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Abstract

This study analyzes the determinants of NFL ticket prices for the 2001 regu-
lar season. We have been able to construct a model which provides compelling
evidence that several variables are associated with and predictive of ticket prices.
Among those found with a significant, positive correlation with ticket price are
whether a team is playing in a recently built stadium (opened in the last 5 years),
and a team’s overall popularity in the league (as measured by merchandise sales).
The amount of money a team had available below the salary cap prior to the start
of the 2001 season was found to be negatively correlated. A significant interaction
between the 2000 season winning percentage and the presence of other professional
sports teams in the same city suggests that 2001 ticket prices were more responsive
to a team’s 2000 season winning percentage in cities with other professional sports
whose seasons overlap with the football season. Finally, a bootstrapping analysis
was performed which confirmed the significance of all of the major factors in our
model.



Introduction

NFL ticket prices have risen 8.7 percent since last season, raising the average ticket price
for a professional football game to over $50 per seat. Clearly, football fans are willing
to open their wallets to watch their favorite teams play. Prices for football tickets are
generally high because of scarcity. Only 8 regular season home games are played by each
team, so the supply-demand equilibrium tends to be found at a very high price level. In
this paper, we study what we believe to be a more interesting question than just why do
people pay so much for football tickets. We ask why they are willing to pay more to watch
some teams and less for others. The design of our study is cross-sectional, but much of
our data to predict 2001 season prices comes from 2000 season values for our variables.

There is a high degree of variability of average ticket prices across teams. The average
price ranges from a low of $38 for the Arizona Cardinals to a high of $82 for the Washing-
ton Redskins. We develop a model which can help us think about why there exists ticket
price variation across teams and what the key determinants of this variation seem to be.
A priori we might assume that winning teams tend to have higher prices. Or, perhaps
teams that play in big markets have the more exorbitant prices. Having a lot of people
with a lot of money would seem to bring some healthy upward demand pressure on prices.

We would like to determine whether we can account for this variability by studying aspects
of teams’ past performance, characteristics of the market of their home city (population,
cost of living), the financial situation of team (salary cap constraints), and any other rea-
sonable predictors of how teams might choose to set prices. Since prices are set between
seasons by the different ownership groups for NFL teams, the prices we are examining
are not free market prices. When looking for significant factors to include in our model
we must be cognizant of the indirect manner in which the market (i.e. the fans) actually
affects the ticket prices set by the ownership.

For the purposes of constructing our model, we utilize a standard linear regression frame-
work. Without a large quantity of data, we are unable to set aside even a small sample of
our data for assessing our final model and testing its fit. Instead, we test the robustness
of our specification using “case-based” bootstrapping. This essentially allows us to test
the sensitivity of our coeflicient estimates to different combinations (weightings) of our
observation vectors.

The structure of this report is as follows. We will provide a thorough detailing of
the variables we considered in our section Description of Data. Next, in Analysis
and Results we provide the final specification of our explanatory model and include,
where appropriate, interpretation of relevant diagnostic methods and tools. The Discus-
sion/Conclusion section will give a sense of the degree to which we can generalize from
our model about the relationships under study while also commenting at some length



about the obstacles we faced given the type of data gathered and the analysis we have
employed. The Technical Appendices provide the exploratory data analysis we per-
formed as well as a greater level of detail regarding our model building and validation.



Description of Data

Our response variable is the natural logarithm of average 2001 regular season ticket prices
for the 31 National Football League teams. These averages were provided by USA Today,
and they are essentially a weighted average of ticket price, taking into account the different
price levels for seats and the number of seats at each price level. It is customary to use a
log transform for financial variables due to their propensity for right-skewing. We follow
this custom here due to the right-skewing in ticket prices we detected. It has helped us
achieve a more normally-distributed response variable for linear regression analysis.

There are many issues surrounding the use of average ticket price in our analysis. First,
the mean ticket price may not be indicative of the price that the typical individual pays.
Luxury boxes represent a severe right skew in the distribution of ticket prices for a single
team and can demonstrably increase the average price while the median price remains
unchanged. Also, since ticket prices are explicitly determined by team ownership prior to
each season, they are an imperfect indicator of supply-demand equilibrium in the market
at any point in time. The true market price is most appropriately and accurately cap-
tured in the form of prices for scalped tickets. This is where the unfettered free market
truly determines the value of a ticket. Unfortunately, we were unable to compile data for
scalped tickets for the purposes of examination in this report.

A notable omission from our study is the cost component to many consumers in the
form of personal seat licenses (PSL’s). These licenses are often a required purchase in
order for fans to have the right to then purchase season tickets at their face value. USA
Today did not include PSL’s when they calculated the average prices used in this analysis
so we have no way of accounting for its affect on the total average cost for consumers to
attend a football game. We have also not collected data on the cost of parking, hotdogs,
beer, and other necessary expenditures having a substantive contribution to the total cost
of a Sunday football outing.

Note: Since ticket prices are determined by each team during the off-season, the prices
charged reflect the team owner’s perceptions of what fans are willing to pay. Those per-
ceptions can only be based on data from the previous season. Therefore, since we are
analyzing 2001 average ticket prices, we will be looking at data that was known to the
team owners prior to the 2001 season. For example, we will look at 2000 winning percent-
age (not 2001 which is still in progress), but we will account for Pittsburgh’s new stadium,
which opened in 2001, as a factor that was anticipated by the organization when they set
the average 2001 ticket prices 52% higher than last year.

Here are the variables we examined in this study. For additional detail and EDA, please
refer to the Technical Appendices.



e Team Variables

— dummy.afc
Conference: 1=AFC, 0=NFC

— win.pct.2000
2000 regular season winning percentage

— home.win.pct.2000
2000 regular season home winning percentage

— off.td.2000
2000 total offensive touchdowns

— number.superbowl
Total number of Super Bowl Victories in franchise history

— number.probowl
Total number of 2000 Pro Bowl Players

e Market Variables

— city
Nearest major city (Sometimes the stadium is close but not technically in the
same city. For instance, the New England Patriots’ stadium is a 40 minute
drive from Boston. Estimating relative commute times is outside the scope of
this project. We will use the most reasonable home city for each team)

— city.pop.2000
City Population (from 2000 Census)

— cost.of.living

Estimates relative cost of living across differenct cities. We will construct this
variable by providing a base case, living in Cincinnati on $40,000 per year. The
number for all other cities is how much an individual would have to earn in
those cities in order to maintain the same standard of living as they experience
in Cincinnati, OH earning $40,000. The source for this data was Monster.com’s
moving site called Monstermoving.com which contained the salary comparison
calculator used to collect cost of living data.

— temperature
Mean temperature in home city for the month of December

— dummy.basketball
1=NBA team plays in same market, O=else

— dummy.hockey
1=NHL team plays in same market, O=else

— dummy.sportstown
1=NBA, NHL and NFL teams share the same market, O=else



e Stadium Variables

— capacity
Stadium seating capacity

— attendance
2000 average attendance

— capacity.utilized
Equal to attendance divided by capacity
(Maximum value allowed is .999)
Note: We calculated Denver and Pittsburgh using 2000 stadium capacity, since
they opened new stadiums in 2001. Our capacity variable will be relevant for
above calculation for all other teams who didn’t open a new stadium in 2001.

— dummy.outdoor
1=outdoor stadium, 0=dome

— dummy.artificial.turf
1=artificial turf playing surface, 0=natural grass

— dummy.new.stadium
1=new stadium built in last 5 years, 0=else
e Financial Variables
— ticket.price.2001
2001 average ticket price

— salary.cap.room
As of July, 2001, the amount of money below the salary cap the team was
eligible to spend.

— dummy.top1l5.merchandise
1=team is among top 15 in merchandise sales, O=else



Analysis and Results

Since we have so few observations, a backward elimination technique for model-
fitting is less appropriate than if we had a larger data set. Instead, we prefer
to build from the ground up by examining simple linear regressions to identify
any strong or moderate relationships between individual predictor variables and
log.ticket.price.2001. Below is a table summarizing which variables had signifi-
cant or near-significant results in simple linear regression models.

Promising Predictor Variables

Variable Status Direction of Relationship | p-value
win.pct.2000 near-significant positive 0.06
home.win.pct.2000 near-significant positive 0.059
number.superbowl near-significant positive 0.158
number.probowl significant positive 0.037
attendance.2000 near-significant positive 0.0635
capacity.utilized near-significant positive 0.0881
number.superbowl near-significant positive 0.158
dummy.outdoor near-significant positive 0.0878
dummy.artificial.turf significant negative 0.0263
dummy.new.stadium significant positive 0.000099
sqrt.salary.cap.room significant negative 0.0345
dummy.topl5.merchandise || near-significant positive 0.0928

Final Model Specification

We constructed multiple models, but our final specification includes 6 variables (5
variables + 1 interaction term) which capture whether a team has a new stadium,
the amount of salary cap room, merchandise sales, the winning percentage from the
previous season, and the presence of other sports teams who share the same market.

Extra Sum of Squares tests were insignificant for the inclusion of any additional
variables in this model. Therefore, we retain the following model as our final speci-
fication.

Model Variables

sqrt.salary.cap.room
dummy.new.stadium
dummy.topl5.merchandise
win.pct.2000
dummy.sportstown




win.pct.2000:dummy.sportstown

Here are the results of our linear regression model:

Im(formula = log.ticket.price.2001 ~ sqrt.salary.cap.room +
dummy .new.stadium + dummy.topl5.merchandise + win.pct.2000 +
dummy . sportstown + win.pct.2000:dummy.sportstown, data = nfl)

Residuals:
Min 1Q Median 3Q Max
-0.16233 -0.05939 -0.01330 0.04520 0.21908

Coefficients:

Estimate Std. Error t value Pr(>[tl)
(Intercept) 4.15299 0.09838 42.216 < 2e-16 **x
sqrt.salary.cap.room -0.10372 0.03180 -3.262 0.00330 *x*
dummy .new.stadium 0.25798 0.04470 5.771 6e-06 **x
dummy .topl5.merchandise 0.09867 0.04158 2.373 0.02601 *
win.pct.2000 -0.32979 0.14116 -2.336 0.02815 *
dummy . sportstown -0.40183 0.10978 -3.660 0.00124 *x
win.pct.2000:dummy.sportstown 0.76472 0.21267 3.596 0.00145 *x
Signif. codes: 0 “*x*x’ 0.001 ‘*x’ 0.01 ‘x> 0.05 ‘.” 0.1 ¢ > 1

Residual standard error: 0.1013 on 24 degrees of freedom
Multiple R-Squared: 0.7544, Adjusted R-squared: 0.693
F-statistic: 12.28 on 6 and 24 DF, p-value: 2.626e-006

The most statistically and substantively significant variable associated with ticket
prices is dummy.new.stadium. New stadiums have been sprouting up all over
the league as of late (8 in the last five years), and it seems fairly easy to see why.
Average ticket price for teams with a new stadium built in the last five years in $65
versus $50 for teams without a recently built stadium. Figure 1 displays the stark
contrast in average prices in side-by-side boxplots. The interquartile ranges of our
boxplots do not even overlap.

The main reason that a new stadium will increase averge ticket prices is the re-
sult of a large increase in corporate and luxury box seats. All of the new stadiums
are designed to provide a larger number of these high priced seats than the older
stadiums which were built in a different era. The average fan will also pay more to
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Figure 1: 2001 ticket prices by New vs. Old Stadium

attend games in a beautiful new stadium, but it is quite likely that the luxury boxes
are driving a large portion of the increase in average ticket price in new stadiums.

A team whose merchandise (jerseys, mugs, pennants, etc.) sells better than aver-
age (i.e. among the top 15 teams) has an average ticket price of $56 while teams
not in this category have an average price of $51. These are strictly averages to
give the reader a sense of the relative importance of this variable compared to
dummy.new.stadium. Our dummy.topl5.merchandise variable was not found
to be significant in the simple linear regression with log.ticket.price.2001, but its
significance has surfaced in our larger model as we have been able to control for
other variables which were a source of noise in the simple regression.



The amount of salary cap room is a variable which, as much as anything, is un-
der the control of team management. The negative correlation we find between this
variable and ticket prices is likely to be caused by a team trying to save some money
(high cap room) when they are not generating as much revenue from ticket sales
(low ticket prices).

Our interaction term win.pct.2000:dummy.sportstown is found to be signifi-
cant suggesting that fans in a “sportstown” are more responsive to a winner (and
a loser) than fans in other cities. The lower order terms of our interaction are also
significant. The negative and significant coefficient on dummy.sportstown sug-
gests that football, basketball and hockey are substitutes. It makes economic sense
that having an additional sports team (a substitute) in the same city would tend
to lessen demand pressures and consequently be associated with lower prices (on
average) for football tickets.

Figure 2 displays several diagnostic plots for our regression model. Our cloud of
residuals is nicely spread without a discernible pattern. Also, the normal quantile
plot is reasonably straight with no obvious departure from normality. The obser-
vations which have been identified as highly influential (or possibly outliers) were
removed in one calculation of our model. The model’s significance was retained and
improved for all coefficients, and we achieved an increase in R2. Figure 3 provides a
scatterplot of actual versus predicted ticket price after we have converted our vari-
ables back to their regular values. This makes for an easier understanding of the
strength of our model by removing the non-intuitive natural log transformed prices.
It is clear that our model provides a relatively accurate prediction of ticket price.
In general, the data points hug the line fairly closely, while only the Washington
Redskins seem to noticeably defy the gravitational pull of our trend line.

We test our model using “case-based” bootstrapping. Normally, we would be in-
clined to perform this kind of analysis in situations where our normal-errors assump-
tion was in doubt. Our diagnostic plots do not actually reveal any strong sense of
non-normality. However, our small number (31) of cases motivate us to test the
sensitivity of our coefficient estimates to different combinations (with repeats) of
our observation vectors. In an observational study, as opposed to a designed exper-
iment, it is appropriate to perform a naive “case-based” bootstrapping analysis in
order to test the robustness of our model specification. This is the preferred version
of bootstrapping for social science regression models because, as in this case, we
cannot have the highest level of confidence that we have the “true” model.

Since all of the coeffients in our model are individually significant at p=.05, we know
that zero is not included in their 95 percent normal confidence intervals. Bootstrap
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samples give us slightly different (larger) confidence intervals to test the significance
of our coefficients. Below, we provide bootstrap intervals for our coefficients.

Bootstrap percentile-based 95% confidence intervals for independent variable coeffi-
cients:

Intercept

2.5Y% 97.5Y%
3.857473 4.370667

sqrt.salary.cap.room

2.5% 97.5Y%
-0.18335735 -0.02362473

dummy.new.stadium

2.5% 97.5%
0.1305388 0.3612133

dummy.topl5.merchandise

2.5% 97.5%
0.009822568 0.180039609

win.pct.2000

2.5% 97.5%
-0.6189132 0.0940375

dummy.sportstown

2.5% 97.5%
-0.5964222 -0.1676532

win.pct.2000:dummy.sportstown

2.5% 97.5%
0.2786191 1.1676652
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Clearly, all but one of our coefficients are significantly different from zero (i.e. zero
is not in the 95 percent bootstrap interval). The coefficient on win.pct.2000 in-
cludes the value zero in its 95 percent bootstrap confidence interval. This causes
us to give pause when attempting to interpret the relationship being measured by
this variable. Since win.pct.2000 is a lower order term for the interaction with
dummy.sportstown, its coefficient represents the relationship between winning
percentage and ticket prices for those teams in cities without an NBA or NHL
team, where dummy.sportstown=0. The significant, negative relationship found
in our regression t-test was not upheld with the application of our bootstrapping
95% confidence interval analysis. We will, however, keep the term in our model,
since it is customary to always retain lower order terms when a significant interac-
tion is to be kept in the model.

Overall, the takeaway from our bootstrapping analysis is that our model specifi-
cation appears to be appropriate for assigning directionality to the relationships
between our independent variables and the response, log.ticket.price.2001. In
other words, we feel confident that we can conclude which variables have a positive
association and which have a negative association with ticket prices.

Interpreting Our Coefficients

For the purpose of providing the reader with a sense of how ticket prices tend
to change with changes in our independent variables, we will examine a single team,
the Miami Dolphins, and watch how their ticket price might be predicted to change.
The 2001 season average ticket price for a Miami Dolphins game is $56.34. Our
model predicted an average price of $56.83. We got pretty close to the actual price
with our prediction. Now, we we see how that price can be expected to change.

The values for the Dolphins on our independent variables are listed in the table
below along with a demonstration of how predicted price changes for new values of
the variables. Note: FEstimated price differences are for changes in the particular
variable holding all other variables constant at their actual value.

e Miami Dolphins

Variable Actual Value | New Value | Price Difference
sqrt.salary.cap.room 1.1 2 -$5.04
dummy.new.stadium 0 1 +%$16.64
dummy.topl5.merchandise 1 0 -$5.31
win.pct.2000 .688 .200 -$10.81
dummy.sportstown 1 0 -$6.61
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The Miami Dolphins have a relatively average ticket price (slightly above average).
Our model predicts that they could increase average ticket price by $16.64 if they
would build a new stadium. That increase is on par with the average price difference
between new-stadium teams and old-stadium teams across the league. This adds to
our confidence of the reasonableness of our prediction model. If the Dolphins were
to have had a perfect record last year and had opened a new stadium this season,
then they would be predicted to have an average ticket price of $83.82 for the 2001
season. This would give them the highest ticket price in the league, close to $2 over
the Washington Redskins. Since the 1972 Dolphins are the only team in the modern
era to go an entire season undefeated, this is not too far-fetched to consider.
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Discussion/Conclusion

When performing any analysis it is sometimes more interesting to discover variables
that are not significant than those which are found to have statistical significance.
Cost-of-living was a variable that we were expecting to be highly correlated with
ticket prices. It failed to reveal a significant relationship in both the simple and
multiple regression models. Also, city population failed to demonstrate the positive
relationship with ticket price that we anticipated.

Our temperature variable was included in our analysis as an attempt to identify
any relationship between the regional climate and how this may affect the willing-
ness of fans to endure cold temperatures in the many outdoor stadiums around the
league. We expected a positive relationship between December temperature and
ticket prices, since, this could have an influence on the margins. No significant
relationship emerged in the analysis, however. Low temperatures were clearly not
associated with lower ticket prices. It seems that football fans are willing to tough
it out in cold temperatures to watch their teams.

Offensive touchdowns as an indicator of on-the-field excitement, number of Super
Bowl victories as a proxy for fan loyalty, and number of Pro Bowl players as a mea-
sure of star attraction were all found to be less predictive of ticket prices than the
other variables in our model. All three would seem to have the potential for a posi-
tive relationship with ticket price, but they were not able to provide any additional
explanatory capability.

This report has attempted to understand many of the underlying factors which
determine ticket prices in the National Football League. If future work is done,
it would be interesting to examine the extremes of ticket pricing for each team by
looking at the lowest priced tickets and highest priced tickets that are available.
From the least expensive ticket for each team one might get a better sense of the
minimum cost requirements, the barriers to entry. For all price levels of tickets, we
could compare the scalped price to face value to get a sense of the true market price.
The percent markup would also provide an indication of relative demand pressures
for the tickets to different teams. Unfortunately, our use of an average ticket price
for each team prevented a more in depth examination of these important issues.

An additional layer of complexity is introduced if we were to dig deeper and look at
the scalping prices of tickets to a particular team for all 16 of its games, not just its
home games. If a popular team like the St. Louis Rams comes to play in Pittsburgh,
presumably scalping prices will be higher than for the game when a bad team like
the Cincinnati Bengals comes to play the Steelers. Tracking market prices for 16
games rather than just 8 home games would increase the amount of data we have,

16



thus enriching the analysis with the introduction of a higher degree of precision.

Future work might also introduce additional years of data. While this was not
feasible for this report, it would be interesting to analyze intra-team changes in
independent variables and examine their impact on ticket price. For instance, if the
Steelers have successive years of low winning percentage, do their ticket prices rise
more slowly than the average NFL team over the same period. By performing a
time series, we could control for team effects to get a clearer understanding of the
true relationships between ticket price and the many covariates.

At the conclusion of this analysis, however, we feel that we have followed a rea-
sonable path to identifying ticket price determinants given the data at our disposal.
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Technical Appendices

1. Response Variable

We selected a log transformation of raw average 2001 season ticket price as our
response variable. There was virtually no correlation between ticket price and
cost-of-living, which might have served to provide an adjusted version of ticket
prices. Here are the results of different correlations which were all statistically
insignificant at any reasonable p-values:

> cor(log.ticket.price.2001,cost.of.living)

[1] 0.09728868

> cor(ticket.price.2001,cost.of.living)

[1] 0.09155404

> cor(log.ticket.price.2001,log.cost.of.living)
[1] 0.08290283

> cor(ticket.price.2001,log.cost.of.living)

[1] 0.08915233

— ticket.price.2001
2001 average ticket price

> stem(ticket.price.2001)
The decimal point is 1 digit(s) to the right of the |

| 899

| 3

| 55668
| 000002234
| 566679
| 0123

|

|

|

|

O NN OO W

We see some right-skew to ticket prices. Perhaps a log transformation
would be appropriate. We create a new variable log.ticket.price.2001
below.

— log.ticket.price.2001
Natural logarithm of 2001 average ticket price

18
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Figure 4: Boxplot of the Natural Logarithm of 2001 ticket prices

> stem(log(ticket.price.2001))

The decimal point is 1 digit(s) to the left of the |

36
37
38
39
40
41
42
43
44

367

5

11337
011115568
023357
0134

6

5

1

The log transform has pulled the positive outliers closer to the main body
of the data, but the boxplot of log.ticket.price.2001 in Figure 4 identi-
fies the Redskins ticket price as an outlier even after the transformation.
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2. Team Variables

— dummy.afc
Conference: 1=AFC, 0=NFC

> table(dummy.afc)
dummy .afc

0 1

15 16

Simple linear regression:

> summary(1lm(log.ticket.price.2001 dummy.afc))

Call:
1m(formula = log.ticket.price.2001 ~ dummy.afc)

Residuals:
Min 1Q Median 3Q Max
-0.30046 -0.11501 -0.01545 0.08196 0.47791

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 3.92747 0.04698 83.602 <2e-16 **x*
dummy .afc 0.07424 0.06539 1.135 0.266

Signif. codes: 0 “*x%’ 0.001 ‘**x’> 0.01 ‘%’ 0.05 “.” 0.1 ¢ ’ 1
Residual standard error: 0.1819 on 29 degrees of freedom

Multiple R-Squared: 0.04255, Adjusted R-squared: 0.009538
F-statistic: 1.289 on 1 and 29 DF, p-value: 0.2655

As we might expect, conference does not seem significantly associated with
ticket prices.
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— win.pct.2000

2000 regular season winning percentage

> summary(win.pct.2000)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0630 0.3440 0.5630 0.5003 0.6565 0.8130

> stem(win.pct.2000)
The decimal point is 1 digit(s) to the left of the |

| 6

| 99

| 55

| 11188

| 444

| 006666

| 33339999
| 555

| 1

O ~NOY O WN - O

There seems to be some minor left skew to the distribution, but there are
no outliers.

Simple linear regression:

> summary(lm(log.ticket.price.2001 win.pct.2000))

Call:
Im(formula = log.ticket.price.2001 ~ win.pct.2000)

Residuals:
Min 1Q Median 3Q Max
-0.32083 -0.11080 -0.01403 0.10098 0.43968

Coefficients:

Estimate Std. Error t value Pr(>ltl)
(Intercept) 3.80715 0.08692 43.801 <2e-16 **x
win.pct.2000 0.31709 0.16201 1.957 0.06 .
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Signif. codes: 0 “*x*’ 0.001 ‘*x’ 0.01 ‘x’ 0.05 “.” 0.1 ¢ 2
Residual standard error: 0.1748 on 29 degrees of freedom
Multiple R-Squared: 0.1167, Adjusted R-squared: 0.08622
F-statistic: 3.831 on 1 and 29 DF, p-value: 0.06002

Our simple regression shows a nearly significant correlation between ticket
price and winning percentage of the previous year.

22
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— home.win.pct.2000
2000 regular season home winning percentage
> table(home.win.pct.2000)
home.win.pct.2000
0.125 0.25 0.375 0.5 0.625 0.75 0.875
1 1 8 5 8 5 3

Simple linear regression:

> summary(1lm(log.ticket.price.2001 home.win.pct.2000))

Call:
1m(formula = log.ticket.price.2001 ~ home.win.pct.2000)

Residuals:
Min 1Q Median 3Q Max
-0.28237 -0.11077 -0.03363 0.08417 0.45816

Coefficients:

Estimate Std. Error t value Pr(>ltl)
(Intercept) 3.7828 0.0983 38.482 <2e-16 x*x
home.win.pct.2000 0.3289 0.1674 1.965 0.0591 .
Signif. codes: 0 “**%*’ 0.001 ‘*x’ 0.01 ‘%’ 0.05 .’ 0.1 ¢ > 1

Residual standard error: 0.1747 on 29 degrees of freedom
Multiple R-Squared: 0.1175, Adjusted R-squared: 0.08705
F-statistic: 3.86 on 1 and 29 DF, p-value: 0.05908

Home winning percentage of the previous year seems to have approximately
the same correlation with ticket price and regular winning percentage.
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— off.td.2000

Total offensive touchdowns in 2000 season

> summary (off.td.2000)
Min. 1st Qu. Median Mean 3rd Qu. Max.
6.00 15.50 20.00 20.45 22.50 37.00

> stem(off.td.2000)
The decimal point is 1 digit(s) to the right of the |

| 69

| 22444

| 56888899
| 001112223
| 889

| 233

| 7

W W NN EP =, O

Simple linear regression:

> summary(1m(log.ticket.price.2001"off.td.2000))

Call:
1m(formula = log.ticket.price.2001 ~ off.td.2000)

Residuals:
Min 1Q Median 3Q Max
-0.32149 -0.12045 -0.04428 0.11458 0.44911

Coefficients:

Estimate Std. Error t value Pr(>|[tl)
(Intercept) 3.886368 0.099273 39.148 <2e-16 **x*
off.td.2000 0.003883 0.004578 0.848 0.403

Signif. codes: O “**x*’ 0.001 ‘*%’ 0.01 ‘%> 0.05 “.” 0.1 < * 1
Residual standard error: 0.1837 on 29 degrees of freedom

Multiple R-Squared: 0.02421, Adjusted R-squared: -0.009441
F-statistic: 0.7194 on 1 and 29 DF, p-value: 0.4033
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There seems to be a very weak correlation between ticket prices and offen-
sive touchdowns.
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— number.superbowl
Total number of Super Bowl Victories in franchise history

> table (number.superbowl)
number . superbowl

01 2 3 4 5
16 6 3 3 1 2

Simple linear regression:

> summary(1lm(log.ticket.price.2001 " number.superbowl))

Call:
Im(formula = log.ticket.price.2001 ~ number.superbowl)

Residuals:
Min 1Q Median 3Q Max
-0.30400 -0.11270 -0.02138 0.09098 0.38195

Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) 3.93100 0.04018 97.827 <2e-16 ***
number . superbowl 0.03081 0.02124 1.451 0.158

Signif. codes: 0 “*x*x’ 0.001 ‘*x’ 0.01 ‘%’ 0.05 “.” 0.1 < 7 1

Residual standard error: 0.1795 on 29 degrees of freedom
Multiple R-Squared: 0.06767, Adjusted R-squared: 0.03553
F-statistic: 2.105 on 1 and 29 DF, p-value: 0.1575

The number of Super Bowl Championships in franchise history is within
striking distance of a significant correlation if we can remove some noise
by controlling for other factors of variability.
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— number.probowl
Total number of 2000 Pro Bowl Players

> table(number.probowl)
number . probowl
01234579
47444422

Simple linear regression:

> summary(1lm(log.ticket.price.2001 " number.probowl))

Call:
Im(formula = log.ticket.price.2001 ~ number.probowl)

Residuals:
Min 1Q Median 3Q Max
-0.29919 -0.10898 -0.01732 0.10292 0.41415

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 3.88244 0.04909 79.081 <2e-16 *xx
number.probowl 0.02720 0.01244  2.187 0.037 *

Signif. codes: 0 “*x*’ 0.001 ‘*x’ 0.01 ‘%’ 0.05 “.” 0.1 ¢ * 1
Residual standard error: 0.1723 on 29 degrees of freedom
Multiple R-Squared: 0.1415, Adjusted R-squared: 0.1119
F-statistic: 4.781 on 1 and 29 DF, p-value: 0.03698

Clearly there is a significant positive correlation between number of Pro
Bowl players on a team’s roster and ticket price.
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3. Market Variables
— city

Nearest major city (sometimes stadium is close but not technically in the
same city. For instance, New England’s stadium is a 40 minute drive from
Boston. Estimating relative commute times is outside the scope of this
project.)

NFL Cities

1 San.Francisco
2 Chicago
3 Cincinnati
4 Buffalo
5 Denver
6 Cleveland
7 Tampa
8 Phoenix
9 San.Diego
10 Kansas.City
11 Indianapolis

12 Dallas
13 Miami
14 Philadelphia
15 Atlanta
16 New.York
17 Jacksonville
18 New.York
19 Detroit
20 Green.Bay
21 Charlotte
22 Boston
23 Oakland
24 St.Louis
25 Baltimore

26 Washington
27  New.Orleans

28 Seattle
29 Pittsburgh
30 Nashville

31 Minneapolis
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— city.pop.2000
City Population (from 2000 Census)

> summary(city.pop.2000)
Min. 1st Qu. Median Mean 3rd Qu. Max.
102300 391100 563400 1166000 871600 8008000
> stem(city.pop.2000)

The decimal point is 6 digit(s) to the right of the |

0 | 13333344444555666667788
1 | 02235

219

3 |

4 |

5 |

6 |

7 |

8 | 00

Clearly the two teams from New York (Giants and Jets) are outliers in
this category.

Simple linear regression:

> summary(1lm(log.ticket.price.2001%city.pop.2000))

Call:
Im(formula = log.ticket.price.2001 ~ city.pop.2000)

Residuals:
Min 1Q Median 3Q Max
-0.33885 -0.11615 -0.01075 0.09037 0.43987

Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) 3.965e+00 3.936e-02 100.745 <2e-16 **x*
city.pop.2000 4.697e-10 1.787e-08 0.026 0.98

Signif. codes: 0 ‘*xx’ 0.001 ‘*x*’ 0.01 ‘x> 0.05 “.” 0.1 ¢ * 1
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Residual standard error: 0.1859 on 29 degrees of freedom
Multiple R-Squared: 2.383e-005, Adjusted R-squared: -0.03446
F-statistic: 0.0006911 on 1 and 29 DF, p-value: 0.9792

City population does not appear to have any correlation with ticket prices.
Natural logarithm and square root transformations of population failed to

provide a better fit. There is no compelling reason to transform this vari-
able.
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— cost.of.living
Cost of living variable which estimates relative cost of living across different
cities. We will construct this variable by providing a base case, living in
Cincinnati on $40,000 per year. The number for all other cities is how
much an individual would have to earn in those cities in order to maintain
the same standard of living as they experience in Cincinnati, OH earning

$40,000.
> summary(cost.of.living)

Min. 1st Qu. Median Mean 3rd Qu. Max.
28450 34850 40000 52460 55670 150100

> stem(cost.of.living)

The decimal point is 4 digit(s) to the right of the |

2 | 812233445666778
4 | 0045772666

6 | 85

8 | 99

10 |

12 |

14 | 00

Again, New York is a clear outlier. We will use a log transform to create
log.cost.of.living. But first...

Simple linear regression:

> summary(1lm(log.ticket.price.2001"cost.of.living))

Call:
Im(formula = log.ticket.price.2001 ~ cost.of.living)

Residuals:
Min 1Q Median 3Q Max
-0.3292938 -0.1249895 0.0002882 0.0883311 0.4269097

Coefficients:

Estimate Std. Error t value Pr(>lt|)
(Intercept) 3.936e+00 6.598e-02 59.648 <2e-16 *xx
cost.of.living 5.719e-07 1.086e-06 0.526 0.603
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Signif. codes: 0 “*x*’ 0.001 ‘*x’ 0.01 ‘x’ 0.05 “.” 0.1 ¢ 2
Residual standard error: 0.1851 on 29 degrees of freedom
Multiple R-Squared: 0.009465, Adjusted R-squared: -0.02469
F-statistic: 0.2771 on 1 and 29 DF, p-value: 0.6026

Clearly, there is not a significant correlation between ticket price and cost
of living in the cities.
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— log.cost.of.living
Natural logarithm of cost.of.living

> summary(log.cost.of.living)
Min. 1st Qu. Median Mean 3rd Qu. Max.
10.26 10.46 10.60 10.75 10.93 11.92
> stem(log(cost.of.living))

The decimal point is 1 digit(s) to the left of the |

102 | 657799
104 | 448990115
106 | 019057
108 | 7333

110 | 3

112 | 2

114 | 00

116 |

118 | 22

The natural log only lessened the right skew to a small degree. We will
check the fit of our simple regression to determine if we prefer the trans-
formed variable.

Simple linear regression:

> summary(1m(log.ticket.price.2001"1log.cost.of.living))

Call:
Im(formula = log.ticket.price.2001 ~ log.cost.of.living)

Residuals:
Min 1Q Median 3Q Max
-0.329607 -0.123788 0.001405 0.085959 0.423573

Coefficients:

Estimate Std. Error t value Pr(>ltl)
(Intercept) 3.59595 0.82622 4.352 0.000153 *x%*
log.cost.of.living 0.03439 0.07676 0.448 0.657491
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Signif. codes: 0 ‘*xx’ 0.001 ‘*x*’ 0.01 ‘x’> 0.05 ‘.” 0.1 ¢ * 1

Residual standard error: 0.1853 on 29 degrees of freedom
Multiple R-Squared: 0.006873, Adjusted R-squared: -0.02737
F-statistic: 0.2007 on 1 and 29 DF, p-value: 0.6575

Our fit is not much improved, so we would be indifferent between these
two variables for cost of living. Another possible transformation of our
cost of living variable is explored below.

Another transformation

An additional way to reduce right skew in cost.of.living is to use a —x?
transformation. This did, in fact, remove virtually all of our right skew (see
Figure 5), but our simple linear regression (presented below) still does not
seem to uncover any significant correlation between log.ticket.price.2001
and our new transformed variable, transform2.cost.of.living. The Adjusted-
R? is negative.

Simple linear regression:

> summary(1lm(log.ticket.price.2001 " transform2.cost.of.living))

Call:
Im(formula = log.ticket.price.2001 ~ transform2.cost.of.living)

Residuals:
Min 1Q Median 3Q Max
-0.336820 -0.118073 -0.007385 0.087687 0.435266

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 3.972e+00 7.001e-02 56.736 <2e-16 **x
transform2.cost.of.living -1.052e+07 1.042e+08 -0.101 0.92
Signif. codes: 0 “*x*x’ 0.001 ‘*x’ 0.01 ‘*x” 0.05 “.” 0.1 ¢ * 1

Residual standard error: 0.1859 on 29 degrees of freedom
Multiple R-Squared: 0.0003516, Adjusted R-squared: -0.03412
F-statistic: 0.0102 on 1 and 29 DF, p-value: 0.9203
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Histogram of transform2.cost.of.living

Frequency

o o

r T T T T T T 1
0.0 e+00 2.0e-10 4.0 e-10 6.0 e-10 8.0 e-10 1.0e-09 1.2 e-09 1.4 e-09

transform2.cost.of.living

Figure 5:

— temperature
Mean temperature for the month of December

> summary (temperature)
Min. 1st Qu. Median Mean 3rd Qu. Max.
18.00 31.00 36.00 39.87 48.50 69.00

> stem(temperature)
The decimal point is 1 digit(s) to the right of the |

8

09
000111124566699
1135899

4557

6 | 29

There does not appear to be any major skewing that necessitates a trans-
formation.

a D W=

Simple linear regression:
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> summary(1lm(log.ticket.price.2001 temperature))

Call:
Im(formula = log.ticket.price.2001 ~ temperature)

Residuals:
Min 1Q Median 3Q Max
-0.366059 -0.100113 0.007971 0.080041 0.441273

Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) 3.888809 0.116620 33.346 <2e-16 **x*
temperature 0.001931 0.002804 0.688 0.497

Signif. codes: 0 “*xx’ 0.001 ‘*x*’ 0.01 ‘x> 0.05 “.” 0.1 ¢ 7 1
Residual standard error: 0.1844 on 29 degrees of freedom

Multiple R-Squared: 0.01608, Adjusted R-squared: -0.01785
F-statistic: 0.4739 on 1 and 29 DF, p-value: 0.4967

The correlation between average December temperature and ticket price
is not close to significance.
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— dummy.basketball

1=NBA team plays in same market, O=else

> table(dummy.basketball)
dummy . basketball

0 1

14 17

Simple linear regression:

> summary(1lm(log.ticket.price.2001"dummy.basketball))

Call:
Im(formula = log.ticket.price.2001 ~ dummy.basketball)

Residuals:
Min 1Q Median 3Q Max
-0.30558 -0.10107 -0.02623 0.10131 0.47279

Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) 4.00610 0.04866 82.334 <2e-16 **x*
dummy . basketball -0.07352 0.06571 -1.119 0.272

Signif. codes: 0 “*x*’ 0.001 ‘*x’ 0.01 ‘%’ 0.05 ‘.’ 0.1 ¢ * 1
Residual standard error: 0.1821 on 29 degrees of freedom
Multiple R-Squared: 0.04138, Adjusted R-squared: 0.008326
F-statistic: 1.252 on 1 and 29 DF, p-value: 0.2724

There is little or no correlation between ticket price and the presence of a
local professional basketball team.
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— dummy.hockey

1=NHL team plays in same market, O=else

> table (dummy.hockey)
dummy . hockey

0 1
13 18

Simple linear regression:

> summary(1lm(log.ticket.price.2001"dummy.hockey))

Call:
Im(formula = log.ticket.price.2001 ~ dummy.hockey)

Residuals:
Min 1Q Median 3Q Max
-0.33806 -0.11549 -0.01208 0.09186 0.44031

Coefficients:

Estimate Std. Error t value Pr(>ltl)
(Intercept) 3.966777 0.051571 76.918 <2e-16 **x
dummy .hockey -0.001708 0.067679 -0.025 0.98

Signif. codes: 0 “*x*’ 0.001 ‘*x’ 0.01 ‘%’ 0.05 “.” 0.1 ¢ * 1
Residual standard error: 0.1859 on 29 degrees of freedom
Multiple R-Squared: 2.196e-005, Adjusted R-squared: -0.03446
F-statistic: 0.0006367 on 1 and 29 DF, p-value: 0.98

There is little or no correlation between ticket price and the presence of a
local professional hockey team. In fact, the Adjusted-R? is negative.
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— dummy.sportstown
1=NBA, NHL and NFL teams all play in same market, O=else

> table(dummy.sportstown)
dummy . sportstown

0 1

18 13

Simple linear regression:

> summary(1lm(log.ticket.price.2001”dummy.sportstown))

Call:
Im(formula = log.ticket.price.2001 ~ dummy.sportstown)

Residuals:
Min 1Q Median 3Q Max
-0.30706 -0.09310 -0.02204 0.10399 0.47131

Coefficients:

Estimate Std. Error t value Pr(>[tl|)
(Intercept) 3.98869 0.04333 92.049 <2e-16 *x*x
dummy . sportstown -0.05463 0.06691 -0.816 0.421

Signif. codes: 0 “*x*x’ 0.001 ‘*x’ 0.01 ‘%’ 0.05 “.” 0.1 ¢ 7 1
Residual standard error: 0.1838 on 29 degrees of freedom

Multiple R-Squared: 0.02247, Adjusted R-squared: -0.01124
F-statistic: 0.6666 on 1 and 29 DF, p-value: 0.4209

Again, there is little or no correlation between ticket price and the presence
of three professional sports teams sharing the same market.
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4. Stadium Variables

— capacity
Stadium seating capacity

> summary(capacity)
Min. 1st Qu. Median Mean 3rd Qu. Max .
60270 65530 70270 70300 73560 85410

> stem(capacity)
The decimal point is 4 digit(s) to the right of the |

00134
5556666789
011333334
56999

0

I
I
I
I
I
| 5

000NN

Simple linear regression:

> summary(lm(log.ticket.price.2001 capacity))

Call:
Im(formula = log.ticket.price.2001 ~ capacity)

Residuals:
Min 1Q Median 3Q Max
-0.35269 -0.08189 0.01391 0.09353 0.36894

Coefficients:

Estimate Std. Error t value Pr(>[tl)
(Intercept) 3.637e+00 3.674e-01  9.900 8.28e-11 *x*x
capacity 4.676e-06 5.205e-06 0.898 0.376

Signif. codes: O “**x*’ 0.001 ‘*%’ 0.01 ‘%> 0.05 “.” 0.1 < > 1
Residual standard error: 0.1834 on 29 degrees of freedom

Multiple R-Squared: 0.02708, Adjusted R-squared: -0.006468
F-statistic: 0.8072 on 1 and 29 DF, p-value: 0.3763
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As we might expect, there is absolutely no correlation between capacity
and ticket price.
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— attendance.2000

2000 average attendance

> summary (attendance.2000)
Min. 1st Qu. Median Mean 3rd Qu. Max.
44960 60070 65600 65820 72810 80930

> stem(attendance.2000)

The decimal point is 4 digit(s) to the right of the |

|

| 5

| 34

| 5789

| 0003344
| 5667889
| 0334

| 66889

| 1

O NN OO OO

Simple linear regression:

> summary(lm(log.ticket.price.2001 attendance.2000))

Call:
1m(formula = log.ticket.price.2001 ~ attendance.2000)

Residuals:
Min 1Q Median 3Q Max
-0.37239 -0.11720 -0.02912 0.10550 0.33233

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 3.498e+00 2.443e-01 14.320 1.11e-14 **x
attendance.2000 7.101e-06 3.681e-06 1.929 0.0635 .

Signif. codes: 0 “*x*x’ 0.001 ‘*x’ 0.01 ‘%’ 0.05 “.” 0.1 ¢ * 1
Residual standard error: 0.1751 on 29 degrees of freedom
Multiple R-Squared: 0.1137, Adjusted R-squared: 0.08318
F-statistic: 3.722 on 1 and 29 DF, p-value: 0.06355
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The correlation between attendance and ticket price is on the verge of sig-
nificance with p = .0635.
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— capacity.utilized
Equal to attendance divided by capacity
(Maximum value allowed is .999)
Note: Must calculate Denver and Pittsburgh using 2000 stadium capacity,
since they opened new stadiums in 2001. Our capacity wvariable will be
relevant for above calculation for all other teams.

> summary(capacity.utilized)
Min. 1st Qu. Median Mean 3rd Qu. Max .
0.6140 0.9330 0.9810 0.9392 0.9970 0.9990
> stem(capacity.utilized)

The decimal point is 1 digit(s) to the left of the |

1

4
6
3
8
0224

5556668888999
10 | 000000000

O O 00w NN

Attempts to transform this left-skewed variable did not meet with much
success.

Simple linear regression:

> summary(1lm(log.ticket.price.2001%capacity.utilized))

Call:
Im(formula = log.ticket.price.2001 ~ capacity.utilized)

Residuals:
Min 1Q Median 3Q Max
-0.30461 -0.12668 -0.03988 0.09350 0.43403

Coefficients:
Estimate Std. Error t value Pr(>ltl)
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(Intercept) 3.3728 0.3375 9.994 6.69e-11 *xx
capacity.utilized 0.6314 0.3577 1.765 0.0881

Signif. codes: 0 “*x*x’ 0.001 ‘*x’ 0.01 ‘%’ 0.05 “.” 0.1 ¢ 7 1
Residual standard error: 0.1767 on 29 degrees of freedom

Multiple R-Squared: 0.09699, Adjusted R-squared: 0.06585
F-statistic: 3.115 on 1 and 29 DF, p-value: 0.08812

The correlation between capacity.utilized and ticket prices is very close
to significance.
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— pop.per.seat
Equal to city.pop.2000 divided by capacity

> summary (pop.per.seat)
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.680 5.702 7.383 15.880 12.490 100.800

> stem(pop.per.seat)

The decimal point is 1 digit(s) to the right of the |

0 | 2455555666677777889
1 | 00123788
2] 3

3|

4 | 3

5 |

6 |

71

8 |

9 |

10 | 11

New York and Chicago are the home cities for 3 outliers in the distribution.

Simple linear regression:

> summary(lm(log.ticket.price.2001 pop.per.seat))

Call:
Im(formula = log.ticket.price.2001 ~ pop.per.seat)

Residuals:
Min 1Q Median 3Q Max
-0.33855 -0.11614 -0.01219 0.09661 0.43861

Coefficients:

Estimate Std. Error t value Pr(>ltl)
(Intercept) 3.9674831 0.0402610 98.544 <2e-16 **x
pop.per.seat -0.0001069 0.0014162 -0.076 0.94
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Signif. codes: 0 ‘*xx’ 0.001 ‘*x*’ 0.01 ‘x> 0.05 ‘.” 0.1 ¢ * 1

Residual standard error: 0.1859 on 29 degrees of freedom
Multiple R-Squared: 0.0001965, Adjusted R-squared: -0.03428
F-statistic: 0.005701 on 1 and 29 DF, p-value: 0.9403

We achieve an insignificant correlation between ticket prices and popula-
tion per stadium seat. We apply a log transform to this variable to help
reduce right-skew. That may provide a better fit.
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— log.pop.per.seat
Natural logarithm of pop.per.seat

> summary(log.pop.per.seat)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.519 1.741 1.999 2.259 2.524 4.613

> stem(log.pop.per.seat)
The decimal point is at the |

| 5

| 4

| 56667788899
| 000112334
| 56899
| 1
| 8
|

|

B W W NN, -, O

66

The outliers have been pulled much closer to the rest of the data. Now,
let’s see if we have improved the correlation with ticket prices.

Simple linear regression:

> summary(1lm(log.ticket.price.2001%1log.pop.per.seat))

Call:
Im(formula = log.ticket.price.2001 ~ log.pop.per.seat)

Residuals:
Min 1Q Median 3Q Max
-0.32036 -0.10301 -0.03159 0.12595 0.42921

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 4.03148 0.09300 43.350 <2e-16 **x*
log.pop.per.seat -0.02909 0.03848 -0.756 0.456

Signif. codes: 0 ‘*xx’ 0.001 ‘*x*’ 0.01 ‘x’> 0.05 ‘.” 0.1 ¢ * 1
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Residual standard error: 0.1841 on 29 degrees of freedom
Multiple R-Squared: 0.01932, Adjusted R-squared: -0.0145
F-statistic: 0.5713 on 1 and 29 DF, p-value: 0.4558

We are still left with a correlation that is not significant, even after the
transformation to reduce right skew. This is surprising since it might make
sense that a high concentration of people would increase market demand,
thus producing upward pressure on prices. We have not found evidence to
support this hypothesis.
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— dummy.outdoor
1=outdoor stadium, 0=dome

> table(dummy.outdoor)
dummy . outdoor

0 1

6 25

Simple linear regression:

> summary(1m(log.ticket.price.2001 dummy.outdoor))

Call:
1m(formula = log.ticket.price.2001 ~ dummy.outdoor)

Residuals:
Min 1Q Median 3Q Max
-0.36624 -0.14367 0.02996 0.10919 0.41213

Coefficients:

Estimate Std. Error t value Pr(>ltl)
(Intercept) 3.85136 0.07213 53.395 <2e-16 *xx*
dummy .outdoor 0.14188 0.08032 1.766 0.0878 .

Signif. codes: 0 “*x*x’ 0.001 ‘*x’ 0.01 ‘%’ 0.05 “.” 0.1 < * 1

Residual standard error: 0.1767 on 29 degrees of freedom
Multiple R-Squared: 0.09715, Adjusted R-squared: 0.06601
F-statistic: 3.12 on 1 and 29 DF, p-value: 0.08785

It looks like we’re close to seeing a significant positive correlation between
outdoor stadiums and ticket prices. My suspicion, however, is that this
may be a reflection of the fact that very few domes have been built re-
cently. Also, of the 31 stadiums in the league, only 6 are indoor dome
facilities. So our sample of indoor stadiums is also very small.
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— dummy.artificial.turf
1=artificial turf playing surface, 0=natural grass

> table(dummy.artificial.turf)
dummy.artificial.turf

0 1

22 9

Just 5 years ago, half of the league was playing on artificial surfaces. Now,
fewer than one-third play on those surfaces. Let’s check out the correlation
with ticket prices.

Simple linear regression:

> summary(1lm(log.ticket.price.2001"dummy.artificial.turf))

Call:
Im(formula = log.ticket.price.2001 ~ dummy.artificial.turf)

Residuals:
Min 1Q Median 3Q Max
-0.38465 -0.09823 0.01744 0.09296 0.39372

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 4.01166 0.03636 110.346  <2e-16 *xx*
dummy.artificial.turf -0.15800 0.06747 -2.342 0.0263 *

Signif. codes: 0 “*x*’ 0.001 ‘*x’ 0.01 ‘*’ 0.05 “.” 0.1 ¢ * 1

Residual standard error: 0.1705 on 29 degrees of freedom
Multiple R-Squared: 0.159, Adjusted R-squared: 0.13
F-statistic: 5.483 on 1 and 29 DF, p-value: 0.02628

We have a significant correlation with p = .0263, but again we have a
variable that is highly associated with the age of the stadium. All of the
new stadiums are built with natural grass as the playing surface.
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— dummy.new.stadium
1=new stadium built in last five years, O=else
> table(dummy.new.stadium)
dummy .new.stadium
0 1
23 8

8 teams (26 percent) are playing in stadiums which opened in the last five
years. The following regression suggests that we have identified a very
important factor for predicting ticket prices.

Simple linear regression:

> summary(1lm(log.ticket.price.2001"dummy.new.stadium))

Call:
lm(formula = log.ticket.price.2001 ~ dummy.new.stadium)

Residuals:
Min 1Q Median 3Q Max
-0.27069 -0.07939 0.01193 0.09852 0.24382

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 3.89769 0.02973 131.113 < 2e-16 **x*
dummy .new.stadium 0.26386 0.05852 4.509 9.9e-05 *x*x

Signif. codes: 0 ‘*xx’ 0.001 ‘*x*’ 0.01 ‘x> 0.05 “.” 0.1 ¢ * 1

Residual standard error: 0.1426 on 29 degrees of freedom
Multiple R-Squared: 0.4121, Adjusted R-squared: 0.3919
F-statistic: 20.33 on 1 and 29 DF, p-value: 9.905e-005

Our correlation is highly significant and positive, as we might have ex-
pected. What is most surprising about this variable is the incredibly large
amount of variance in ticket prices that it explains. We have achieved an
R? value of 0.4121.

Figure 6 clearly shows that untransformed ticket prices for the 2001 sea-
son are distinctly higher for teams with a recently built stadium. The
Interquartile ranges of our two boxplots do not even overlap.

The following regression output calculates the untransformed average ticket
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Figure 6: 2001 ticket prices by New vs. Old Stadium
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prices for teams with and without a new stadium. A recently built stadium
looks to net an extra $15, on average, for tickets.

> summary(lm(ticket.price.2001 dummy.new.stadium+dummy.no.new.stadium-1))

Call:
Im(formula = ticket.price.2001 ~ dummy.new.stadium +

dummy.no.new.stadium -
1

Residuals:
Min 1Q Median 3Q Max
-14.8012 -4.6761 0.1691 5.2539 16.9488

Coefficients:

Estimate Std. Error t value Pr(>|tl)
dummy .new.stadium 64.941 2.752 23.60 <2e-16 *x*x*
dummy.no.new.stadium  49.711 1.623 30.63 <2e-16 *x**
Signif. codes: 0 “*x*x’ 0.001 ‘*x’ 0.01 ‘%’ 0.05 “.” 0.1 ¢ 7 1

Residual standard error: 7.783 on 29 degrees of freedom
Multiple R-Squared: 0.981, Adjusted R-squared: 0.9797
F-statistic: 747.7 on 2 and 29 DF, p-value: 0
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5. Financial Variables

— salary.cap.room
As of July, 2001, the amount of money below the salary cap the team was
eligible to spend.

> stem(salary.cap.room)

The decimal point is at the |

0 | 0112235677
1 ] 0111123689
2 | 334

3| 15

4 | 135

51 1

6 | 1
713

Simple linear regression:

> summary(1lm(log.ticket.price.2001"salary.cap.room))

Call:
Im(formula = log.ticket.price.2001 ~ salary.cap.room)

Residuals:
Min 1Q Median 3Q Max
-0.369616 -0.079788 -0.008668 0.078845 0.398809

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 4.03999 0.04480 90.179  <2e-16 **¥x
salary.cap.room -0.03759 0.01650 -2.278 0.0303 *

Signif. codes: 0 “*x*x’ 0.001 ‘*x’ 0.01 ‘%’ 0.05 “.” 0.1 ¢ 7 1
Residual standard error: 0.1713 on 29 degrees of freedom

Multiple R-Squared: 0.1518, Adjusted R-squared: 0.1226
F-statistic: 5.19 on 1 and 29 DF, p-value: 0.03026

Figure 7 and Figure 8 show the residuals for the two regression models
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over salary.cap.room and sqrt.salary.cap.room. Figure (7) displays a
definite positive trend in the residuals as the fitted values increase. While
Figure 8 does not entirely remove this trend, it suggests that the square
root transformation lessens the degree to which the pattern violates our
goal of random normal residuals.

We will therefore introduce this transformation sqrt.salary.cap.room as
our preferred variable for salary cap room.
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— sqrt.salary.cap.room
The square root of salary.cap.room

> stem(sqrt(salary.cap.room))
The decimal point is at the |

1334
567888
0000011334
55579

0113

57

NN~ =~ OO

We have eliminated virtually all of the right skew using the square root
transform. The following model produced the residuals plot in Figure 8.

Simple linear regression:

> summary(1m(log.ticket.price.2001 sqrt(salary.cap.room)))

Call:
Im(formula = log.ticket.price.2001 ~ sqrt(salary.cap.room))

Residuals:
Min 1Q Median 3Q Max
-0.396309 -0.071944 -0.005856 0.086869 0.414930

Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) 4.09375 0.06543 62.563 <2e-16 *xx
sqrt(salary.cap.room) -0.10330 0.04657 -2.218 0.0345 *

Signif. codes: O “**x*’ 0.001 ‘*%’ 0.01 ‘x> 0.05 “.” 0.1 < > 1
Residual standard error: 0.1719 on 29 degrees of freedom

Multiple R-Squared: 0.1451, Adjusted R-squared: 0.1156
F-statistic: 4.92 on 1 and 29 DF, p-value: 0.03453
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— dummy.topl5.merchandise
1=team is among top 15 in merchandise sales, 0=else

> table(dummy.topl5.merchandise)
dummy . topl5.merchandise

0 1

16 15

The coding should be self-explanatory. We would have preferred to have
quantitative data for merchandise sales, but unfortunately only a ranking
was available to us. We view this variable as an indicator of team popular-
ity more than a significant component of a team’s financial health because
we suspect that the teams do not receive all of the proceeds from mercha-
nise sales related to their franchise. It is likely that the National Football
League absorbs a fair portion of the revenues. During the course of this
analysis this hypothesis could not be proven or disproven.

Simple linear regression:

> summary(lm(log.ticket.price.2001 dummy.topl5.merchandise))

Call:
Im(formula = log.ticket.price.2001 ~ dummy.topl5.merchandise)

Residuals:
Min 1Q Median 3Q Max
-0.285291 -0.108559 -0.008505 0.110788 0.493082

Coefficients:
Estimate Std. Error t value Pr(>|t])

(Intercept) 3.91229 0.04424 88.436 <2e-16 **x

dummy .topl5.merchandise 0.11055 0.06360 1.738 0.0928 .

Signif. codes: 0 “**%*’ 0.001 ‘*x’ 0.01 ‘%’ 0.05 .’ 0.1 ¢ > 1
Residual standard error: 0.177 on 29 degrees of freedom
Multiple R-Squared: 0.09436, Adjusted R-squared: 0.06313
F-statistic: 3.021 on 1 and 29 DF, p-value: 0.09278

This correlation is on the precipice of significance in the expected positive
direction.
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6. Multivariate Model: A first stab

>summary(1lm(log.ticket.price.2001"dummy.new.stadium+sqrt.salary.cap.room+
dummy . top15.merchandise))

Call:
Im(formula = log.ticket.price.2001 ~ dummy.new.stadium +
sqrt.salary.cap.room +

dummy . top15.merchandise)

Residuals:
Min 1Q Median 3Q Max
-0.22439 -0.05924 -0.01029 0.04552 0.25235

Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) 3.90948 0.05765 67.813 < 2e-16 *xx
dummy .new.stadium 0.26733 0.05040 5.304 1.35e-05 *x*x*
sqrt.salary.cap.room -0.06121 0.03324 -1.841 0.07657 .

dummy . topl5.merchandise 0.13049 0.04384 2.977 0.00608 *x*

Signif. codes: 0 “*xx’ 0.001 ‘*%’ 0.01 ‘*’ 0.05 “.” 0.1 ¢ ’ 1
Residual standard error: 0.1196 on 27 degrees of freedom

Multiple R-Squared: 0.6149, Adjusted R-squared: 0.5721
F-statistic: 14.37 on 3 and 27 DF, p-value: 8.678e-006
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7. Interactions: A first stab

> summary (1m(log.ticket.price.2001"dummy.basketball*win.pct.2000))

Call:
lm(formula = log.ticket.price.2001 ~ dummy.basketball * win.pct.2000)

Residuals:
Min 1Q Median 3Q Max
-0.31866 -0.09394 -0.02723 0.07049 0.45975

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 4.,02526 0.12654 31.810 <2e—16 **x*
dummy . basketball -0.38016 0.16767 -2.267 0.0316 *
win.pct.2000 -0.03635 0.22489 -0.162 0.8728

dummy . basketball:win.pct.2000 0.63743 0.31046 2.053 0.0499 *

Signif. codes: 0 ‘*x*’ 0.001 ‘*x’ 0.01 ‘x> 0.05 ‘.’ 0.1 ¢ * 1

Residual standard error: 0.1659 on 27 degrees of freedom
Multiple R-Squared: 0.2587, Adjusted R-squared: 0.1763
F-statistic: 3.14 on 3 and 27 DF, p-value: 0.04159

The above interaction of dummy.basketball and win.pct.2000 has signifi-
cance at p = .05 in the main interaction term as well as the lower-order term
dummy.basketball. This significance provides a fairly intuitive interpreta-
tion.

The negative and significant coefficient on dummy.basketball suggests that
football and basketball are substitutes. It makes economic sense that having
an additional sports team (a substitute) in the same city would tend to lessen
demand pressures and consequently be associated with lower prices for foot-
ball tickets. The presence of a professional basketball team, however, might
at the same time be considered evidence that the city is a “sports town”. A
city which falls into this category might be more responsive when its team
starts having success. That is the effect we may have discovered in our main
interaction above. The positive and significant coefficient on our main interac-
tion supports the hypothesis that winning percentage matters in a sports town.

A rise in demand produces the following economic reality: In the wake of
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a winning season, the owners raise prices to meet the town’s excitement and
match the higher demand for tickets to watch its winning football team the fol-
lowing season.
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8. Multivariate Model: A second stab

>summary(1m(log.ticket.price.2001"sqrt.salary.cap.room+dummy.new.stadium+dummy.

Call:
Im(formula = log.ticket.price.2001 ~ sqrt.salary.cap.room +
dummy .new.stadium +

dummy . topl5.merchandise + win.pct.2000 * dummy.basketball)

Residuals:
Min 1Q Median 3Q Max
-0.187137 -0.064023 -0.002681 0.055091 0.203673

Coefficients:
Estimate Std. Error t value Pr(>|t])

(Intercept) 4.16117 0.10263 40.545 < 2e-16 *xx
sqrt.salary.cap.room -0.08645 0.03064 -2.821 0.00945 *x
dummy .new.stadium 0.26698 0.04516  5.911 4.24e-06 *xx
dummy . topl5.merchandise 0.08976 0.04125 2.176 0.03961 *
win.pct.2000 -0.38084 0.15123 -2.518 0.01886 *
dummy . basketball -0.37022 0.10816 -3.423 0.00223 *x*
win.pct.2000:dummy.basketball 0.73556 0.20411 3.604 0.00142 *x

Signif. codes: 0 ‘*x*’ 0.001 ‘*x’ 0.01 ‘x> 0.05 “.” 0.1 ¢ ’ 1

Residual standard error: 0.1021 on 24 degrees of freedom
Multiple R-Squared: 0.7503, Adjusted R-squared: 0.6878
F-statistic: 12.02 on 6 and 24 DF, p-value: 3.175e-006

Clearly, we have a model with several significant variables. The R? of .75 is
also impressive to achieve on so few observations (31).

Figure 9 displays several diagnostic plots for our regression model. The residual
cloud in “Residuals vs. Fitted” is very nicely spread without any discernible
pattern. The normal quantile plot also forms a nice straight line, revealing no
obvious departure from normality. Observations 6, 15, and 26 are identified as
having large values in our Cook’s Distance plot.

Below we run the model again, excluding those three observations that stand
out in our Cook’s Distance plot.
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Figure 9: Diagnostic Plots of Multiple Regression
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>summary(1m(log.ticket.price.2001"sqrt.salary.cap.room+dummy.new.stadium+dummy.

Call:
Im(formula = log.ticket.price.2001 ~ sqrt.salary.cap.room +
dummy .new.stadium +
dummy .topl5.merchandise + win.pct.2000 * dummy.basketball,
data = nfl[-c(6, 15, 26), 1)

Residuals:
Min 1Q Median 3Q Max
-0.12975 -0.05457 -0.00478 0.04173 0.14071

Coefficients:
Estimate Std. Error t value Pr(>|tl)

(Intercept) 4.18145 0.08996 46.481 < 2e-16 **x
sqrt.salary.cap.room -0.09792 0.02929 -3.343 0.003087 *x*
dummy .new.stadium 0.23034 0.03863 5.962 6.44e-06 **x
dummy . topl5.merchandise 0.09701 0.03426  2.832 0.009996 *x
win.pct.2000 -0.37755 0.12622 -2.991 0.006961 *x*
dummy . basketball -0.38123 0.09462 -4.029 0.000607 **x
win.pct.2000:dummy.basketball 0.72611 0.17746  4.092 0.000522 **x*
Signif. codes: 0 “*x*x’ 0.001 ‘*x’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ¢ ’ 1

Residual standard error: 0.08241 on 21 degrees of freedom
Multiple R-Squared: 0.7948, Adjusted R-squared: 0.7361
F-statistic: 13.55 on 6 and 21 DF, p-value: 2.85e-006

A remarkable increase in both R? and Adjusted-R? has resulted from the re-
moval of those observations. Each of our coefficients has remained significant.
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9. Multivariate Model: A third stab

Call:

Im(formula = log.ticket.price.2001 ~ sqrt.salary.cap.room +
dummy .new.stadium + dummy.toplb.merchandise +
win.pct.2000 + dummy.sportstown +
win.pct.2000:dummy.sportstown, data = nfl)

Residuals:
Min 1Q Median 3Q Max
-0.16233 -0.05939 -0.01330 0.04520 0.21908

Coefficients:

Estimate Std. Error t value Pr(>[t])
(Intercept) 4.15299 0.09838 42.216 < 2e-16 *xx
sqrt.salary.cap.room -0.10372 0.03180 -3.262 0.00330 *x*
dummy .new.stadium 0.25798 0.04470 5.771 6e-06 *xx
dummy . topl5.merchandise 0.09867 0.04158 2.373 0.02601 *
win.pct.2000 -0.32979 0.14116 -2.336 0.02815 *
dummy . sportstown -0.40183 0.10978 -3.660 0.00124 *x*
win.pct.2000:dummy.sportstown 0.76472 0.21267 3.596 0.00145 *x*
Signif. codes: 0 “*xx’ 0.001 ‘**’ 0.01 ‘*x’ 0.05 ‘.’ 0.1 ¢ ’ 1

Residual standard error: 0.1013 on 24 degrees of freedom
Multiple R-Squared: 0.7544, Adjusted R-squared: 0.693
F-statistic: 12.28 on 6 and 24 DF, p-value: 2.626e-006

This model has greater overall significance, as measured by the F-statistic,
than the regression utilizing the interaction between basketball and winning
percentage. The variable dummy.sportstown makes for a more significant
set, of coefficients for both the interaction and the lower order dummy variable.
The significant negative correlation between winning percentage and ticket
price among teams who do not share their market with hockey and basketball
teams does not have an intuitive interpretation. Why would there ever be a
negative correlation between winning percentage and and ticket price among
any subset of teams?

Figure 10 displays several diagnostic plots for our regression model. Observa-
tion numbers 11,15,24 and 26 are identified in our plots as potential outliers.
We will run our model again without those observations to check if our vari-
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Figure 10: Diagnostic Plots of Multiple Regression
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ables are still significant.

Call:

Im(formula = log.ticket.price.2001 ~ sqrt.salary.cap.room +

dummy .new.stadium +

dummy .topl5.merchandise + win.pct.2000 * dummy.sportstown,

data = nfl[-c(11, 15, 24, 26), 1)

Residuals:
Min 1Q Median 3Q

Max

-0.090472 -0.057495 0.006619 0.027448 0.128216

Coefficients:

Estimate Std.
(Intercept) 4.18488 0
sqrt.salary.cap.room -0.11524 0
dummy .new.stadium 0.25807 0
dummy . topl5.merchandise 0.14225 0
win.pct.2000 -0.44736 0
dummy . sportstown -0.37277 0
win.pct.2000:dummy.sportstown 0.72785 0

Signif. codes: 0 “*x*x’ 0.001 “*x’ 0.01 ‘%’

Error t value

.07827
.02711
.03519
.03192
.11260
.07835
.15410

0.05 “.

53.
.250
.333
.456
.973
.758
.723

> 0.1 ¢

465

Residual standard error: 0.07012 on 20 degrees of freedom

Multiple R-Squared: 0.8624,

Adjusted R-squared: 0.8211

F-statistic: 20.89 on 6 and 20 DF, p-value: 1.228e-007

Pr>ltl)
< 2e-16
.000392
.35e-07
.000242
.000749
.000120
.000130

O O O O p» O

71

Removing those outliers brings all of our coefficients to a level of significance
of .001. Also, our R? has risen to .86. We therefore cannot conclude that our
results are being driven by a select few highly influential observations.

Extra Sum of Squares tests were insignificant for the inclusion of any addi-
tional variables in this model. Therefore, we retain this model as our final

specification.
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10. “Case-based” Bootstrapping

We will test our model using “case-based” bootstrapping. Normally, we would
be inclined to perform this kind of analysis in situations where our normal-
errors assumption was in doubt. Our diagnostic plots do not actually reveal
any strong sense of non-normality. However, our small number (31) of cases
motivate us to test the sensitivity of our coefficient estimates to different com-
binations (with repeats) of our observation vectors.

Since all of the coeffients in our model are individually significant at p=.05,
we know that zero is not included in their 95 percent Normal confidence inter-
vals. Bootstrap samples give us slightly different (larger) confidence intervals
to test the significance of our coefficients. Below, we provide the 95 percent,
percentile-based bootstrap intervals for our coefficients.

Bootstrap percentile-based 95% confidence intervals
Intercept

> # 95), percentile-based bootstrap interval for b0
> quantile(boot.data$b0, c(0.025,0.975))

2.5% 97.5%
3.857473 4.370667

sqrt.salary.cap.room
> # 95), percentile-based bootstrap interval for bl
> quantile(boot.data$bl, c¢(0.025,0.975))

2.5% 97.5Y%
-0.18335735 -0.02362473

dummy.new.stadium

> # 95% percentile-based bootstrap interval for b2
> quantile(boot.data$b2, ¢(0.025,0.975))

2.5% 97 .5%
0.1305388 0.3612133

dummy.topl5.merchandise

> # 95J, percentile-based bootstrap interval for b3
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> quantile(boot.data$b3, c(0.025,0.975))

2.5% 97 .5%
0.009822568 0.180039609

win.pct.2000

> # 95), percentile-based bootstrap interval for b4
> quantile(boot.data$b4, c(0.025,0.975))

2.5% 97.5%
-0.6189132 0.0940375

dummy.sportstown

> # 95), percentile-based bootstrap interval for b5
> quantile(boot.data$bs5, c(0.025,0.975))

2.5% 97.5Y%
-0.5964222 -0.1676532

win.pct.2000:dummy.sportstown

> # 95), percentile-based bootstrap interval for b6
> quantile(boot.data$b6, c(0.025,0.975))

2.5% 97.5Y%
0.2786191 1.1676652

Clearly, all but one of our coefficients are significantly different from zero (i.e.
zero is not in the 95 percent interval). The coefficient on win.pct.2000 in-
cludes the value zero in its 95 percent bootstrap confidence interval. This
causes us to give pause when attempting to interpret the relationship being
measured by this variable.

Since win.pct.2000 is a lower order term for the interaction with dummy.sportstown,

its coefficient represents the relationship between winning percentage and ticket

prices for those teams in cities without an NBA or NHL team, where dummy.sportstown=0.
The significant, negative relationship found in our regression t-test was not up-

held with the application of our bootstrapping 95% confidence interval analysis.

We will, however, keep the term in our model, since it is customary to always

retain lower order terms when a significant interaction is to be kept in the
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model.
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