed for the ” calories”
variable.

The behavior of this variable is pretty reasonable: there are a lot of
no alcohol users, many low drinkers and some heavy drinkers. We need to
work with a suitable transformation, as this skewness can interfere with the
analysis. The problem is that there are too many zero-values, which are
not affected by usual transformations. So I think that a good idea can be
transforming this quantitative variable into a qualitative one. I decided to
divide the variable into 5 levels

1. Non drinkers (0 drinks per week)
2. Very low drinkers (drinking less than 1 drink per week)

3. Moderate drinkers (between 1 and 11 drinks per week)
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4. Hard drinkers (more than 11 drinks per week)

This categorization could be made in many different ways, and it can be
objected that the third class has got a really big range. However this should
be a good way to divide this variable, and in technical appendix B there are
more details and justifications for this categorization.

3 Simple Analyses

3.1 Between the micronutrients

Let’s begin studying the relationship between plasma retinol and beta-
carotene. They are very low positively correlated (.07).

Figure 6 shows a scatterplot between transformed plasmas. We can note
the ”stand alone” point in the lower left corner, with a plasma beta of 0. The
line is fitted without this outlier. There seems to be a strongly significant
increasing relationship (p < 0.007) between the two micronutrients, though
the fit is not very good (Multiple R-Squared: 0.05). However, high levels
of one micronutrient will raise the levels of the other one; and so what is
effective on one of the two, indirectly, should be important also for the other.
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Figure 7: Micronutrients density

Figure 7 shows a plot of the estimated density of the two micronutri-
ents. They show approximately the same behavior for the two variables. As
for betaplasma, we can see a sharp mode close to 0 and a long right tail,
with other small modes. The same can be said for plasma retinol, though
its density is smoother and it achieves a lower mode (this is because of the
differences in variability). This similar behavior suggests that, maybe, mi-
cronutrients are usually distributed in this way; and we can safely accept
the value of the outliers as ”possible”. That is, we can always expect to
see some individuals with unusual high levels of one or both of the two mi-
cronutrients. Let’s end this analysis pointing out that it is not necessary
that somebody with unusual high levels of plasma retinol should have high
levels of the other micronutrient (i.e., no outlier value for the two variables
is achieved by the same observation). More details are given in the technical
appendix C.
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3.2 Micronutrients and Dietary Intakes

It seems pretty obvious that high dietary intakes of one micronutrient will
account for high levels of it. This is true for plasma beta-carotene, which
has a particularly strong relationship with its dietary intake (p < 0.0002);
but surprisingly it is not true for plasma retinol (p > 0.24). In technical
appendix C, I put some considerations on the residuals of this regression fits.
It is amazing that dietary intake of retinol won’t affect the plasma retinol
level. We can expect that dietary intakes, in general, will be ineffective
on plasma retinol, which may be influenced by other kind of variables. It
may be that levels of plasma retinol are auto-regulated by the organism,
till certain conditions don’t come to change the ”"regular” levels. This could
be an explanation, also, for the lower variability with respect to plasma
beta-carotene. We will say more about this later.

Table 1 shows approximated p-values and coefficient estimates for simple
regressions of each dietary variable on plasma beta?. Fat intake per day
seems to mildly lower the levels of beta carotene, while cholesterol intake
has a milder lowering effect but is more strongly significative. There seems
to be no relationship with the total amount of calories consumed per day,
while the fiber intake seems to have a very strong effect on raising the plasma
beta-carotene levels. The R-Squared for this regression is .06, being slightly
high for the standards in this data set (no R-Squared has been higher than
3% till now, in the simple regressions). It is interesting however to notice
that, even if we can conclude that high intakes of fiber will end up with
an higher plasma beta-carotene, the fiber intake is strongly correlated with
beta-carotene intakes (.48), so our conclusions are a little bit too optimistic.
If we study the relationship between betaplasma and fiber intake net of beta
intake, we find a parameter estimate of only .0147 (see technical appendix
C for more details on conditional coefficients).

On the other hand, plasma retinol hasn’t got any significative relation-
ships with fiber, calories, and cholesterol intakes. There is only a not strongly
significative relationship with fat (p = .03).

Table 2 shows the correlation structure between the dietary variables.
As one could expect, all the variables are strongly positively correlated; and
we will need to take into account this multicollinearity problem when fitting
a multiple regression, avoiding direct interpretation of the parameters.

*Important: each variable has been regressed on plasma beta separately. I put a zero
parameter estimate where the slope was found to be non significative.

11



Parameter | p-value
Fat -.0015 .036
Cholesterol -.0005 .006
Fiber .02 0
Calories 0 .344

Table 1: Dietary variables on beta

Fat | Cholesterol | Calories | Fiber
Fat 1 .71 .87 .28
Cholesterol 1 .66 .15
Calories 1 .46
Fiber 1

Table 2: Correlation of dietary variables

3.3 Lifestyle and Personal Characteristics Effects

The distinction between food and lifestyle variables is done only for better
understanding of the study, and it doesn’t have any statistical consequences.

I decided to consider the Quetelet index as a personal characteristic; on
the grounds that, at a cursory glance, it isn’t significatively related with any
?dietary” variable. The one variable significatively related with the Quetelet
index is "smoke”. This is reasonable, as it is well known that smoking can
lower the weight.

I decided moreover to consider the number of drinks consumed per week
and vitamin use as ”lifestyle” indicators, even if there is a very strong re-
lationship between alcohol and calories intake (the regression between the
two ends with a p-value very close to 0). I did so because it is reasonable
to expect that no alcohol consumption and/or vitamin use are indicators of
an healthy lifestyle, and they can go together with other healthy behaviors
(i.e., with gym exercise).

3.3.1 Vitamin Use

The first graph in Figure 8 suggests that daily use of vitamins (vit= 1)
can sky-rocket the plasma levels of beta carotene in certain individuals: the
outliers of the first boxplot achieve strongly higher values of other categories’
outliers. In an ANOVA, we find that the vitamin intake has a very strong

12
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Figure 8: Vitamin Intake

effect on beta-carotene presence (p < 0.0004). The mean of betaplasma in
the group of vitamin users is 241, 186 for the occasional users, and only 137
in the group of non users. If we confront the last two groups, we’ll find that
the difference between them is significative (p = 0.003), so even occasional
use of vitamins can make plasma levels of beta-carotene higher than levels
in no vitamin users. See technical appendix C for some descriptions on the
dummy variables used and for contrasts issues.

As expected and suggested by the second graph in Figure 8, on the other
hand, there is no relationship between plasma retinol and vitamin use. The
mean for vitamin users is 613, 597 for non-often users and 595 for non-users.
Even if we try to confront the group of often-users with the other two groups,
we get a p = 0.748 and we must conclude that there is no difference between
using and not using vitamins (see technical appendix C for more details).

13
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Figure 9: Obesity (0: non obese, 1: obese)

3.3.2 Body Mass Effects

The plasma beta-carotene turns out to be strongly linked with the Quetelet
index, with a p value very close to 0 and an R-Squared greater than 7%;
which I said in this analysis is an high value. The parameter estimate is
—0.02. So it seems that higher Quetelet index brings about lower concen-
trations of beta-carotene. On the other hand, the Quetelet index proves
ineffective on the retinol concentrations, with a p-value greater than 90%.
Another approach to the Quetelet index is given by dividing the indi-
viduals in two categories: obese and non obese. In technical appendix C
there is more on this. It turns out that 101 individuals in the data set are
obese, and that this cutting edge is important: the effect of obesity on the
transformed betaplasma is —0.25674, with an R-Squared increased to more
than 8%. Figure 9 shows higher median in the boxplot for non obese (0
label). As we could expect, obesity is not influential on plasma retinol.

14
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3.3.3 Gender Effects

As can be seen in Figure 10, it seems like women are more likely to have
higher betaplasma than men; while men are more likely to have higher
retinol. From ANOVA analyses we conclude that this difference is strongly
significative in both cases (p < .022 for plasma retinol, see technical ap-
pendix C for some issues on the residuals of this ANOVA; and p = 0.0228
for beta-carotene). So males tend to have lower betaplasma and higher
plasma retinol than females.

3.3.4 Age Effects

When we study the relationship between age and the micronutrients, we
find strong increasing relationships, with p-value close to 0. One hypothesis
is that elderly can retain more retinol and beta-carotene in the plasma. The
other one is that elderly lead healthier lifestyles. Maybe more studies should
be made towards the answer to this doubt; but we can investigate this also
with a multiple regression, later in the report.

3.3.5 Smoke Effects

Figure 11 shows something counterintuitive: being a former smoker is better
than having never smoked, in terms of plasma retinol.

Running ANOVA analyses, we can see that this difference is strongly
significative (p < .009). The mean of plasma retinol in the group of former
smokers is 644, while 583 in the group of no-smokers and 563 in the group
of current smokers. If we use contrasts to confront the first two groups,
we conclude that is better having smoked and given up, than having never
smoked. This is counterintuitive, as I said, and it may be that individuals
dropping smoking are more likely to get other healthy habits. However,
it can also be that while smoking lowers the levels of retinol retained in
plasma; when smoking is dropped the organism compensates retaining more
retinol in the plasma. Future analyses can be performed to better disclose
the effects of smoke on retinol. It is obviously not true to conclude that
smoking for a period and then dropping is healthy, as smoke is connected
with lots of illnesses and lung cancer. More details on this amazing behavior
of retinol are given in the technical appendix C.

As for plasma beta-carotene, more intuitive results come up: the smoke
has a strong effect of the levels of betaplasma (p = .002), though the best
group now is the no-smoking one, with a mean of 206. The former smokers

16
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No drinks | Less than 1 | Less than 11 | More than 11
572.3 598.8 619.4 716.7

Table 3: Plasma retinol means for alcohol groups

No drinks | Less than 1 | Less than 11 | More than 11
170.7928 190.5778 216.1053 167.1579

Table 4: Plasma beta-carotene means for alcohol groups

have, on average, a level of 193 ng/ml plasma beta-carotene and the smokers
only 121.

3.3.6 Alcohol Use

As can be seen in Table 3, alcohol use raises plasma, retinol concentrations.
Le., the group of "heavy drinkers” present a mean of about 716 ng/ml of
plasma retinol, while non-drinkers have only 572 ng/ml. This differences
are proved to be significant by ANOVA analyses, achieving a p value of
less than 0.013. However, only not drinking or being hard drinkers prove
to have ”stand-alone” significant effects. A contrast analysis shows that
the real important difference is between drinkers and non drinkers, with
a p = 0.0176. It may be that alcoholics contain chemical elements that
stimulate the production or the ability to retain plasma retinol. More details
on this analysis are given in the technical appendix C, together with some
residuals issues.

Table 4 shows that moderate use of alcohol can account for higher beta-
plasma levels, though heavy use of it is a cause of lower plasma levels. This
difference is significative (p < 0.005), together with the difference between
the first three groups and the last one (p = .0007, average difference=25
ng/ml). The difference between the first and the last group is not significa-
tive. Influence analysis was done for this ANOVA, and it is illustrated in
technical appendix C, together with the contrast analysis.

18



Df | Sum Sq | Mean Sq | F value | Pr(> F)

smoke 2 0.8564 0.4282 4.1650 | 0.016422
sex 1 0.4801 0.4801 4.6703 | 0.031466
age 1 1.2144 1.2144 11.8127 | 0.000670
alcq 3 0.9991 0.3330 3.2395 | 0.022469
fat 1 0.6498 0.6498 6.3204 | 0.012450
vbeta | 1 | 0.7770 | 0.7770 | 7.5578 | 0.006331

Residuals | 305 | 31.3553 | 0.1028

Table 5: Analysis of variance table, response=log(retpl)

4 A Model for Plasma Retinol: Multiple Regres-
sion Analysis

So the variables which have proven effective on plasma retinol are: plasma
beta carotene, sex, age, fat, smoke and alcohol. The other variables had
real high p-values, hence it is unreasonable to think that they would become
significative in a multiple model.

I fitted some two-variables models, to see if any interaction was signi-
ficative. I found a tendency to significativity (p = .06) in the interaction
between sex and smoke, no interaction between age and smoke (so elderly
smokers have no additional effects on plasma retinol as young ones), a ten-
dency to significativity (p = .06) in the interaction between alcohol and
smoke. However, even in the big model, the interactions between alcohol
and smoke and between sex and smoke are not significative.

Table 5 shows the ANOVA table for this multiple regression. All the
effects are confirmed. Unfortunately, the fit is not good, with an R-Squared
of only about 14%. The transformed beta plasma has now a parameter esti-
mate of 0.12, so, net of other significative effects, the presence of betaplasma,
is a strong indicator of good levels of plasma retinol. See technical appendix
D for residuals issues and a validation of the model.

5 A Model for Plasma Beta: Multiple Regression
Analysis

I fitted some two-variables models, to see if any interaction was significative
(some details are given in the technical appendix). I found no interaction
between alcohol use and smoke (p 22 0.16), interaction between smoke and

19



Df | Sum Sq | Mean Sq | F value | Pr(> F)
betad 1 2.329 2.329 18.6877 | 2.108e-05
age 1 0.807 0.807 6.4754 | 0.0114470
log(retpl) | 1 1.049 1.049 8.4173 | 0.0039965
smoke 2 1.436 0.718 5.7619 | 0.0035098
fat 1 0.550 0.550 4.4163 | 0.0364447
colest 1 0.578 0.578 4.6381 | 0.0320801
sex 1 0.748 0.748 5.9997 | 0.0148896
fiber 1 1.740 1.740 13.9598 | 0.0002242
vit 2 1.818 0.909 7.2929 | 0.0008101
quet 1 3.304 3.304 26.5086 | 4.802e-07
betad:vit 2 1.055 0.527 4.2311 | 0.0154282
smoke:vit | 4 1.270 0.317 2.5472 | 0.0395860
Residuals | 295 | 36.764 0.125

Table 6: Analysis of variance table, response=v/beta

vitamin use (p =2 0.02), smoke and fiber (p = 0.008), beta carotene intake
and vitamin use (p = 0.03), vitamin and fiber (p = 0.04874). No third level
interaction has been found to be significative.

In the multiple model, neither the alcohol use or the interaction between
fiber and vitamins is any more significative. The first fact is due to the
strange behavior of plasma beta-carotene levels with alcohol usage.

Table 6 shows the ANOVA table for this multiple regression. All the
other effects are confirmed. The fit is reasonably good, with an R-Squared
of about 32%. The multicollinearity between the dietary variables is not a
problem, since we are looking at a model and not trying to interpret the sin-
gle parameters (which have been given for simple regression models). Influ-
ence analysis show that observations number 36 and 39 are strongly influen-
tial. Table 7 show the values of the model variables for this two observations.
Observation 36 has a lower beta plasma than expected (residual = —0.6),
and observation 39 has a slightly higher plasma beta carotene than expected
(residual = 1.14).

More details, together with other residuals issues and a validation of the
model are given in the technical appendix D.

20



age | sex | smoke quet vit | fat | fiber | colest | betad | beta

retpl

36 | 44 | 2 3 25.87867 | 1 | 95.3 | 17.5 | 253.1 | 7026 39

179

39 | 39 1 3 21.99912 | 1 |109.1 | 4.7 | 461.1 | 998 418

665

Table 7: Influential observations

6 Tentative of a Micronutrients Model

Though the two micronutrients have proven connected with different vari-
ables, we may want to say something about them together. One way to
study the effects of dietary and lifestyle variables on both micronutrients is
by summing the two transformed variables. More details on this and on the
following analysis are given in technical appendix D.

T used both forward inclusion and backward elimination variable selection
methods. Both of them suggest the same model, whose covariates are:

1. Age

2. Quetelet Index

b

Vitamin Use

Cholesterol

e

5. Beta Intake

6. Alcohol Use.

It is interesting to notice that Sex is not in this model (it had opposite
effect on the two micronutrients, so maybe its effect is ”canceled”). The
idea that sex is not effective on the sum of the micronutrients is confirmed
by the first graph in Figure 12. The same idea apply to Smoke, though
in the second graph of Figure 12 there is evidence of difference between
non-current smokers (categories 1,2) and current smokers (category 3). The
fact that smoking is not good for both plasma micro-nutrients has been
confirmed in the separate studies. Fat is not in this model, maybe because
of its strong collinearity with Cholesterol, which turns out to be the most
effective in lowering micronutrients plasma levels. Age is in the model, so we
should conclude that it has a direct link with raising micro-nutrients plasma
concentrations.

This model achieves an R-Squared of only 20%, so more research is
needed to explain plasma levels of this two micronutrients.
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7 Discussion & Conclusion

Part of the discussion and conclusion has been done in the previuos sections,
however in this section we will try to summarize our results and give some
recommendations.

The analysis showed that plasma beta-carotene is strongly influenced by
dietary variables, that is:

e Fiber, alcohol, vitamin and beta carotene intake tend to raise beta
concentrations, with a positive interaction between betacarotene and
vitamin intake.

e Fat and cholesterol tend to lower betacarotene concentrations.

Moreover, we can conclude that smoking lowers plasma concentrations of
this micronutrient; and the same is for body mass (Quetelet index), espe-
cially when people get obese. Females tend to have higher concentrations
than men, and elderly tend to have higher concentrations than younger
adults.

Plasma retinol is less influenced by these variables than beta carotene,
though we proved some relationships, that is:

e Beta carotene plasma levels and alcohol use tend to raise plasma retinol
e Fat intake and smoke tend to lower it.

Moreover, we can conclude that elderly tend to have higher concentra-
tions than younger adults and men tend to have higher concentrations than
women.

Plasma concentrations of both micronutrients are predicted in this way:

e Vitamin, beta-carotene and alcohol intake tend to raise plasma levels.
e Cholesterol and body mass tend to lower plasma levels.

Moreover, we can conclude that elder adults tend to have higher concentra-
tions of micronutrients in the plasma.

The analysis showed significative relationships between micronutrients
concentrations and this personal facts, because we detected low p values for
many variables. However, much more must be done.

First of all, lack of fit has been detected in all models: no variable does
a good job as a predictor. The models can’t be used for a satisfactory
prediction of the response variables.
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Lack of fit can be due to need of better variable selection: there should
be other variables that can be used as better predictors; though some, used
in this study, are promising covariates for future models.

This problem can be due also to need for a better study design: all of
the observations are patients who had an elective surgical procedure, who
were found not to have developed a cancer. It would be interesting to survey
patients who have developed a cancer; and also patients not undergone a
surgical procedure, that is, patients who never were suspected of developing
a cancer. This is also a problem in generalizing our results: if we would
like to claim that our conclusions hold for the entire adult population, we
should develop a study on a sample of the entire adult population. However,
there is no evidence of bias in the sample (that is, there is no evidence of
the fact that the results should apply only to former patients of elective
surgical procedures). So I think we can safely generalize our results, while
developing studies on different samples.

Lack of fit problem is bigger for plasma retinol, whose model achieves a
slightly low R squared (14%). As I suggested, it may be that plasma retinol
is auto-regulated in some sense by the organism. This fact would be a way
to explain its lower variability and its mild relations with personal facts vari-
ables. However, we can‘t make this conclusion with avaliable informations,
and other studies should be designed to investigate this fact.

Other studies should also investigate the relationship between plasma
retinol and smoke, because we came to counter-intuitive results in this
study. It has been detected a significative difference between current and
former smokers, and former smokers had higher levels of plasma retinol. We
suggested that this can be due to a reaction of the organism to dropping
smoking, or to a relation between dropping smoking and switching to other
healthy lifestyles. However, we can’t make any conclusion to explain this
peculiar behavior of plasma retinol concentrations; so other studies can be
done both to validate this conclusion and to try to explain its reason.

I would like to suggest that biological studies need more scientific mea-
sures for the variables. l.e., it may be better to use the grams of alcohol
in the blood rather than the average number of drinks, grams of vitamins
consumed rather than frequency of use, and so on.

We concluded, using this data, that there are “natural” outliers with high
levels of plasma micronutrients. Recall the density plots in Figure 7, page
10. It is a challenge to understand why certain individuals have got so high
levels, but this is another issue we couldn’t address here. A good conclusion
we can make is that outlier concentrations of plasma micronutrients are
healthy high (right tail of density estimates).
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While there are many questions left, we can make some important rec-
ommendations. Overall, it seems like healthier lifestyles lead to healthier
(higher) levels of plasma micronutrients. In fact, we can recommend to
maintain high intakes of fiber, use vitamins, drop smoking. We can also rec-
ommend to avoid heavy intakes of cholesterol and fat; and to control body
mass in a healthy low level. Moreover, we have seen that use of alcohol
tend to raise plasma concentrations, so we can recommend moderate use of
alcohol®.

A Appendix: Head of the Dataset

This datafile contains 315 observations on 14 variables.
Variable Names in order from left to right:

AGE: Age (years)

SEX: Sex (1=Male, 2=Female).

SMOKE: Smoking status (1=Never, 2=Former, 3=Current Smoker)

QUET: Quetelet index (weight/(height~2)); values above 27 kg/m"2
(female) or 28 kg/m~2 (male) indicate obesity

VIT: Vitamin Use (1=Yes, fairly often, 2=Yes, not often, 3=No)

CAL: Number of calories consumed per day.

FAT: Grams of fat consumed per day.

FIBER: Grams of fiber consumed per day.

ALC: Number of alcoholic drinks consumed per week.

COLEST: Cholesterol consumed (mg per day).

BETAD: Dietary beta-carotene consumed (mcg per day).

RETD: Dietary retinol consumed (mcg per day)

BETA: Plasma beta-carotene (ng/ml)

RETPL: Plasma Retinol (ng/ml)

age sex smoke quet vit cal fat fiber alc colest betad retd b
1 64 2 2 21.48380 1 1298.8 57.0 6.3 0.0 170.3 1945 890
2 76 2 1 23.87631 1 1032.5 50.1 15.8 0.0 75.8 2653 451
3 38 2 2 20.01080 2 2372.3 83.6 19.1 14.1 257.9 6321 660
4 40 2 2 25.14062 3 2449.5 97.5 26.5 0.5 332.6 1061 864
5 72 2 1 20.98504 1 1952.1 82.6 16.2 0.0 170.8 2863 1209
6 40 2 2 27.52136 3 1366.9 56.0 9.6 1.3 154.6 1729 1439

3Let‘s remember that other studies suggest that moderate use of red wine, for instance,
is an aid in preventing some diseases; so this conclusion is not particularly amazing.
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255.1 5371 802
214.1 823 2571
233.6 2895 944
171.9 3307 493

7 65 2 1 22.01154 2 2213.9 52.0 28.7 0.0

8 58 2 1 28.75702 1 1595.6 63.4 10.9 0.0

9 35 2 1 23.07662 3 1800.5 57.8 20.3 0.6

10 55 2 2 34.96995 3 1263.6 39.6 15.5 0.0
retpl
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B Appendix: Transformations

In order to use beta and retpl as response variables, we must have no evi-
dence against their normality. On the other hand, the covariates were trans-
formed when the skewness was strong, fact that could inficiate the results
of the regression. We will now examine each transformation separately.

B.1 Plasma Retinol

From the first row of graphs in Figure 13 it can be seen that plasma retinol
has got a long right tail and some high outliers, thus providing evidence
against the normality. A log-transformation or a power-transformation,
with power less than 1, usually works well with this kind of problems. Con-
fronting the square-root and the log-transformation, it seemed to me that
the logarithm of plasma retinol was closer to normality.

B.2 Plasma Beta-Carotene

Plasma beta-carotene has got the same distribution problems of plasma
retinol, but it is far more skewed and there is no evidence of normality
(Figure 14, first row). Strong transformations were needed, and after some
tries I decided to use the 0.2 power in order not to lose too much variability
with the transformation. As I said, when using beta-carotene as a response
variable, the low outlier 70” was dropped from the dataset. This is both
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because we suspected miscoding and because outlyingness in the response
variable makes fit harder?, since it is a strong evidence of non normality. The
zero becomes a really strong outlier for the transformed variable (Figure 14,
last row).

B.3 Retinol Intake

As can be seen in Figure 4, pag.7, the retinol intake is too strongly skewed to
be useful in the analysis. I confronted usual transformations, and decided to
use a log transformation confronting an index proposed in (?, pag.451) and
for parallelism with the transformation done on plasma retinol. The skew-
ness index used is the difference between the distances of the first and the

third quartile from the median, divided by the IQR (inter-quantile range),
that is (@3—Me)—(Me—Q1)

=0, . The log transformation of retd had an index of
only —0.005, while the square root an index of 0.09.
R code:

> (sum(quantile(log(retd),c(.25,.75)))-
+ 2+median(log(retd)))/diff(quantile(log(retd),c(.25,.75)))
75%

-0.005500357

> (sum(quantile(sqrt(retd),c(.25,.75)))-

+ 2*median(sqrt(retd)))/diff(quantile(sqrt(retd),c(.25,.75)))
75%

0.0905506

B.4 Quetelet Index and Obesity

Since the Quetelet index is usually used to determine whether a subject is
obese or not, I created a dummy variable for obesity and used it in the
analysis. This was done giving a 1 to all males with index greater than 28
or to all females with index greater than 27; and 0 to all the other subjects.
The code used was:

obM_ifelse(quet>=28 & sex==1,1,0)
obF_ifelse(quet>=27 & sex==2,1,0)
ob_obF+obM

% Again, cfr handout on outliers, http://www.stat.cmu.edu/brian/707/
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Figure 15: Quantile normal plot, alcohol

B.5 Alcohol

As can be seen in the histogram, Figure 5 on page 8, and in the quantile
normal plot in Figure 15, this variable is strongly skewed.

As T noticed, there are too many 0 values (111) for any transforma-
tion to be effective, so my suggestion is to consider the average number
of drinks consumed as an ordered qualitative variable, dividing it into op-
portune classes. There were two choices: dividing the variable into ”ideal”
classes, thus deciding what was to be considered as hard, medium, low drink-
ing; or looking at the data and splitting the variable into the classes that
looked natural for this dataset. I decided to use the second method, first
of all because it should be better for the subsequent analysis, and then be-
cause this variable is so peculiarly distributed that no ”ideal” split would
have been reasonable. This variable has, moreover, a really strong out-
lier which have been considered separately sometimes. When dividing the
variable in classes, outlyingness is no more important (robustness of the
procedure: same weight is given to any drinker in the same class).

The stem and leaf is:

The decimal point is 1 digit(s) to the right of the |
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So, without the highest observation, groups can be distinguished. 1 de-

cided to make a group of no alcohol users, because in a biology analysis it

can be useful to know whether alcohol has been introduced in the organism

or not. Then I cut a group of very low drinkers, say less than 1 drink per

week. The stem and leaf shows a separation between 11 and 13, so I decided

to cut the third group there, and to consider the others as a fourth group

of heavy drinkers. A fifth (the two 35) and a sixth (the 203) groups could

be considered, and in fact I created them and used them for outliers study.

I decided however to consider the division with only four groups, because

there is a trade off between the number of levels and the easyness to handle.

So I preferred having less groups and doing a deeper analysis to use more

information given by this variable. Together with the dummy variables, a

new qualitative variable alcq (with 4 levels) was created.
R Code:

> length(alc[alc<1])/314

[1] 0.6019108

alcO_ifelse(alc==0,1,0)

alcml_ifelse(alc>0 & alc<=1,1,0)

alcl11_ifelse(alc>1 & alc<=11,1,0)

alcM11_ifelse(alc>11,1,0)

alc35_ifelse(alc==35,1,0)

alc203_ifelse(alc==203,1,0)
alcq_4-ifelse(alc==0,1,0)-ifelse(alc<=1,1,0)-ifelse(alc<=11,1,0)

V V V V V V V

C Appendix: Details on Simple Analyses

I tried to see if outlyingness in plasma levels of one micro-nutrient could
be an indicator of outlyingness in the other one, but it wasn’t so: no ob-
servation was an outlier for both the micronutrients, and even between the
other variables there was no outlier in common (apart between alcohol and
calories, as I said).

R code:
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any (pr[retpl>1000,1]==pr[beta>600,1])

[1] FALSE

any (pr [retpl<300,1]==pr[beta>600,1])
[1] FALSE
any (pr[retpl>1500,1]==pr [beta<70,1])
[1] FALSE

C.1 Alcohol on the Two Micronutrients

Figure 16 shows the strong influence of observation 62 (alcq=4, alc=203,
retpl=317) in the regression between plasma retinol and alcohol. This ob-
servation is in fact an outlier, and it can be useful to understand the effects
of being an alcoholic on plasma retinol. But, in this case, we are conducting
a more general analysis, so it can be more interesting to let the other ob-
servations be more influential. So I dropped observation 62 from the data
set. Not surprisingly, the difference in the parameter estimate is not very
sensible.

I did also some contrasts, with null hypotheses that uy = u1, u1 = po,
po = p3, g1+ po = p3 + po and py = BEHE2TES where p; is the effect
of the i-th level on plasma retinol. The third one was significative, stating
that there is difference between the effects of not drinking and consuming
1 to 11 drinks per day. The fifth contrast states that there is significative
difference between not drinking and drinking. The second contrast verifies
the hypothesis that there is no difference between not drinking or consuming
only less than one drink per day, which is not significant. So low drinking is
the same of no drinking with respect to plasma retinol concentrations. The
other contrasts were also found to be not significative.

Here is the R code I used (for the last contrast, for instance):

cl_c(3,-1,-1,-1)
temp_cbind(alcO,alcml,alcii1l,alcM1l)
templ_temp %*% cl

aov(log(retpl) "templ)

Coming to the relatioship between plasma beta-carotene and alcohol use,
looking at the first boxplot in Figure 17, I thought that the difference could
be significative because of the outliers. In particular, observation number
208 (alcq=4, alc=15, beta=1212) seemed really influential. But then I run
a regression without all of the outliers, and got the same results (and, in
some cases, lower p-values).

R code and output:
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aov(formula = log(retpl) ~ alcq)

Figure 16: Cook Distances
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Figure 17: Boxplots for alcohol and beta

> a_aov(b[-257]"alcq[-2571)
> summary (a)
Df Sum Sq Mean Sq F value Pr(>F)
alcq[-257] 3 1.720 0.573 3.4369 0.01726 *
Residuals 310 51.727 0.167
Signif. codes: 0 ‘#*xx’ 0.001 ‘*x’ 0.01 ‘*x’ 0.05 ‘.”> 0.1 ¢
|

> a_aov(b[-c(257,208,40,219,262,263,3)] alcq[-c(257,262,208,40,219,263,3)1)
> summary (a)

Df Sum Sq Mean Sq F value Pr(>F)
alcq[-c(257, 262, 208, 40, 219, 263, 3)] 3 2.122 0.707 5.2317 0.001557
Residuals 304 41.096 0.135

> a_aov(b[-c(257,208,40,219,262,263)] "alcq[-c(257,262,208,40,219,263)])
> summary(a 1 1 1 -3)

Df Sum Sq Mean Sq F value Pr(>F)
alcql-c(257, 262, 208, 40, 219, 263)] 3 1.815 0.605 4.4327 0.004556
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Residuals 305 41.635 0.137

C.2 Beta Intake on Beta

This is the summary of the regression between plasma beta and beta-
carotene intake.

Call: 1m(formula = betapl~0.2 ~ betadiet)
Residuals:

Min 1Q Median 3Q Max
-2.645 -0.2455 -0.006834 0.2226 1.434

Coefficients:
Value Std. Error t value Pr(>ltl)
(Intercept) 2.5803 0.0435 59.3402 0.0000
betadiet 0.0001 0.0000 3.8175 0.0002

Residual standard error: 0.431 on 313 degrees of freedom Multiple
R-Squared: 0.04449 F-statistic: 14.57 on 1 and 313 degrees of
freedom, the p-value is 0.0001625

Correlation of Coefficients:
(Intercept)
betadiet -0.8295

So the diet is not a good predictor of the presence of betaplasma, while
it is obviuosly effective.

From Figure 18 we can see that there is no evidence against the normality
of the residuals, but there is one strong low outlier, observation 257. This
is one of the reasons why I decided to run the regressions with "beta” as
response variable without this outlier.

In fact, the residuals of the model without observation 257 go from a
minimum of -1 to a maximum of 1.43, and there is no evidence of not
normality (Figure 19).

We can see from the following regression summary that without 257 the
slope achieves a lower p-value, though being itself lower.

Call: 1m(formula = b[-257] ~ betad[-257])
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Figure 18: Residuals for beta on betadiet
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Residuals:
Min 1Q Median 3Q Max
-1.00158 -0.25424 -0.02012 0.22174 1.43268

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 2.599e+00 4.093e-02 63.49 < 2e-16 *x*x
betad[-257] 5.849e-05 1.551e-05 3.77 0.000195 *x**
Signif. codes: O ‘*xx’> 0.001 ‘x> 0.01 ‘*x’ 0.05 ‘.’ 0.1
(4 ) 1

Residual standard error: 0.4048 on 312 degrees of freedom Multiple
R-Squared: 0.04358, Adjusted R-squared: 0.04051 F-statistic:
14.21 on 1 and 312 degrees of freedom, p-value: 0.000195

R code:

> a_residuals((1m(b[-257] “betad[-257])))
> a[a==min(a)]
233

-1.001575
> ala==max(a)]

219
1.432675
> qgnorm(a)
> summary (a)

C.3 Fiber on Beta

We said that the relation between plasma beta-carotene and fiber is milder

than detected in the simple regression analysis, because beta intake is strongly
correlated with fiber (.48) and strongly influential on plasma beta. In fact,

whenever two variables X7 and Xy are correlated, the parameter estimates

B of each varies when the other is in the model, that is, 3(X1) # B(X1|X2).

If correlation is high, it can be that 3(X;) and B(X1|X2) have got different

sign. It is important to avoid interpretation of the parameters in presence

of multicollinearity, while the model is still useful for prediction. For more

details, see (7).
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C.4 Vitamins

I created two dummy variables to investigate the relationship of the mi-
cronutrients with vitamin use. This are the summaries for the regressions
between plasma retinol and vitamins:

Df Sum Sq Mean Sq F value Pr(>F)
vityes 1 0.012 0.012 0.1038 0.7476
Residuals 313 36.320 0.116

Df Sum Sq Mean Sq F value Pr(>F)
vitno 1 0.011 0.011 0.0933 0.7602
Residuals 313 36.321 0.116

Df Sum Sq Mean Sq F value Pr(>F)
vitno 1 0.011 0.011 0.0931 0.7605
vityes 1 0.004 0.004 0.0311 0.8602
Residuals 312 36.318 0.116

Df Sum Sq Mean Sq F value Pr(>F)
as.factor(vit) 2 0.014 0.007 0.0621 0.9398
Residuals 312 36.318 0.116

So it is evident that there is no relationship between vitamin use and

plasma retinol.
R code:

vityes_ifelse(vit==1,1,0)
vitno_ifelse(vit==3,1,0)
a_aov(log(retpl) “vityes)
summary (a)

etc.

Coming to the relationship between plasma beta and vitamin use, the
coeflicient estimate of often use of vitamins is 0.1815302, and this is a sum-
mary:

Df Sum Sq Mean Sq F value Pr(>F)
vityes[-257] 1 2.451 2.451 14.994 0.0001314 *x*x
Residuals 312 50.996 0.163

The means for the three groups seem distant (240, 185, 136). Some
contrasts were fitted. I saw significative difference between occasional use
and no vitamin use, and this is a summary (with R code):
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> cont_c(0,1,-1)

>d1_ifelse(v==1,1,0)
>d2_ifelse(v==2,1,0) d3_ifelse(v==3,1,0)
>cc_cbind(d1,d2,d3) %*% cont

> summary.lm(aov(b[-257] “cc[-257]1))

Call: aov(formula = b[-257] ~ cc[-2571)

Residuals:
Min 1Q Median 3Q Max
-1.12810 -0.26695 -0.03865 0.24043 1.53241

Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) 2.73487 0.02319 117.93 < 2e-16 **x
cc[-257] 0.08845 0.02958 2.99 0.00301 *x*
Signif. codes: 0 ‘#*xx’ 0.001 ‘*x’ 0.01 ‘x’ 0.05 °.’
O |

Residual standard error: 0.4081 on 312 degrees of freedom
Multiple R-Squared: 0.02786, Adjusted R-squared: 0.02474
F-statistic: 8.941 on 1 and 312 degrees of freedom,
p-value: 0.003011

Other R code:

lapply(split(beta,vit) ,mean)
$"1" [11 240.959

$"2" [1] 185.6585

$"3" [1] 136.8919

C.5 Obesity on Beta

This is the R code I used to count obese individuals:

obM_ifelse(quet>=28 & sex==1,1,0)
obF_ifelse(quet>=27 & sex==2,1,0)
ob_obF+obM

sum(ob)

[1] 101

vV V V V
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And this is a summary of the regression:

Call: 1Im(formula = b[-257] ~ ob[-257])

Residuals:
Min 1Q Median 3Q Max
-0.97005 -0.24708 -0.03092 0.24169 1.45882

Coefficients:
Estimate Std. Error t value Pr(>|t]|)
(Intercept) 2.80846 0.02708 103.719 < 2e-16 **x*
ob[-257] -0.25674 0.04798 -5.351 1.70e-07 *x*x*
Signif. codes: 0 ‘#*xx’ 0.001 ‘*x’ 0.01 ‘x’ 0.05 °.’
(4 ) 1

Residual standard error: 0.3961 on 312 degrees of freedom
Multiple R-Squared: 0.08405, Adjusted R-squared: 0.08112
F-statistic: 28.63 on 1 and 312 degrees of freedom,
p-value: 1.698e-007

C.6 Sex on Plasma Retinol

Figure 20 shows a little evidence of not normality of the residuals of this
regression, but since n is very big we can conclude that normality holds
anyway. The observations out of the spans are too few to have convincing

evidence against the normality hypothesis.

C.7 Smoke on Plasma Retinol

I coded the dummy variables in this way:

FormSmok_ifelse(smoke==2,1,0)
NeverSmok_ifelse(smoke==1,1,0)

And this is a summary of the regression:

Call: 1m(formula = log(retpl) ~ FormSmok)
Residuals:

Min 1Q Median 3Q Max
-1.11968 -0.20518 0.01087 0.23252 1.04339
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Figure 20: QQnorm residuals of Sex on plasma retinol

Coefficients:
Estimate Std. Error t value Pr(>|t]|)
(Intercept) 6.30707 0.02383 264.675 < 2e-16 *x*xx*
FormSmok 0.10368 0.03944 2.629 0.00899 *x*
Signif. codes: 0 ‘#*xx’ 0.001 ‘*x’ 0.01 ‘*x’ 0.05 ‘.’ O
¢ ) 1

Residual standard error: 0.337 on 313 degrees of freedom
Multiple R-Squared: 0.0216, Adjusted R-squared: 0.01848
F-statistic: 6.911 on 1 and 313 degrees of freedom,
p-value: 0.00899

So being a former smoker is a predictor of high levels of plasma retinol
and, obviusly, smoking is a predictor of low levels of plasma retinol.

I did some contrasts, one to see if there is difference between being a
former smoker or not smoking (otherwise the important is not smoking at
the moment). This is a summary of the ANOVA contrast:

Call: aov(formula = log(retpl) ~ cc)
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Residuals:
Min 1Q Median 3Q Max
-1.163519 -0.198349 -0.003393 0.235611 1.058343

Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) 6.35091 0.01925 329.863 <2e-16 **x*
cc —-0.04489 0.02072 -2.167 0.031 *
Signif. codes: 0 ‘#*xx’ 0.001 ‘*x’ 0.01 ‘x’ 0.05 °.’
(4 ) 1

Residual standard error: 0.3382 on 313 degrees of freedom
Multiple R-Squared: 0.01478, Adjusted R-squared: 0.01163
F-statistic: 4.695 on 1 and 313 degrees of freedom,
p-value: 0.03101

So the difference is significative.
R code:

cont_c(1,-1,0)
sl_ifelse(smoke==1,1,0)
s2_ifelse(smoke==2,1,0)
s83_ifelse(smoke==3,1,0)

cc_ cbind(s1,s2,s83) %*% cont

aov(log(retpl) ~ cc)

D Appendix: Multiple Regression Models
D.1 Plasma Retinol
This is a summary of this multiple regression:

Residuals:
Min 1Q Median 3Q Max
-0.974581 -0.194648 -0.005489 0.213885 1.072723

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 5.9194880 0.1621913 36.497 < 2e-16 **xx*
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smoke?2 0.0840586 0.0407689 2.062 0.04007 *
smoke3 0.0003735 0.0571820 0.007 0.99479
sex2 -0.0939250 0.0592729 -1.585 0.11409
age 0.0038033 0.0013863 2.744 0.00644 **
alcqg?2 0.0973306 0.0468334 2.078 0.03852 *
alcq3 0.0605650 0.0468700 1.292 0.19727
alcqg4 0.2310371 0.0827372 2.792 0.00556 **
fat -0.0012858 0.0005720 -2.248 0.02530 *
b 0.1193555 0.0434153 2.749 0.00633 **

Signif. codes: 0 “**x> 0.001 ‘*x> 0.01 ‘%’
0.05 ‘.” 0.1 < 1

Residual standard error: 0.3206 on 305 degrees of freedom
Multiple R-Squared: 0.137, Adjusted R-squared: 0.1115
F-statistic: 5.379 on 9 and 305 degrees of freedom,
p-value: 7.651e-007

From the graphs in Figure 21 we can see no evidence against normality
of the residuals, and that no observation is particularly influential.
This is a stem and leaf of the leverage (h;;) values:

The decimal point is 2 digit(s) to the left of the |

1 | 22223333444444444455555555555555555555555566666666666666666666677777+41
2 | 00000000000000000111111111111111111111222222223333344444444555555566+6
3 | 0000111222222222333333444445555555666666666777778888999

4 | 0000001111222356678

5 | 0122233445689

6 | 34488899

7 | 01455669

8 | 11

917

10 | 4

11 |

12 |

13 |

14 | 1

The large value is observation 257, obviuosly; whose cookd is 0.02082197,
so even with a high leverage 257 is not heavily influential. h = 9/315, and
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Figure 21: Residual analysis for plasma retinol
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Obs | Leverage | Cookd
208 | .10393 | 0.0185
257 | .14076 | 0.0208
305 | .09656 | 0.0001

Table 8: Influential observations

so the ”rule of thumb” for selecting high leverage observations tells us that
3 observations are over the 3 * A (0.08571429) threshold: observation 208,
257 and 305. Table 8 shows that these observations have got low cookds, so
we can conclude that no observation is particularly influential in this model.

I tried to validate the model taking a random subset of the data (n/2
observations), fitting the model on this subset and then looking at the other
observations in relation to the model. I took the predicted values on the not
fitted subset. It is interesting to notice that the new model has an R-Squared

of 14%, close to the real R-Squared obtained.

Figure 22 shows that the new residuals (difference between real and
predicted plasma retinols) are reasonably close to normality.

R code:

h_Im.influence(a)$hat
stem(h)

3*sum(h) /315
cd_cooks.distance(a)
partl_sample(315,157)

a_lm(log(retpl) “smoke+sex+ age + alcq + fat

+ b, data=pr[parti,])

ft_predict.lm(a,pr[-parti,])

rs_log(retpl[-partl])-ft

D.2 Plasma Beta

This is a summary of the multiple regression model on betaplasma:

Call: lm(formula = b ~ betad + age + log(retpl) +
smoke + fat + colest + sex + fiber + vit + quet + betad:vit +

smoke:vit)

Residuals:
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Min 1Q Median 3Q Max
-0.83967 -0.21046 -0.03350 0.18819 1.23010

Coefficients:

Estimate Std. Error t value Pr(>ltl)
(Intercept) 1.597e+00 4.340e-01 3.680 0.000278 ***
betad 8.064e-05 2.292e-05 3.519 0.000502 **x*
age 2.230e-03 1.560e-03 1.430 0.153780
log(retpl) 1.991e-01 6.258e-02 3.181 0.001624 =**
smoke?2 -4.991e-02 7.093e-02 -0.704 0.482171
smoke3 -3.519e-01 1.235e-01 -2.849 0.004697 **
fat -4.785e-04 8.926e-04 -0.536 0.592332
colest -2.824e-04 2.301e-04 -1.227 0.220725
sex?2 9.981e-02 6.704e-02 1.489 0.137631
fiber 1.138e-02 4.560e-03 2.496 0.013109 =*
vit2 5.096e-02 1.041e-01 0.490 0.624692
vit3 6.436e-02 9.874e-02 0.652 0.515026
quet -1.678e-02 3.418e-03 -4.909 1.52e-06 **x*
betad:vit2 -6.917e-05 3.394e-05 -2.038 0.042428 x*
betad:vit3 -8.696e-05 3.373e-05 -2.578 0.010416 *
smoke2:vit2 1.485e-01 1.112e-01 1.335 0.182782
smoke3:vit2 2.673e-01 1.716e-01 1.557 0.120477
smoke2:vit3 -1.386e-01 1.021e-01 -1.357 0.175759
smoke3:vit3 2.249e-01 1.546e-01 1.455 0.146821

Residual standard error: 0.353 on 295 degrees of freedom
Multiple R-Squared: 0.3121, Adjusted R-squared: 0.2702
F-statistic: 7.437 on 18 and 295 degrees of freedom,
p-value: 7.772e-016

Figure 23 shows a quantile-normal plot of the residuals, and there is no
evidence of not normality.

Figure 24 shows some other diagnostics. We can see that the residuals
aren’t particularly high, though there are some outliers. There are some
observations with high leverage, and another with high Cook’s distance (ob-
servation number 39, whose Cookd is 0.1, residual 1.13 and leverage .14).
3% h = 0.1815287, but I think we should conclude anyway that observation
39 has an high leverage, and is strongly influential.

This is a stem and leaf of the h;;’s.

The decimal point is 2 digit(s) to the left of the |
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Figure 25: Validation of the model

The highest three observations, with a leverage of more than 3 * h, are
numbers 36, 225 and 308. Their cookd is .06, .002 and .003, so we should
conclude that observation 36 is strongly influential in the model. Its residual
is -0.60926682. The values of the variables for this two observations are given
in table 7, pag.21.

I validated this model using the same method used for plasma retinol
multiple model. The graphs for this analysis are given in Figure 25. There
is no evidence of problems in the model.

R code:

partl_sample(314,314%.5)
pl_lm(as.formula(a$call) ,data=pril[parti,])
ft_predict.lm(pl,pri[-partl,])
rs_b[-parti1]-ft

51



D.3 Summed Micronutrients Model

The idea to study the variables together by summing them comes from the
fact that we want to study what brings about high levels of both of them,
while they have proved to react differently to the same treatment. So, a low
value of the sum implies that both plasma levels are low, and of course an
high level of the sum implies high levels of them both.

Moreover, we need to sum the transformed variables instead of the real
ones; because the response variable in a classical regression analysis need
to be normally distributed. A sum of normally distributed variables is still
normally distributed, with mean the sum of the means, and variance the
sum of the variances plus double the covariance. So we will end up with
more variability. In this case, var(vbeta) = 0.1938161, var(log(retpl)) =
0.1157071, cov(v/beta,log(retpl)) = 0.02830927 and, in fact, var(v/beta +
log(retpl)) = 0.3661418.

I used automatic variable selection methods. Summarizing, the back-
ward elimination method starts from the complete model (all the variables
in the model) and then drops one variable at a time, till the model meets
certain conditions. The forward inclusion adds one variable at a time, and
usually ends up with models with less variables. In this case, the result is
the same. This is the R output, which uses AIC stopping method:

Start: AIC= -360.44
y ~ age + sex + smoke + quet + vit + cal + fat + fiber + colest +
betad + retd + alcq

Df Sum of Sq RSS AIC
- sex 1 0.01 90.06 -362.41
- retd 1 0.02 90.07 -362.38
- cal 1 0.02 90.07 -362.36
- fat 1 0.20 90.25 -361.75
- smoke 2 0.79 90.84 -361.69
- fiber 1 0.30 90.35 -361.39
- betad 1 0.41 90.46 -361.02

<none> 90.05 -360.44

- colest 1 1.21  91.26 -358.24
- quet 1 1.97 92.02 -355.63
- alcq 3 3.16 93.21 -3565.57
- vit 2 2.81 92.86 -354.75
- age 1 3.95 94.00 -348.93
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Step: AIC= -362.41

y ~ age + smoke + quet + vit

retd + alcq

Df Sum of
- retd 1
- cal
- fat
- smoke
- fiber
- betad
<none>

e
O O O O O O

- colest 1
- quet 1
- alcq 3
- vit 2

1

BN W R -

- age

Step: AIC= -364.34

Sq

.02
.02
.20
.79
.30
.40

.21
.97
.16
.82
.50

RSS
90.08
90.08
90.26
90.85
90.36
90.46
90.06
91.27
92.03
93.22
92.88
94.56

y ~ age + smoke + quet + vit

alcq

Df Sum of
- cal 1
- fat
- smoke
- fiber
- betad
<none>
- colest 1
- quet 1
- alcq 3
i 2
1

=N e
o O O O O

- vit
- age

BN W R =

Step: AIC= -366.26

Sq

.02
.21
.79
.29
.42

.35
.96
.18
.83
.48

RSS
90.10
90.29
90.87
90.37
90.50
90.08
91.43
92.04
93.26
92.91
94.56

y ~ age + smoke + quet + vit

alcq

Df Sum of

Sq

RSS

+ cal +

AIC
-364.34
-364.32
-363.71
-363.64
-363.35
-363.01
-362.41
-360.21
-357.60
-357.55
-356.68
-349.05

+ cal +

AIC
-366.26
-365.62
-365.60
-365.32
-364.89
-364.34
-361.65
-359.55
-359.41
-358.61
-351.05

+ fat +

AIC

53

fat + fiber + colest + betad +

fat + fiber + colest + betad +

fiber + colest + betad +



- smoke 2 0
- fat 1 0
- betad 1 0
- fiber 1 0
<none>

- colest 1 1
- quet 1 1
- alcq 3 3
- vit 2 2
- age 1 4

Step: AIC= -367.58
y © age + quet + v

Df Sum of
- fat 1 0.
- betad 1 0.
<none>
- fiber
- colest
- quet
- vit
- alcq
- age

= WN R PR
aa w we~= = O

Step: AIC= -368.63

y © age + quet + v
Df Sum of
- fiber 1 0.
- betad 1 0.
<none>
- quet 1 1
- alcq 3 3
- vit 2 3
- colest 1 4
- age 1 5

Step: AIC= -369.02

7
.27
.42
.51

.34
.98
.29
.87
.48

it

Sq
27
50

.63
.46
.70
.19
.93
.10

it

Sq
a7
53

.67
.86
.28
.70
.58

90.87
90.38
90.52
90.61
90.10
91.44
92.08
93.39
92.97
94.58

+ fat +

RSS
91.15
91.37
90.87
91.50
92.33
92.57
94.07
94.81
95.97

+ fiber

RSS
91.61
91.67
91.15
92.82
95.01
94 .42
95.85
96.72

-367.
-367.
-366.
-366.
-366.
-363.
-361.
-360.
-360.
-352.

fibe

-368.
-367.
-367.
-367.
-364.
-363.
-360.
-360.
-352.

58
31
81
50
26
62
43
98
38
98

r +

AIC
63
85
58
41
57
76
70
23
39

colest + betad + alcq

+ colest + betad + alcq

-369.
-368.
-368.
-364.
-361.
-361.
-354.
-351.

AIC
02
82
63
91
56
50
79
92

y ~ age + quet + vit + colest + betad + alcq
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Df Sum of Sq RSS

<none>

- betad 1
- quet 1
- vit 2
- alcq 3
- colest 1
- age 1

Call:

Im(formula =y

Coefficients:
(Intercept)
8.975e+00
betad
4.615e-05

91.61
1.40 93.01
1.85 93.47
3.43 95.04
4.04 95.65
4.38 95.99
5.72 97.34

age + quet +

age

9.676e-03 -1.

alcqg2

2.243e-01 2.

AIC
-369.02
-366.25
-364.72
-361.45
-361.43
-356.32
-351.93

vit + colest + betad + alcq, data =

quet
333e-02
alcqg3
671e-01

vit2

-1.524e-02

alcqg4

2.281e-01

And this is a summary of the features of the model:

Residuals:
Min

-2.62659 -0.33431 0.02758

Coefficients:

(Intercept)
age

quet

vit2

vit3
colest
betad
alcqg2
alcq3
alcq4

E

Signif. codes:

1

1Q Median 3Q Max

0.32666 1.40322
stimate Std. Error t value Pr(>|t])
.975e+00 2.079e-01 43.170 < 2e-16
.676e-03 2.216e-03 4.366 1.74e-05
.333e-02 5.368e-03 -2.484 0.013536
.524e-02 8.015e-02 -0.190 0.849349
.280e-01 7.354e-02 -3.100 0.002113
.200e-04 2.410e-04 -3.818 0.000163
.616e-05 2.138e-05 2.159 0.031667
.243e-01 7.945e-02 2.824 0.005063
.671e-01 8.013e-02 3.333 0.000965
.281e-01 1.385e-01 1.647 0.100674
0 “#xx’ 0.001 “*x> 0.01 ‘%’
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-2.280e-01

%k %k
%k %k %k

* %
%k %k
* %

%k %k

0.05

0.1 ¢

pr)

colest
-9.200e-04



Residual standard error: 0.5481 on 305 degrees of freedom
Multiple R-Squared: 0.2031, Adjusted R-squared: 0.1796
F-statistic: 8.64 on 9 and 305 degrees of freedom,
p-value: 1.496e-011

R code:
y_b+log(retpl)

1ml_1m(y~.-beta-b-retpl-alc,data=pr)

step(1lml, method="both")

Im(formula = y ~ age + quet + vit +
+ colest + betad + alcq, data=pr)
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