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ABSTRACT. This paper documents an analysis of the internal dimensions of the drones of 23 highland bag-
pipes, collected by the bagpipe maker Roderick MaclLellan. Several statistical models are presented which
predict the year in which a set of drones were made, given the internal diameters of various chambers. This
is apparently a new method of dating bagpipe drones.

Dissemination of the data in Appendiz 1 1s subject to the control of Roderick MacLellan.

0. INTRODUCTION

The owner of a bagpipe will generally wish to know who made the bagpipe and when. This may be
simply to satisfy curiosity or may be for the more practical purposes of ordering replacement parts or
setting a sale price for the bagpipe.

Determining the maker and age of a bagpipe can be difficult, as bagpipes often are not marked by
their makers. An expert usually forms an opinion on the basis of external shape and decorative features
of a bagpipe: the outside diameters and shape of the drones, the pattern of combing (grooves cut into
the exterior surfaces of the drones and stocks) and the size, shape, material and condition of ornamental
pieces (horn, ivory, silver, etc.).

Roderick MacLellan, a bagpipe maker in Lakewood, New Jersey, has recorded internal dimensions of
the drones and stocks of twenty-three bagpipes which have passed through his workshop. These bagpipes
were produced by a variety of makers over a wide range of time.

This paper summarizes an analysis of Mr. MacLellan’s data. We show that the functional design of
bagpipe drones has undergone a more-or-less steady change over the past 120 years. This change can be
used to predict the year of production of a bagpipe from the internal physical dimensions of its drones.

Section 1 provides background information on the highland bagpipe. A full description of the data
is in Section 2, and exploratory data analysis is described in Section 3. Methods of constructing and
evaluating year-prediction models are presented in Section 4. Sections 5, 6 and 7 respectively contain
year-prediction models based on a tenor drone, a bass drone and a complete bagpipe. Section 8 provides
a summary of the best models, draws conclusions from them and suggests directions for future work.

The amount of bagpipe data available for this analysis is quite small; this causes some problems in
constructing statistical models. The reader is asked to consider the models presented here as “proof of
concept” rather than as finished products.
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1. BACKGROUND

This section provides background information on the highland bagpipe and some heuristics which will
be used in the subsequent analysis.

The Bagpipe.

The Great Highland Bagpipe (Figure 1.1) is a musical instrument consisting of three drones, single-
reed pipes which produce a constant pitch, and a chanter, a double-reed pipe on which a melody is
played. The drones and chanter fit into stocks attached to a bag. Constant air pressure in the bag causes
the reeds to vibrate, producing sound from the chanter and drones.

FicurE 1.1. A bagpipe by Roderick MacLellan [3].
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A bagpipe has two identical tenor drones, each composed of two sections (first and top) and a single
bass drone, composed of three sections (first, middle and top). Drone sections fit into one another as
shown in Figure 1.2. The depth to which a drone section is pushed into the section above it affects the
overall length of the drone and hence the fundamental frequency the drone produces.

A bagpipe drone is an acoustic filter. As Figure 1.2 shows, the internal diameter of the tenor drones
changes four times and the internal diameter of the bass drone changes six times, dividing the drones
into four or six chambers, respectively. The changes in diameter cause changes in impedance to sound
waves; the changes in impedance cause partial reflection of the waves; the interaction of sound waves
with the reflections causes constructive and destructive interference: thus the acoustic effect of the drone
is determined by the lengths and internal diameters of its chambers.

The Data and Sources of Variation.

Variation by Design.

Each bagpipe maker will obviously have his or her own drone design, presumably that which in the
maker’s opinion gives the most pleasing tone. It would be very surprising if many chamber dimensions
did not vary from maker to maker. Any maker’s design would probably evolve over time.

It is generally held among pipers that the fundamental pitch of the bagpipe has risen over the last
hundred years or so, from about 440Hz to around 470-480Hz. It is to be expected that some alterations
in drone design have occurred due to this trend.

Variation by Tool Wear.

Bagpipes are made of extremely hard, dense wood, African Blackwood most commonly. Consequently,
the tools used to make bagpipes undergo a continual process of dulling, re-sharpening and replacement,
resulting in variation in tool shape and hence in finished bagpipes of any single design.

Variation by Age.

Wood changes dimensions over time, and two pieces which were identical when they were produced
in 1900 may not be identical now.

Variation by Replacement.

Not all parts of a bagpipe drone may be original. Wood can crack over time, and replacement bagpipe
parts (either re-made or scavenged from another incomplete bagpipe of the same make and approximate
age) may not be identical to the originals. Occasionally the first section of the bass drone of an older
bagpipe is replaced by a new piece with smaller internal diameter.! This is done to raise the pitch of the
base drone slightly, accommodating the overall change in pitch mentioned above. Stocks are sometimes
changed also.

2. THE DATA

Mr. MacLellan recorded the length and internal diameter of the chambers of the drones, more or less
consistently according to his interest, on paper forms. From these forms, the author created the data
file shown in Appendix 1. Mr. MacLellan did not make note of any replacement parts in his data, so it
is assumed that all of these bagpipes were original.

I This will have implications later, when we decide whether to include the base drone first section internal diameter in
prediction models.
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FIGURE 1.2. Cartoon cross-sections of a bagpipe tenor drone (left) and
bass drone (right). The 11 measurement variables used in this analysis,
described in Section 2, are indicated.

The data file consists of twenty-nine variables. Four are used to identify the maker of the bagpipe and
the year it was produced: the remaining twenty-five are measurements of the stocks, the two sections
of the tenor drones and the three sections of the base drone. All physical measurements are recorded
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either in inches or in thousandths of an inch: it is clear from context which unit is used.

Not all measurements were recorded for all bagpipes. In the following list, each variable name is
followed by the number of pipes for which that variable is recorded, 1 to 23. If a variable was recorded
for 17 or more pipes it was considered in the analysis that follows: the names of these variables are
written in italics below, and they are listed in Figure 1.2.

Identification. Name of the maker (MAKFER, 23) and year of production (YEAR, 17). From comments
on the forms, “confidence” variables for the maker (MCON, 23) and year of production (YCON, 23)
were created, with 0 indicating that the maker or year is unknown, 1 indicating a low level of certainty
and 2 indicating a high level of certainty.

Stock. Internal diameter (STOCKID, 17).

Tenor First Section. Internal diameter (TFSID, 23) and length (TFSLE, 7). For two pipes, the two
tenor first sections have different diameters, recorded in the variable (TFSIDO, 2): the average of the
two diameters is used in place of TFSID in these cases.

Tenor Top Section. Length (TTLE, 8), tuning chamber internal diameter (TTTCID, 23) and depth
(TTTCDE, 4), second chamber internal diameter (TT2CID, 23), bell internal diameter (TTBEID, 1)
and depth (TTBEDE, 1) and bush internal diameter (TTBUID, 21). For two pipes, the two tenor tuning
chambers have different internal diameters, recorded in the variable (TTTCIDO, 2): the average of the
two diameters is used in place of TTTCID in these cases.

Bass First Section. Internal diameter (BFSID, 21) and length (BFSLE, 8).

Bass Middle Section. Length (BMSLE, 8), tuning chamber internal diameter (BMSTCID, 22) and
depth (BMSTCDE, 3) and second chamber internal diameter (BMS2CID, 18).

Bass Top Section. Length (BTLE, 9), tuning chamber internal diameter (BTTCID, 23) and depth
(BTTCDE, 4), second chamber internal diameter (BT2CID, 23), bell internal diameter (BTBEID, 1)
and depth (BTBEDE, 1) and bush internal diameter (BTBUID, 21).

3. EXPLORATORY DATA ANALYSIS

Maker and Year of Production.

The twenty-three bagpipes in the data set were produced by thirteen different makers. The year
of production is known, sometimes approximately and sometimes exactly, for all but six. The makers
and the production years of their pipes are listed in Table 3.1. If the production year of a bagpipe is
unknown, the years in which the maker was in business are given in Table 3.1, obtained from [1].

The Eleven Predictor Variables.

As mentioned in Section 2, eleven variables are observed frequently enough in the data that they
are considered as predictors of the year of production. The distribution of these eleven variables are
summarized in the side-by-side boxplots shown in Figure 3.1.

From Figure 3.1, it appears that the largest internal diameter is that of the stocks (STOCKID) and
that the rest are grouped by function. Next in decreasing order of size are the three tuning chambers
(TTTCID, BMTCID and BTTCID), followed by the two bushes (TTBUID and BTBUID). The three
second chambers come next, with the two top second chambers (TT2CID and BT2CID) being similar
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Maker Years Represented Years in Business
Lawrie 1914,1914,1945,7.7 1881 — 1980s
Henderson 1880,1924,1924,7 .7 1880 — 1973
Hardie 1950,1957,1960

Sinclair 1956

Starck 1905

Fletcher 1997

Grainger and Campbell 1952

Naill 1990

J. Glen 1890

Kintail 1981

MacDougall ? 1792 - 1919
Gibson 1987

Robert Reid ? 1932 — 1957

TABLE 3.1. The 13 makers and the corresponding production years of
their pipes in the data set.

in size and the bass middle section second chamber (BMS2CID) clearly smaller. Smallest are the first
section diameters (TFSID and BFSID).

Good Predictors of Year of Production.

Scatterplots and simple linear regressions were studied to determine whether any of the eleven vari-
ables mentioned above are related to the year in which a bagpipe was produced. Five appear to be: the
internal diameters of the stocks (STOCKID), the tenor first sections (TFSID), both chambers of the
bass middle section (BMSTCID and BMS2CID) and the bass top section tuning chamber (BTTCID).
Details of the simple linear regressions described in this section may be found in Appendix 2.2

Categorization by Age.

A relationship between some of these variables and YEAR only becomes apparent when the bagpipes
are categorized by age. Three age categories are imposed: two antique bagpipes, made before 1900;
eleven old bagpipes, made between 1900 and 1980; four new bagpipes, made after 1980. The Robert
Reid bagpipe (23)3 is certainly old in this sense, as are probably all of the other bagpipes of unknown
age except the MacDougall (21), which is probably antique.

Stock Internal Diameter — STOCKID.

A scatterplot of YEAR against STOCKID is shown in Figure 3.2, along with the fitted least-squares
line. The slope and intercept of the line are -0.79 and 2559.97: the internal diameter of the stocks appears
to be decreasing with time, at about 0.79 thousandths of an inch per year. The slope is significantly
different from zero at the 5% level.

Tenor First Section Internal Diameter — TFSID.

A scatterplot of YEAR against TFSID is shown in Figure 3.3. The point on the extreme left of the
plot, separated from the rest of the data, is the Sinclair bagpipe (3). This bagpipe has small internal
diameters generally, and a dramatically small tenor first section internal diameter.

2In addition to regressing YEAR on the internal diameter variables, YEAR was also regressed on the square of each:
essentially, cross-sectional area was investigated as a predictor of YEAR. No significant linear relationship between YEAR
and any cross-sectional area was found.

3Bold numbers in parentheses are the index of a bagpipe in the data file of Appendix 1.
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FiGURE 3.1. Side-by-side boxplots of the eleven predictor variables for
YEAR. The vertical axis is internal diameter, in thousandths of an inch.
The two very low bush diameters (TTBUID and BTBUID) come from
the Grainger and Campbell pipe (11). No other pattern is evident
among the outliers in these plots.

Two fitted least-squares lines are shown in Figure 3.3. The dashed one was fitted using all of the data
and the solid one was fitted while excluding the Sinclair bagpipe (3). The slope and intercept of the
solid line are -1.76 and 2520.28: the internal diameter of the tenor first section appears to be decreasing
with time, at about 1.76 thousandths of an inch per year. The slope is significantly different from zero
at the 1% level.

The four new bagpipes are clustered slightly above the least-squares line and the two antique bagpipes
are clustered slightly below it. Removing these and regressing YEAR on TFSID for only the old bagpipes,
with or without the Sinclair, also produces good linear fits of the data.
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FicUre 3.2. YEAR plotted against STOCKID. The least-squares line
is shown. New bagpipes are represented by “N”, old bagpipes by “O”
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FI1GURE 3.3. YEAR plotted against TFSID. Two least-squares lines are
shown: the dashed line was fitted using all of the data and the solid one
was fitted while excluding the Sinclair bagpipe.

Bass Middle Section Tuning Chamber Internal Diameter — BMSTCID.

A scatterplot of YEAR against BMSTCID is shown in Figure 3.4. Three of the four new bagpipes
and the two antique bagpipes have very similar bass middle section tuning chamber internal diameters,
approximately 700 thousandths of an inch. They are at the top and bottom of the plot, respectively.
The points corresponding to old bagpipes approximately lie on a line.
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A fitted least-squares line is shown in Figure 3.4: this was fitted using only the old bagpipes. The
slope and intercept of the line are -0.68 and 2417.95: for old bagpipes (produced between 1900 and
1980), the internal diameter of the bass drone middle section tuning chamber appears to be decreasing
with time, at about 0.68 thousandths of an inch per year. The slope is significantly different from zero
at the 1% level.

One of the four new bagpipes, the Gibson (22) lies quite close to the fitted line, at the extreme left
of the plot. It has followed the apparent trend of the old bagpipes, while the other new pipes have not.
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FicUre 3.4. YEAR plotted against BMSTCID. The least-squares line
computed using only the old bagpipes is shown. One new bagpipe, the
Gibson (22) lies close to this line; the other new and antique pipes lie
far away from it.

Bass Middle Section Second Chamber Internal Diameter — BMS2CID.

A scatterplot of YEAR against BMS2CID is shown in Figure 3.5. As with BMSTCID, three of the
four new bagpipes differ from a linear trend evident in the old bagpipes: the antique pipes appear to
follow the trend.

A fitted least-squares line is shown in Figure 3.5: this was fitted using only the old and antique
bagpipes. The slope and intercept of the line are -1.20 and 2419.55: for old and antique bagpipes
(produced before 1980), the internal diameter of the bass drone middle section second chamber appears
to be decreasing with time, at about 1.20 thousandths of an inch per year. The slope is significantly
different from zero at the 1% level.

The Gibson bagpipe (22), which is new but followed the older trend for BMSTCID, does not appear
in this plot because its BMS2CID is unknown.

Bass Top Tuning Chamber Internal Diameter — BTTCID.

A scatterplot of YEAR against BTTCID is shown in Figure 3.6. The plot has much in common with
that of BMSTCID (Figure 3.4), in that the four new bagpipes and the two antique bagpipes form two
groups standing apart from a linear trend among the old bagpipes.
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FicUre 3.5. YEAR plotted against BMS2CID. The least-squares line
computed using only the old and antique bagpipes is shown.

A fitted least-squares line is shown in Figure 3.6: this was fitted using only the old bagpipes. The
slope and intercept of the line are -0.79 and 2493.48: for old bagpipes (produced between 1900 and
1980), the internal diameter of the bass drone top section tuning chamber appears to be decreasing with
time, at about 0.79 thousandths of an inch per year (the same rate at which stock internal diameter is
decreasing, to two decimals of accuracy). The slope is significantly different from zero at the 1% level.
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FicUrReE 3.6. YEAR plotted against BTTCID. The least-squares line
computed using only the old bagpipes is shown.
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4. OVERVIEW OF MODELS TO PREDICT YEAR OF PRODUCTION
Variables.

Mazin Effects.

The main effects that will be considered are the eleven continuous variables discussed in Section 3,
plus two dummy variables for the approximate age of a bagpipe, DANT* (1 if the pipe was made before
1900, 0 otherwise) and DNEW (1 if the pipe was made after 1980, 0 otherwise). All models will have an
intercept.

The intended application of a model determines which main effects it may include. A model which
is designed to date a complete bagpipe with all original parts might include the variable STOCKID, for
example, but this model would be useless in dating a bagpipe with replacement drone stocks.

In this paper we will focus on three classes of models, respectively designed for dating only tenor
drones (Section 5), only a bass drone (Section 6), and a complete bagpipe (Section 7). Within each
class, it is desirable to consider models where STOCKID, approximate age (DANT and DNEW) or
BFSID are unknown in addition to models in which all are known. In the interest of brevity we will
consider only models in which all of these variables are known.

Interactions.

All pairwise interactions of main effects will be considered for inclusion in models, except those
involving DANT and DNEW. For a complete-bagpipe model, then, there are 13 + (121) = 68 variables
to consider®. We will ignore the Principle of Marginality, which states that a model which contains an
interaction should contain the main effects of that interaction.

Evaluating Models.

How are models to be compared? Since our intended application is prediction, it makes sense to
choose a model which minimizes the mean squared prediction error (MSPE),

n

1
MSPE = — Y (s — §i))”
S — 2 Wi =)

i=1

where n is the size of the data set and 37(2-) is the prediction of y; by the model fit on all but the *! data
point. This proportional to the “leave one out” cross-validation score.

Examples in Appendix 3 show that models which have near-minimum MSPE over some class tend
to have near-minimum Akaike Information Criterion (AIC) over that class, and vice versa. The AIC is

defined by

n
RSS
where RSS is the residual sum of squares resulting from the model and % is the number of variables in
the model (so low values are good). The AIC is used for convenience, because the R software package
contains a stepwise model selection routine which evaluates models by AIC.

AIC = —nln( )+2k,

In addition to the MSPE and AIC, the adjusted R? measure of fit will be used to guard against
models which under-fit the data.

4In Section 5, 6 and 7 we will predict the year of production for some bagpipes for which YEAR is unknown using
models which may contain DANT and DNEW. For such purposes, it is assumed that the MacDougall pipe (21) of unknown
year is antique and that all other pipes of unknown year are old.

5Interactions involving DANT and DNEW are excluded for ease of model interpretation and to reduce the total number
of variables. Interactions of three or more main effects are excluded only to reduce the number of variables. Allowing all
interactions, there would be 2'1 — 1 4 2 = 2049 variables to consider when constructing a complete-bagpipe model.
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Constructing Models.

Three general methods of constructing linear models are used: exhaustive search of low-rank® models,
stepwise model selection (a subexhaustive search of the set of all possible models), and stepwise selection
applied to models based on principal components.

Ezhaustive Search of Low Rank Models.

Since we have more variables (up to 68) than data points (no more than 23), many models will over-fit
the data. One way to avoid over-fitting is to impose a restriction p on rank and to compute the MSPE
for every model with rank less than or equal to p. This method is computationally expensive (all the
more so because it was done in R rather than in C), and our choice of p will be partly determined
by computational feasibility. Appendix 3 contains the technical details of the exhaustive model fitting
performed for Sections 5, 6 and 7.

Stepwise Model Selection.

The low-rank models with near-minimum AIC or MSPE will be used as starting points for stepwise
model selection, as implemented by Venebles and Ripley’s StepAIC routine in the “MASS” R library.
The stepAIC routine halts when it has found a model with the property that adding or subtracting
any one variable does not decrease the AIC. The algorithm also halts when it has found a model with
AIC = —oo, which is a sure sign that the model is over-fit! We shall have more to say about this in
Section 5.

Principal Component Analysis.

The eleven predictor variables are highly collinear, just as one would expect the internal diameters
of nested tubes to be. It is natural in this situation to attempt to reduce the number of variables by
computing principal components. Appendix 4 contains the technical details of fitting models based on
principal components for Sections 5, 6 and 7.

Comparing Models.

There are six bagpipes (7, 8, 14, 16, 21, 23) for which YEAR is unknown. Different models will
be applied to predict YEAR for these bagpipes when their known variables coincide with the variables
used by the models. A further check on models is comparison of predictions of tenor-only models with
bass-only models.

Heuristics.

The EDA shows that five main effects (STOCKID, TFSID, BMSTCID, BMS2CID and BTTCID) are
significantly decreasing with time, so it 1s to be expected that some of these will appear in any good
model. These five variables are highly correlated, so it would be surprising if all five appeared in a good
model. Tt was also seen in the EDA that the relationship of some of these variables with YEAR is much
more significant when the approximate age of the bagpipe is known, so it is to be expected that DANT
and DNEW will appear in many good models. All other things being equal, we would like to avoid
models which contain STOCKID, BFSID, DANT and DNEW, because these seem the likeliest variables
to be missing for some bagpipes.

61n this paper, the rank of a linear model is the number of variables it contains. The set of all subsets of the variables,
partially ordered by inclusion, is a ranked lattice where rank is equal to the size of the subset. By identifying a model with
its variables, the set of all possible models is also a ranked lattice. Barring perfect collinearity in the data and including
in intercept in all models, the rank of a model as defined here is one less than the rank of its design matrix.
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5. TENOR DRONE MODELS

The YEAR, STOCKID and all of the tenor drone variables are known for 13 bagpipes (1, 2, 3, 4, 5,
6,9,10, 11,12, 13, 15, 18).
Exhaustive Search.

The best model found by exhaustive search of the 21776 models of rank less than or equal to 6 is
YEAR ~ STOCKID * TTBUID + TFSID + dant + dnew

This model had both the minimum MSPE (35.80) and AIC (50.44). In R format, the estimated coeffi-
cients of this model are

fit_1m(YEAR“STOCKID#TTBUID+TFSID+dant+dnew)

summary(fit)

Estimate Std. Error t value Pr(>abs(t))
(Intercept) -1.926e+04 3.104e+03 -6.203 0.000809 **x*
STOCKID 2.690e+01 3.874e+00 6.942 0.000443 **x*
TTBUID 3.716e+01 5.435e+00 6.837 0.000481 **x*
TFSID -6.472e-01 1.055e-01 -6.133 0.000860 **x*
dant -2.388e+01 7.536e+00 -3.170 0.019329 *
dnew 6.133e+01 5.021e+00 12.214 1.83e-05 **x*
STOCKID:TTBUID -4.667e-02 6.783e-03 -6.880 0.000465 *x*x*

Residual standard error: 5.978 on 6 degrees of freedom
Multiple R-Squared: 0.9842, Adjusted R-squared: 0.9684
F-statistic: 62.21 on 6 and 6 DF, p-value: 3.867e-05

The high adjusted R? suggests that this model is not under-fitting the data, the coefficients are all
significant and the residual plots for this model (not shown) look quite good. Except for TTBUID, this
model is composed of variables identified as significantly related to YEAR in the EDA.

For two bagpipes with unknown YEAR (14 and 23), all of the model variables are known. Using this
model to predict YEAR for these two pipes results in 95% prediction intervals:”

Bagpipe 14 — (1923.703, 1940.318, 1956.932)

and

Bagpipe 23 — (1917.696, 1934.041, 1950.386) .
These predictions are consistent with the years in which Henderson (14) and Reid (23) were in business,
shown in Table 3.1.
Stepwise Search.
A stepwise search algorithm was started at each of the ten best models constructed by the exhaustive
method described above, ranked by MSPE. These models are listed in Appendix 3.
Finite AIC.

Of the ten initial models, three produce search paths which converge to models with finite AIC. One
of these initial models is a local minimum in AIC; a stepwise search begun there stays there. The other
two search paths converge to the rank 8 model

YEAR ~ (STOCKID*TFSID*TTBUID - STOCKID:TFSID:TTBUID) + dnew + dant

7The notation here means that the predicted year of production of bagpipe (14) is 1940, and that we are 95% confident
that is was produced between 1923 and 1957.
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This model has MSPE = 19.39 and AIC = 45.95. In R format, the estimated coefficients of this model
are
fit_1m(YEAR™ (STOCKID#TFSID*TTBUID-STOCKID:TFSID:TTBUID)+dnew+dant,x=T)
summary (fit)
Estimate Std. Error t value Pr(>abs(t))

(Intercept) -1.715e+04 3.080e+03 -5.568 0.005098 *x*
STOCKID 3.310e+01 4.759e+00 6.955 0.002246 **
TFSID -7.617e+00 4.025e+00 -1.892 0.131382
TTBUID 2.557e+01 9.095e+00 2.811 0.048266 *
dnew 5.716e+01 5.297e+00 10.791 0.000418 ***
dant -1.836e+01 8.142e+00 -2.255 0.087165 .
STOCKID:TFSID -1.813e-02 1.212e-02 -1.496 0.208981
STOCKID:TTBUID -4.725e-02 6.742e-03 -7.009 0.002181 =**
TFSID:TTBUID 3.662e-02 2.039e-02 1.796 0.146898

Residual standard error: 5.282 on 4 degrees of freedom
Multiple R-Squared: 0.9918, Adjusted R-squared: 0.9753
F-statistic: 60.21 on 8 and 4 DF, p-value: 0.0006671

The residual plots for this model look quite good, though the Sinclair bagpipe (3) looks as though it has
high influence and the residual of (18) is about twice as large as the others. This model is composed of
the same main effects as the best model found by exhaustive search.

For two bagpipes with unknown YEAR (14 and 23), all of the model variables are known. Using this
model to predict YEAR, for these two pipes results in 95% prediction intervals:

Bagpipe 14 — (1923.779, 1940.438, 1957.098)

and

Bagpipe 23 — (1916.217,1933.737, 1951.256) .

These predictions are almost identical to those produced by the best model found by exhaustion.

Infinite AIC.

Of the ten initial models, seven produced search paths which converged to models with AIC = —o0,
that is, models with as many variables as data points. This is an artifact of the small data size: clearly,
these models with are overfit.

It is interesting to examine the search path from a starting model to an overfit model. In the notation
of Appendix 3, the stepwise search executed by

fit1_1m(y~X[,41+X[,5]1+X[,6]1+X[,8]+X[,10]1+X[,11])

fit2_stepAIC(fit1,scope=list(upper= “X[,1]1+X[,2]+...+X[,17],lower= ~1))

produces the (very truncated) output

AIC= 52.56

y~X[,41+X[,5]1+X[,6]1+X[,8]1+X[,10]+X[,11]1+X[,17]

Step:AIC=47.74

y X[,4]1+X[,5]+X[,61+X[,8]1+X[,101+X[,111+X[,17]1+X[, 14]

Step:AIC=28.45

y~X[,41+X[,5]1+X[,6]1+X[,8]+X[,10]1+X[,11]1+X[,17]1+X[,14]1+X[, 2]

Step:AIC=15.41

y X[,41+X[,5]1+X[,6]1+X[,8]1+X[,10]1+X[,111+X[,17]1+X[,14]1+X[,2]+X[,9]

Step:AIC=-51.48

y~X[,41+X[,5]1+x[,6]+X[,8]1+X[,10]+X[,11]1+X[,17]1+X[,14]1+X[,21+X[,9]1+X[, 16]

Step:AIC=-Inf

vy X[,4]1+X[,51+X[,6]1+X[,81+X[,10]1+X[,11]1+X[,17]1+X[,141+X[,2]1+X[,9]1+X[, 16]1+X[, 1]
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Translating the notation of Appendix 3, the starting model and next-to-last model in the search path
are respectively

YEAR ~ TT2CID + TTBUID + dnew + STOCKID:TFSID + STOCKID:TT2CID + STOCKID:TTBUID

and

YEAR ~ TT2CID + TTBUID*TFSID + dnew + STOCKID:TT2CID + STOCKID:TFSID +
STOCKID:TTTCID + STOCKID:TTBUID + TTTCID:TTBUID + TT2CID:TTBUID

The next-to-last model has MSPE = 19.39 and AIC = -51.48. In R format, the estimated coefficients
of this model are

fit_1m(YEAR“TT2CID+TTBUID*#TFSID+dnew+STOCKID: TT2CID+STOCKID : TFSID+STOCKID: TTTCID+
STOCKID:TTBUID+TTTCID: TTBUID+TT2CID: TTBUID,x=T)

summary (fit)

Estimate Std. Error t value Pr(>abs(t))
(Intercept) -4.867e+04 9.380e+02 -51.89 0.01227 *
TT2CID 5.360e+01 1.558e+00 34.40 0.01850 *
TTBUID 1.345e+02 2.009e+00 66.94 0.00951 **
TFSID -1.873e+01 4.561e-01 -41.07 0.01550 *
dnew 3.595e+01 6.657e-01 54.00 0.01179 x*
TT2CID:TTBUID -2.163e-01 3.779e-03 -57.23 0.01112 =*
TT2CID:STOCKID 9.188e-02 8.990e-04 102.20 0.00623 **
TTBUID:TFSID 7.587e-02 1.312e-03 57.84 0.01100 *
TTBUID:STOCKID -5.971e-02 5.578e-04 -107.06 0.00595 *x*
TTBUID:TTTCID 1.132e-02 8.018e-04 14.12 0.04502 *
TFSID:STOCKID -3.261e-02 5.054e-04 -64.52 0.00987 *x*
STOCKID:TTTCID -8.790e-03 5.962e-04 -14.74 0.04311 *

Residual standard error: 0.1978 on 1 degrees of freedom
Multiple R-Squared: 1, Adjusted R-squared: 1
F-statistic: 3.15e+04 on 11 and 1 DF, p-value: 0.004395

The residuals do not appear to be normally distributed and an adjusted R? value of 1.0 is suspiciously

high.
Using this model to predict YEAR for bagpipes (14 and 23) results in 95% prediction intervals:

Bagpipe 14 — (1942.471, 1949.894, 1957.317)

and

Bagpipe 23 — (1920.551,1928.290, 1936.029) .

This model predicts that the Reid (23) bagpipe was made four years before Reid started making bagpipes
(see Table 3.1)! We should be wary of using this model for prediction, as it is probably overfit.

Which model in the sequence above is best for prediction? There is a bias-variance trade-off problem
to be studied here: as its relevance decreases as the data size increases, we choose not to address it, and
search paths which lead to over-fit models will be ignored.

Principal Components.
The best model found using principal components is

y - plL,11 + p[,41 + p[,7]
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where p[,1], p[,4] and p[,7] are the first, fourth and seventh principal components (the loadings of
these components have no clear interpretation: see Appendix 4). This model has MSPE = 241.25 and
AIC = 76.01. In R format, the estimated coefficients of this model are

fit2_1m(y~pl,1]1+p[,4]1+p[,7],x=T)

summary (£fit2)
Coefficients:
Estimate Std. Error t value Pr(>abs(t))
(Intercept) 1939.846 4 .559 425.476 < 2e-16 **x*
pl, 1] 7.039 1.548 4.547 0.00139 *x*
pl, 4] -12.611 3.414 -3.694 0.00497 *x
pl, 7] 22.453 8.591 2.614 0.02810 *

Residual standard error: 16.44 on 9 degrees of freedom
Multiple R-Squared: 0.8205, Adjusted R-squared: 0.7607
F-statistic: 13.72 on 3 and 9 DF, p-value: 0.00105

The quality of fit of this model is disappointing, compared with the best models found by the exhaustive
and stepwise methods.
6. BAss DRONE MODELS

The YEAR, STOCKID and all of the bass drone variables are known for 14 bagpipes (1, 2, 3, 4, 5,
6,9,10,11,12 13, 15, 18, 19).

Exhaustive Search.

The best model found by exhaustive search of the 31929 models of rank less than or equal to 4 is
YEAR ~ dant + dnew + BMSTCID:BTBUID + BMS2CID:BTTCID

This model has both the minimum MSPE (47.25) and AIC (61.15). In R format, the estimated coeffi-

cients of this model are

fit_1lm(YEAR"dant+dnew+BMS2CID:BTBUID+BMS2CID:BTTCID)

summary(fit)

Estimate Std. Error t value Pr(>abs(t))
(Intercept) 2.265e+03 4.095e+01 55.307 9.06e-14 **x*
dant -3.632e+01 6.161e+00 -5.895 0.000152 *x**
dnew 7.146e+01 5.518e+00 12.951 1.42e-07 *%*%*

BMS2CID:BTBUID 5.380e-04 1.825e-04 2.948 0.014578 *
BMS2CID:BTTCID -1.605e-03 2.388e-04 -6.722 5.22e-05 ***
Residual standard error: 7.402 on 10 degrees of freedom
Multiple R-Squared: 0.9691, Adjusted R-squared: 0.9567
F-statistic: 78.38 on 4 and 10 DF, p-value: 1.65e-07

The high adjusted R? suggests that this model is not under-fitting the data, and the coefficients are

all significant. The residual plots show that the residual for the Sinclair pipe (3) is unusually large.

The reason for this is that the Sinclair pipe has fairly low values of each of BMS2CID, BTTCID and

BTBUID, resulting in very low values for the interactions. Re-fitting this model without the Sinclair
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pipe in the data, the estimated coefficients of this model are

dant_dant[-3]; dnew_dnew[-3]
fit_lm(YEAR"dant+dnew+BMS2CID:BTBUID+BMS2CID:BTTCID,data=datal[-3,])
summary (fit)

Estimate Std. Error t value Pr(>abs(t))
(Intercept) 2.257e+03 2.595e+01 86.954 1.78e-14 **x*
dant -3.480e+01 .910e+00 -8.902 9.34e-06 *x**
dnew 7.337e+01 .518e+00 20.855 6.28e—-09 *x*x
BMS2CID:BTBUID 5.549e-04 1.154e-04 4.810 0.00096 ***
BMS2CID:BTTCID -1.598e-03 .509e-04 -10.590 2.22e-06 *x**
Residual standard error: 4.676 on 9 degrees of freedom
Multiple R-Squared: 0.9887, Adjusted R-squared: 0.9837
F-statistic: 197 on 4 and 9 DF, p-value: 9.418e-09

== W W

The residual plots for this model look much better than for the previous one. Except for BTBUID,® this
model is composed of variables identified as significantly related to YEAR in the EDA.

For two bagpipes with unknown YEAR (14 and 21), all of the model variables are known. Using this
model to predict YEAR for these two pipes results in 95% prediction intervals:

Bagpipe 14 — (1919.329, 1931.186, 1943.043)

and

Bagpipe 21 — (1872.413,1886.764,1901.115) .

These predictions are consistent with the years in which Henderon (14) and MacDougall (21) were in
business, shown in Table 3.1. We expect to do badly using this model to predict YEAR, for the Sinclair
bagpipe. Doing so results in the 95% prediction interval:

Bagpipe 3 — (1924.992,1936.180, 1947.368) .
This bagpipe is known to have been produced in 1956, so this prediction is off by 20 years!

Stepwise Search.

A stepwise search algorithm was started at each of the ten best models constructed by the exhaustive
method described above, ranked by MSPE. These models are listed in Appendix 3.

All of the ten initial models produce search paths which converge to models with finite AIC. Four of
these search paths converge to the model with lowest AIC, the rank 9 model

YEAR ~ STOCKID*BTTCID + dnew + dant + STOCKID:BMS2CID + BMSTCID:BTBUID +
BMS2CID:BTTCID + BFSID:BMSTCID

This model has MSPE = 30.51 and AIC = 48.22. In R format, the estimated coefficients of this model

8Tt is interesting that for both the tenor and bass drones, the bush internal diameter (TTBUID and BTBUID) features
significantly in the best models, in interactions. Neither TTBUID nor BTBUID appeared to be significantly related to
YEAR in the EDA, where they were considered only as main effects.
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are

fit_1m(YEAR"“STOCKID*BTTCID+dnew+dant+STOCKID:BMS2CID+BMSTCID: BTBUID+
BMS2CID:BTTCID+BFSID:BMSTCID,x=T)

summary (£fit)

Estimate Std. Error t value Pr(>abs(t))
(Intercept) -1.058e+04 6.884e+03 -1.537 0.199197
STOCKID 1.326e+01 8.615e+00 1.539 0.198607
BTTCID 2.146e+01 1.013e+01 2.119 0.101447
dnew 7.443e+01 6.839e+00 10.883 0.000405 *x**
dant -3.369e+01 1.020e+01 -3.302 0.029870 *
STOCKID:BTTCID -2.289e-02 1.199e-02 -1.909 0.128887
STOCKID:BMS2CID 7.106e-03 4.653e-03 1.527 0.201418
BTTCID:BMS2CID -9.861e-03 5.192e-03 -1.899 0.130326
BMSTCID:BTBUID 5.472e-04 1.797e-04 3.045 0.038215 *
BMSTCID:BFSID -1.022e-04 8.090e-05 -1.263 0.275162

Residual standard error: 5.125 on 4 degrees of freedom
Multiple R-Squared: 0.9934, Adjusted R-squared: 0.9785
F-statistic: 66.65 on 9 and 4 DF, p-value: 0.0005347

The residual plots for this model look quite good. This model is contains main effects which are not in
the best model found by exhaustive search.
Only for bagpipe (14) are all of the model variables are known and YEAR unknown. Using this
model to predict YEAR for this pipe results in a 95% prediction interval:
Bagpipe 14 — (1914.038, 1936.826, 1959.613) .

This prediction is closer to those produced by the tenor drone models than that produced by the best
bass model found by exhaustion.

Principal Components.

The best model found using principal components is
y - pl,11 + p[,3]1 + p[,4]1 + p[,5] + p[,6] + p[,8]

where p[,i] is the i*" principal component (the loadings of these components have no clear interpre-
tation: see Appendix 4). This model has MSPE = 59.1 and AIC = 60.44. In R format, the estimated
coeflicients of this model are

pi_pl,11; p3_p[,3]; p4_pl,4]; p5_pl[,5]1; p6_p[,6]; p8_p[,8];
fit2_1lm(y~ pl+p3+p4+p5+p6+p8,x=T)
Coefficients:

Estimate Std. Error t value Pr(>abs(t))

(Intercept) 1936.2857 1.9847 975.607 < 2e-16 **x
pl 4.8797 0.5228 9.333 3.37e-05 **x*
p3 -4.3794 0.9661 -4.533 0.00269 *x*
p4 5.5627 1.2445 4.470 0.00290 *x*
p5 -7.3150 1.6257 -4.499 0.00280 *x*
pé -23.5477 2.1346 -11.031 1.12e-05 **x*
p8 -13.1067 3.9494 -3.319 0.01279 *

Residual standard error: 7.426 on 7 degrees of freedom

Multiple R-Squared: 0.9757, Adjusted R-squared: 0.9548

F-statistic: 46.76 on 6 and 7 DF, p-value: 2.68e-05
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This model fits well, but not as well as the best models found by the exhaustive and stepwise methods.

Only for bagpipe (14) are all of the model variables are known and YEAR unknown. Using this
model to predict YEAR for this pipe results in a 95% prediction interval:

Bagpipe 14 — (1906.653,1926.162, 1945.671) .

This prediction differs from the predictions of the other models we have seen so far.

7. COMPLETE BAGPIPE MODELS

The YEAR, STOCKID and all of the drone variables are known for 13 bagpipes (1, 2, 3, 4, 5, 6, 9,
10,11, 12,13, 15, 18).

Exhaustive Search.

The best model found by exhaustive search of the 52461 models of rank less than or equal to 3 is
YEAR ~ dnew + BMSTCID:BTBUID + BMS2CID:BTTCID

This model had both the minimum MSPE (93.27) and AIC (62.53). Among all complete-bagpipe models
of rank less than or equal to three, that with the lowest MSPE and AIC uses no information from the
tenor drones! This model is the best model found by exhaustive search in Section 6, with the variable
dant removed, so no estimation of coefficients or prediction will be done.

Stepwise Search.

A stepwise search algorithm was started at each of the ten best models constructed by the exhaustive
method described above, ranked by MSPE. These models are listed in Appendix 3.

Of the ten initial models, three produce search paths which converge to models with finite AIC. All
three limit models with finite AIC are different: the one with minimum AIC is the rank 8 model

YEAR © TTTCID + dnew + dant + TFSID:TTBUID + TT2CID:BTBUID +
BMS2CID:BTTCID + BMSTCID:BTBUID + BTTCID:BT2CID

This model has MSPE = 28.7 and AIC = 51.88. It combines information from the tenor and bass drones
not only by using main effects from each, but by including a mixed interaction term, TT2CID:BTBUID.
Also, this model does not use STOCKID or BFSID. In R format, the estimated coefficients of this model
are

fit_1m(YEAR"TTTCID+dnew+dant+TFSID:TTBUID+TT2CID: BTBUID+BMS2CID:BTTCID+
BMSTCID:BTBUID+BTTCID:BT2CID,x=T)

summary(fit)

Estimate Std. Error t value Pr(>abs(t))
(Intercept) 2.224e+03 9.945e+01 22.365 3.32e-06 **x*
TTTCID 1.319e-01 1.306e-01 1.010 0.35865
dnew 6.945e+01 5.728e+00 12.125 6.74e—-05 **x*
dant -3.639e+01 8.744e+00 -4.162 0.00881 *x*
TFSID:TTBUID -5.283e-04 1.598e-04 -3.305 0.02135 *
TT2CID:BTBUID 3.575e-04 1.756e-04 2.036 0.09741 .
BTBUID:BMSTCID 2.394e-05 1.476e-04 0.162 0.87745
BMS2CID:BTTCID -8.965e-04 2.077e-04 -4.317 0.00759 *x*
BTTCID:BT2CID -3.765e-04 1.682e-04 -2.238 0.07541 .

Residual standard error: 5.612 on 5 degrees of freedom

Multiple R-Squared: 0.9896, Adjusted R-squared: 0.9729

F-statistic: 59.41 on 8 and 5 DF, p-value: 0.0001561
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The residual plots for this model look fair, though the residuals are larger for the three new bagpipes
(10, 15, 20) to which the model can be applied (BMS2CID is unknown for (22), the Gibson bagpipe).
Perhaps interaction between the dummy variables for approximate age and some continuous predictors

should be allowed.
Only for bagpipe (14) are all of the model variables are known and YEAR unknown. Using this
model to predict YEAR for this pipe results in a 95% prediction interval:

Bagpipe 14 — (1917.866, 1934.418, 1950.970) .

Principal Components.

The best model found using principal components is
y ~ pl,11 + p[,2] + p[,5] + p[,6] + p[,7] + pL,8]

where p[,i] is the i*" principal component (the loadings of these components have no clear interpreta-
tion: see Appendix 4). This model has MSPE = 220.98 and AIC = 76.30. In R format, the estimated
coeflicients of this model are

fit2_Im(y~pl,1]1+pl,2]1+p[,8]1+pl[,6]1+p[,7]1+p[,8],x=T)
summary (£it2)
Coefficients:

Estimate Std. Error t value Pr(>abs(t))

(Intercept) 1939.8462 4.4830 432.712 1.02e-14 *%*
pl, 1] 3.4558 0.7585 4.556 0.00387 **
pl, 2] -2.2641 1.3237 -1.710 0.13802

pl, 5] -3.0505 2.2723 -1.342 0.22802

pl, 6] 6.9175 2.6650 2.596 0.04090 *
pl, 7] -7.8553 4.2799 -1.835 0.11612

pl, 8] -15.5158 4.8396 -3.206 0.01846 *

Residual standard error: 16.16 on 6 degrees of freedom
Multiple R-Squared: 0.8843, Adjusted R-squared: 0.7687
F-statistic: 7.645 on 6 and 6 DF, p-value: 0.01292

The quality of fit of this model is disappointing, compared with the best models found by the exhaustive
and stepwise methods.

8. CoNCLUSIONS AND FUTURE WORK

Conclusions.

We have constructed reasonable-looking linear prediction models for YEAR based on either a tenor
drone, a bass drone, or a complete bagpipe. These models were constructed by three different methods,
and the exhaustive and stepwise methods applied to the original variables produced better models than
the stepwise method applied to models based on principal components.

The best models constructed are fairly consistent in predicting the year of production of the Henderson
bagpipe (14), as shown by the 95% prediction intervals in Figure 8.1. Clearly, more data is required if
we are to test prediction models rigorously.
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Figure 8.1. Six 95% prediction intervals for the Henderson bagpipe
(14) with unknown YEAR. Each interval was derived from a model
in Section 5, 6 or 7. The models are, from top to bottom, tenor drone
(exhaustive), tenor drone (stepwise), bass drone (exhaustive), bass drone
(stepwise), bass drone (stepwise on principal components) and complete
bagpipe (stepwise). The horizonal axis corresponds to Henderson’s years
in business.

Future Work.

Consider the following scenario: Piper Bob acquires a bagpipe of unknown make and age. Bob
would like to know both of these things, and no expert is available to give an opinion (or Bob seeks
confirmation of an opinion). Bob measures the internal diameters of a few drone chambers, goes to
www.bagpipe identification.org and types the measurements into fields on a webpage. A couple
of seconds later, the webpage responds “I’m sure you have a Hardie, and 95% confident it was made
between 1958 and 1963” or “this pipe was made between 1910 and 1915 by either Henderson or Lawrie,
but the stocks appear to be from about 1980” or “the tenor drones are MacDougalls from about 1875; 1
cannot identify the bass drone”. In the last case, maybe Piper Bob takes a closer look at the bass drone
and notices that none of the three sections match exactly.

A web-based tool of this kind clearly would be useful. Judging from the work described in this paper,
the author believes that such a tool could be developed using modern classification methods.
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APPENDIX 1 — THE DATA

THE DATA. Roderick MacLellan’s measurements of 23 bagpipes.
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APPENDIX 2 — EXPLORATORY DATA ANALYSIS

The search for simple linear regression models to predict YEAR produced the following models, which
are presented in the form of R output. No other simple models with significant coefficients were found.

The variable names used below are consistent with those in the body of this report. Additionally,
vnew = (10,15,20,22) and vold = (2,19) record the positions in the data set of the new (post-1980)
and old (pre-1900) bagpipes: dnew and dold are dummy variables for these two subsets of the data.

STOCKID.

summary(fit_1lm(YEAR“STOCKID))

Estimate Std. Error t value Pr(>abs(t))
(Intercept) 2569.9651 232.8296 10.99 2.84e-07 ***
STOCKID -0.7892 0.2923 -2.70 0.0207 *
Residual standard error: 25.5 on 11 degrees of freedom
Multiple R-Squared: 0.3986, Adjusted R-squared: 0.3439
F-statistic: 7.29 on 1 and 11 DF, p-value: 0.02066

TFSID.

summary (fit_lm(YEAR"TFSID))

Estimate Std. Error t value Pr(>abs(t))
(Intercept) 2269.1319  128.2198 17.619 1.96e-11 ***
TFSID -0.9754 0.3946 -2.472 0.0259 *
Residual standard error: 30.72 on 15 degrees of freedom
Multiple R-Squared: 0.2895, Adjusted R-squared: 0.2421
F-statistic: 6.111 on 1 and 15 DF, p-value: 0.0259

The Sinclair bagpipe (3) has a very large Cook’s distance, relative to the the other bagpipes. Tt can be
seen on the extreme left of the scatterplot, well removed from the other data points. The fit of a simple
linear model is improved by removing the Sinclair pipe, as shown below.

summary(fit_lm(YEAR“TFSID,data=datal[-3,]))

Estimate Std. Error t value Pr(>abs(t))
(Intercept) 2520.283 167.670 15.031 4.95e-10 ***
TFSID -1.764 0.511 -3.453 0.00388 **
Residual standard error: 27.59 on 14 degrees of freedom
Multiple R-Squared: 0.4599, Adjusted R-squared: 0.4213
F-statistic: 11.92 on 1 and 14 DF, p-value: 0.003884

BMSTCID.

summary (fit_1lm(YEAR“BMSTCID))

Estimate Std. Error t value Pr(>abs(t))
(Intercept) 2274.6406 214.2000 10.619 2.25e-08 ***
BMSTCID -0.4711 0.3038 -1.551 0.142
Residual standard error: 33.83 on 15 degrees of freedom
Multiple R-Squared: 0.1382, Adjusted R-squared: 0.08072
F-statistic: 2.405 on 1 and 15 DF, p-value: 0.1418
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If the antique and new bagpipes are included in the data, then regressing YEAR on BMSTCID does not
produce a good fit. Excluding the old and new pipes does produce a good fit, as evident in Figure 3.4
and below.

summary(fit_1lm(YEAR"BMSTCID,data=datal-c(vnew,vold),]))

Estimate Std. Error t value Pr(>abs(t))

(Intercept) 2417.9481 139.0692 17.387 3.11e-08 **x*

BMSTCID -0.6770 0.1955 -3.464 0.00712 =**

Residual standard error: 14.08 on 9 degrees of freedom

Multiple R-Squared: 0.5714, Adjusted R-squared: 0.5238

F-statistic: 12 on 1 and 9 DF, p-value: 0.007117

BMS2CID.

summary (fit_1lm(YEAR“BMS2CID))

Estimate Std. Error t value Pr(>abs(t))
(Intercept) 2284.3668 212.3223 10.759 7.65e-08 ***
BMS2CID -0.8337 0.5125 -1.627 0.128
Residual standard error: 33.66 on 13 degrees of freedom
Multiple R-Squared: 0.1691, Adjusted R-squared: 0.1052
F-statistic: 2.646 on 1 and 13 DF, p-value: 0.1278

If the new bagpipes are included in the data, then regressing YEAR on BMS2CID does not produce a
good fit. Excluding the new pipes does produce a good fit, as evident in Figure 3.5 and below.

summary(fit_lm(YEAR“BMS2CID,data=datal-c(vnew),]))
Estimate Std. Error t value Pr(>abs(t))
(Intercept) 2419.5495 102.8839 23.517 4.38e-10 ***
BMS2CID -1.1951 0.2493 -4.795 0.00073 **x*
Residual standard error: 15.76 on 10 degrees of freedom
Multiple R-Squared: 0.6969, Adjusted R-squared: 0.6665
F-statistic: 22.99 on 1 and 10 DF, p-value: 0.0007296

BTTCID.

summary(fit_lm(YEAR"BTTCID))
Estimate Std. Error t value Pr(>abs(t))

(Intercept) 2106.1467 361.7681 5.822 3.36e-05 #***
BTTCID -0.2322 0.5138 -0.452 0.658
Residual standard error: 36.19 on 15 degrees of freedom
Multiple R-Squared: 0.01343, Adjusted R-squared: -0.05234
F-statistic: 0.2042 on 1 and 15 DF, p-value: 0.6578

If the new and antique bagpipes are included in the data, then regressing YEAR on BTTCID does not
produce a good fit. Excluding the new and antique pipes does produce a good fit, as evident in Figure 3.6
and below.

summary(fit_lm(YEAR"BTTCID,data=datal[-c(vnew,vold),]))

Estimate Std. Error t value Pr(>abs(t))

(Intercept) 2493.4797 129.5544 19.247 1.27e-08 *x**

BTTCID -0.7935 0.1845 -4.301 0.00199 **

Residual standard error: 12.31 on 9 degrees of freedom

Multiple R-Squared: 0.6727, Adjusted R-squared: 0.6364

F-statistic: 18.5 on 1 and 9 DF, p-value: 0.001987
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APPENDIX 3 — EXHAUSTIVE MoDEL FITTING

Data Processing.

The data is read in,

data_read.table("Yggdrasill:Desktop Folder:Laboratory:Bagpipe:bagpipe.dat",
header=T,na.strings="*”);
attach(data);

different measurements for tenor drones are replaced by their average,

for(i in 1:23) if(TFSIDO != "NA") TFSID[i]_0.5*(TFSID[i]+TFSIDO[i])
for(i in 1:23) if(TT2CIDO != "NA") TT2CID[i]_0.5*(TT2CID[i]+TT2CIDO[i])

dummy variables are coded for new and antique pipes (here, DANT is denoted dold and DNEW is
denoted dnew),

vnew_c(10,15,20,22)

vold_c(2,19)

dnew_c(0,0,0,0,0,0,0,0,0,1 1,0,0,0,0,1,0,1,0)
dold_c(0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0)

and MAKER, YEAR and the eleven predictors of interest are selected,

cdata_datal,c(3,5,7,8,12,14,18,19,22,24,26,28,31)]

Tenor Drone Models.

The design matrix X 1s created to contain STOCKID, the four tenor main effects, the pairwise
interactions of these variables, and the dummy variables DNEW and DANT. The corresponding response
vector y is also created.

X_cbind(cdatalc(3,4,5,6,7)],dnew,dold)
y_cdatal,2]

inter_NULL

b_length(X[1,])-2

idx_1;

for(i in 1:(b-1)) for(j in (i+1):b) {
inter_as.data.frame(cbind(inter,X[,i]1*X[,j]1))
names (inter) [idx]_paste(names(X) [i],":",names(X)[j]);
idx_idx+1;

}

X_as.data.frame(cbind(X,inter))
X_X[c(1,2,3,4,5,6,9,10,11,12,13,15,18),]
y_ylc(1,2,3,4,5,6,9,10,11,12,13,15,18)]

The design matrix contains 17 variables. An exhaustive rountine (written in R by the author) is called
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to test all models of rank 6 or less based on X and y.

tmp_fit.exhaust(X,y,6)
"Testing 21776 models -- approx. run time 0 : 17 : 24"
"Top 10 models in terms of AIC are:"

Vi V2 V3 V4 V5 V6 AIC PRESS MSPE

10066 1 2 5 6 7 11 50.44 465.39 35.80
20215 5 6 8 10 11 17 50.78 516.20 39.71
12485 1 5 6 7 8 11 51.02 473.13 36.39
16600 2 5 6 10 11 17 51.02 548.19 42.17
125609 1 5 6 7 11 14 51.19 486.46 37.42
20333 5 6 10 11 14 17 51.41 552.07 42.47
20330 5 6 10 11 13 17 51.43 572.01 44.00
13109 1 6 8 9 11 16 56.08 817.79 62.91
10364 1 2 6 9 11 16 56.35 845.90 65.07
18885 4 5 6 10 11 13 56.36 646.31 49.72

"Top 10 models in terms of MPSE are:"
Vi V2 V3 V4 V5 V6 AIC PRESS MSPE

10066 1 2 5 6 7 11 50.44 465.39 35.80
12485 1 5 6 7 8 11 51.02 473.13 36.39
125609 1 5 6 7 11 14 51.19 486.46 37.42
20215 5 6 8 10 11 17 50.78 516.20 39.71
16600 2 5 6 10 11 17 51.02 548.19 42.17
20333 5 6 10 11 14 17 51.41 552.07 42.47
20330 5 6 10 11 13 17 51.43 572.01 44.00
18828 4 5 6 8 10 11 56.51 635.84 48.91
18885 4 5 6 10 11 13 56.36 646.31 49.72
18886 4 5 6 10 11 14 56.69 651.99 50.15

The best model in terms of both AIC and MSPE i1s
YEAR ~ STOCKID * TTBUID + TFSID + dold + dnew

Histograms of the AIC and MSPE for all of the models evaluated are shown in Figure A3.1.

Bass Drone Models.

The design matrix X is created to contain STOCKID, the six bass main effects, the pairwise inter-
actions of these variables, and the dummy variables DNEW and DANT. The corresponding response
vector y is also created.

X_cbind(cdatalc(3,8,9,10,11,12,13)],dnew,dold)
y_cdatal,2]
inter_NULL
b_length(X[1,])-2
idx_1;
for(i in 1:(b-1)) for(j in (i+1):b) {
inter_as.data.frame(cbind(inter,X[,i]1*X[,j]1))
names (inter) [idx]_paste(names(X)[i],":",names(X)[j]);
idx_idx+1;
}
X_as.data.frame(cbind(X,inter))
X_X[c(1,2,3,4,5,6,9,10,11,12,13,15,18,19),]
y_ylc(1,2,3,4,5,6,9,10,11,12,13,15,18,19)]
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Ficure A3.1. Histograms of the AIC and MSPE for the 21776 tenor
drone models of rank less than or equal to 6

The design matrix contains 30 variables. An exhaustive rountine is called to test all models of rank 4 or
less based on X and y.

tmp_fit.exhaust(X,y,4)
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FicureE A3.1. Histograms of the AIC and MSPE for the 31929 bass

drone models of rank less than or equal to 4.

Complete-Bagpipe Models.

The design matrix X is created to contain all eleven main effects, the pairwise interactions of these

X_cbind(cdatal,-c(1,2)],dnew,dold)
y_cdatal,2]

inter_NULL

b_length(X[1,])-2

idx_1;

for(i in 1:(b-1)) for(j in (i+1):b) {
inter_as.data.frame(cbind(inter,X[,i]1*X[, ;1))
names (inter) [idx]_paste(names(X)[i],":",names(X)[j]);
idx_idx+1;

}

X_as.data.frame(cbind(X,inter))
X_X[c(1,2,3,4,5,6,9,10,11,12,13,15,18),]
y_ylc(1,2,3,4,5,6,9,10,11,12,13,15,18)]
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variables, and the dummy variables DNEW and DANT. The corresponding response vector y is also
created.

The design matrix contains 68 variables. An exhaustive rountine is called to test all models of rank 3 or



less based on X and y.

tmp_fit.exhaust(X,y,3)
"Testing 52461 models -- approx. run time 0 : 41 : 57"
"Top 10 models in terms of AIC are:"
Vi V2 V3 AIC PRESS MSPE
24722 12 62 63 62.53 1212.55 93.27
24731 12 63 67 63.73 1299.80 99.98
24527 12 47 63 64.23 1430.16 110.01
24732 12 63 68 64.52 1423.20 109.48
23252 12 13 63 64.55 1338.98 103.00
18358 9 12 13 65.67 1328.91 102.22
24359 12 40 63 65.92 1539.48 118.42
16674 8 12 40 66.08 1382.77 106.37
23219 12 13 30 66.11 1567.76 120.60
21657 11 12 63 66.58 1549.61 119.20
"Top 10 models in terms of MPSE are:"
Vi V2 ¥v3 AIC PRESS MSPE
24722 12 62 63 62.53 1212.55 93.27
24731 12 63 67 63.73 1299.80 99.98
18358 9 12 13 65.67 1328.91 102.22
23252 12 13 63 64.55 1338.98 103.00
16674 8 12 40 66.08 1382.77 106.37
24732 12 63 68 64.52 1423.20 109.48
24527 12 47 63 64.23 1430.16 110.01
23249 12 13 60 67.23 1493.60 114.89
24359 12 40 63 65.92 1539.48 118.42
21657 11 12 63 66.58 1549.61 119.20

The best model in terms of both AIC and MSPE is

YEAR ~ dnew + BMSTCID:BTBUID + BMS2CID:BTTCID

Histograms of the AIC and MSPE for all of the models evaluated are shown in Figure A3.3.
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APPENDIX 4 — PRINCIPAL COMPONENTS ANALYSIS

Tenor Drone Models.

The design matrix X is created just as in Appendix 3: it contains 17 variables. Principal components
are computed using the princomp function in the “mva” R library,

pc.cor_princomp(X,cor=T)
summary (pc.cor)
Comp.1 Comp.2 Comp.3 Comp.4
Standard deviation 2.9448397 1.6512076 1.4206578 1.3355272
Proportion of Variance 0.5101224 0.1603816 0.1187217 0.1049196
Cumulative Proportion 0.5101224 0.6705040 0.7892257 0.8941452
Comp.5 Comp.6 Comp.7
Standard deviation 0.96394707 0.76693324 0.53071967
Proportion of Variance 0.05465847 0.03459921 0.01656843
Cumulative Proportion 0.94880371 0.98340292 0.99997135

The first seven principal components capture 99.997% of the variance in the data. The corresponding
scree plot is shown in Figure A4.1.
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FiGURE A4.1. Scree plot for the pricipal component analysis of the
tenor drone data.
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The loadings for the first seven principal components are

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7

STOCKID -0.277 0.172 0.224 0.323 -0.216 0.320
TFSID -0.258 0.338 -0.185 -0.137 0.169

TTTCID -0.135 -0.389 0.446 -0.228 0.135 0.242
TT2CID -0.117 -0.246 -0.535 -0.177 -0.334 -0.169
TTBUID -0.237 -0.203 0.290 -0.331 0.178 -0.195
dnew 0.103 -0.457 -0.649 -0.238 0.539
dold -0.119 0.110 0.334 0.318 -0.381 -0.651 -0.437
STOCKID : TFSID -0.291 0.304

STOCKID : TTTCID -0.295 0.164 0.249 0.102 0.395
STOCKID : TT2CID -0.295 -0.130 -0.124 0.325 -0.364 0.162
STOCKID : TTBUID -0.289 0.295 -0.220 0.105

TFSID : TTTCID -0.285 0.184 -0.171 0.207 -0.209 0.210

TFSID : TT2CID -0.268 0.230 -0.330 -0.119
TFSID : TTBUID -0.314 0.161 -0.106 -0.152 0.207 -0.143
TTTCID : TT2CID -0.161 -0.414 -0.334 0.193 -0.104

TTTCID : TTBUID -0.249 -0.341 0.215 -0.176 0.201

TT2CID : TTBUID -0.250 -0.281 -0.355 -0.241

No meaningful interpretation of the principal components is evident from the loadings. Fitting the data
with the first seven principal components results in a model with MSPE = 416.94 and AIC = 80.42. In
R format, the estimated coefficients of this model are

p_pc.cor$scores
fitl_1m(y~pl,11+p[,2]+p[,3]1+p[,41+p[,51+p[,6]1+p[,7]1,x=T)
summary (fit)

Estimate Std. Error t value Pr(>abs(t))

(Intercept) 1939.84615 5.32818 364.073 2.97e-12 ***
pl, 1] 7.03916 1.80933 3.890 0.0115 *
pl, 2] -2.02256 3.22684 -0.627 0.5583

pl, 31 -2.00744  3.75050 -0.535 0.6154

pl, 4] -12.61082 3.98957 -3.161 0.0251 *
pl, 5] -5.27397 5.52746 -0.954 0.3838

pl, 6] 0.01576 6.94738 0.002 0.9983

pl, 71 22.45343 10.03954 2.236 0.0755 .

Residual standard error: 19.21 on 5 degrees of freedom
Multiple R-Squared: 0.8638, Adjusted R-squared: 0.6732
F-statistic: 4.531 on 7 and 5 DF, p-value: 0.05767

This is not a particularly good fit. From the ¢-statistics, it looks as if only the first, fourth and seventh
principal components matter. Staring at the model £it1 above, stepwise model selection (restricted to
the first seven principal components) converges to

y - plL,11 + p[,41 + p[,7]
32



which has MSPE = 241.25 and AIC = 76.01. In R format, the estimated coefficients of this model are
fit2_1lm(y"pl,11+p[,4]1+p[,7],x=T)

summary (£fit2)

Estimate Std. Error t value Pr(>abs(t))
(Intercept) 1939.846 4 .559 425.476 < 2e-16 **x*
pl, 1] 7.039 1.548 4.547 0.00139 **
pl, 4] -12.611 3.414 -3.694 0.00497 *x
pl, 7] 22.453 8.591 2.614 0.02810 *

Residual standard error: 16.44 on 9 degrees of freedom
Multiple R-Squared: 0.8205, Adjusted R-squared: 0.7607
F-statistic: 13.72 on 3 and 9 DF, p-value: 0.00105

Bass Drone Models.

The design matrix X is created just as in Appendix 3: it contains 30 variables. Principal components
are computed using the princomp function in the R “mva” library,

pc.cor_princomp(X,cor=T)
summary (pc.cor)

Comp.1 Comp.2 Comp.3 Comp.4
Standard deviation 3.7959868 2.3756882 2.0543363 1.59474087
Proportion of Variance 0.4803172 0.1881298 0.1406766 0.08477328
Cumulative Proportion 0.4803172 0.6684470 0.8091236 0.89389688

Comp.5 Comp.6 Comp.7
Standard deviation 1.22079058 0.92975494 0.70074715
Proportion of Variance 0.04967765 0.02881481 0.01636822
Cumulative Proportion 0.94357454 0.97238935 0.98875757

Comp.8 Comp.9 Comp. 10

Standard deviation 0.502532906 0.287097280 3.805302e-02
Proportion of Variance 0.008417977 0.002747495 4.826773e-05
Cumulative Proportion 0.997175543 0.999923038 9.999713e-01

The first ten principal components capture 99.997% of the variance in the data. The corresponding scree
plot is shown in Figure A4.2.

As in the case of the tenor drones, no meaningful interpretation was evident from the loadings. Fitting
the data with the first eight principal components results in a model with MSPE = 64.81 and AIC =
61.22. In R format, the estimated coefficients of this model are

p_pc.cor$scores

fitl_lm(y~pl[,1]1+pl[,2]1+p[,3]1+p[,41+p[,5]1+p[,6]1+p[,7]1+p[,8],x=T)

summary(fit1)

Estimate Std. Error t value Pr(>abs(t))

(Intercept) 1936.2857 2.0936 924.853 2.8e-14 *%*
pl, 1] 4.8797 0.5515  8.847 0.000307 *%*
pl, 2] -0.6622 0.8813 -0.751 0.486263

pl, 3] -4.3794 1.0191 -4.297 0.007736 **
pl, 4] 5.5627 1.3128  4.237 0.008191 *x*
pl, 5] -7.3150 1.7150 -4.265 0.007974 **
pl, 6] -23.5477 2.2518 -10.457 0.000138 #**
pl, 7] -2.5458 2.9877 -0.852 0.433072

pl, 8] -13.1087 4.1661 -3.146 0.025493 *

Residual standard error: 7.834 on 5 degrees of freedom

Multiple R-Squared: 0.9807, Adjusted R-squared: 0.9497

F-statistic: 31.68 on 8 and 5 DF, p-value: 0.000721
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F1GURE A4.2. Scree plot for the pricipal component analysis of the bass
drone data.

This 1s a good fit, but we can do better. From the t¢-statistics, it looks as if the second and seventh
principal components don’t matter. Staring at the model £it1 above, stepwise model selection (restricted
to the first eight principal components) converges to

y - pl,11 + p[,3]1 + p[,4] + p[,5] + p[,6] + p[,8]
which has MSPE = 59.1 and AIC = 60.44. In R format, the estimated coefficients of this model are

pi_pl,11; p3_pl,3]; p4_pl[,4]1; pS_pl,5]; p6_pl,6]; p8_pl,8];
fit2_1m(y~pl+p3+pd+p5+p6+p8, x=T)
Estimate Std. Error t value Pr(>abs(t))

(Intercept) 1936.2857 1.9847 975.607 < 2e-16 **x
pl 4.8797 0.5228 9.333 3.37e-05 **x*
p3 -4.3794 0.9661 -4.533 0.00269 *x*
p4 5.5627 1.2445 4.470 0.00290 *x*
p5 -7.3150 1.6257 -4.499 0.00280 *x*
pé -23.5477 2.1346 -11.031 1.12e-05 **x*
p8 -13.1067 3.9494 -3.319 0.01279 *

Residual standard error: 7.426 on 7 degrees of freedom

Multiple R-Squared: 0.9757, Adjusted R-squared: 0.9548

F-statistic: 46.76 on 6 and 7 DF, p-value: 2.68e-05
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The loadings of the principal components used in this model are

round(pc.cor$loadingsl,c(1,3,4,5,6,8)]1,3)

STOCKID
BFSID
BMSTCID
BMS2CID
BTTCID
BT2CID
BTBUID
dnew
dold

STOCKID :
STOCKID :
STOCKID :
STOCKID :
STOCKID :
STOCKID :

BFSID :
BFSID :
BFSID :
BFSID :
BFSID :

BMSTCID :
BMSTCID :
BMSTCID :
BMSTCID :
BMS2CID :
BMS2CID :
BMS2CID :
: BT2CID
BTTCID :
BT2CID :

BTTCID

We can test the predictive ability of this model by putting the measurements for bagpipe (14) back
into the design matrix X are re-computing the principal components. This results in

BFSID
BMSTCI
BMS2CI
BTTCID
BT2CID
: BTBUID
BMSTCID
BMS2CID
BTTCID

BT2CID

BTBUID

: BMS2CI
BTTCID
BT2CID
BTBUID
BTTCID
BT2CID
BTBUID

BTBUID
BTBUID

Comp.1 Comp.3 Comp.4 Comp.5 Comp.6
-0.
0.
.087
.061
.023
.106
.064
.753
.504
.040
.077
.048
171
.106
.138
.031
.030
.004
.019
.026
.084
.042
.113

.136
.134
.209
.198
171
.054
.195
.043
.030

-0.155
D -0.224
D -0.211

-0.210

-0.151

-0.206

-0.168

-0.185

-0.162

-0.151

-0.201
D -0.240
.201
.168
.239
.223
.218
.211
.130
-0.226
-0.187

0.
-0.
-0.

0.
-0.
-0.

0.
-0.

0.

185
050
242
242
262
323
173
003
343

0.004
-0.033
.269
.009
.0562
.211
.104
.043
.103
.128
.030
.055
.264
.333
.023
.080
.065
.223
.342
.044
.019

round(pc.cor$scores[12,],3)
Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8

Comp.1
-2.0867
Comp.9
0.587
Comp. 17
0.000
Comp. 25
0.000

-2.083
Comp. 10
-0.010
Comp. 18

0.000
Comp. 26

0.000

and so we predict by

new_data.frame(y=0,p1=-2.067,p3=1.262,p4=-1.249,p5=-0.796,p6=-0.444,p8=0.293)

1.262
Comp. 11
-0.015

-1.249
Comp.12
0.015

-0.431
0.030
0.072

.239

.157

.155

.003

.362

.005

.086

.245

.045

.256

.468

.189

.046

.113

.065

.006

.030

.203

.112

.038

.031

.250

.149

.116

.005

.057

.062

o

-0.796
Comp.13
0.006

Comp.19 Comp.20 Comp.21

0.000

0.000

0.000

Comp.27 Comp.28 Comp.29

0.000

0.000

0.000

0.199
-0.093
.128
.092
.261
.172
.329
.174
.340
.032
.216
.166
.314
.062
.1563
.048
.048
.032
.140
.234
.125
.194
.004

o

177
.002
.138
.051
.175
.347

-0.444

.194 -0.
.037
.108
.008
.048
.065
.014

191
004

013

-0.350

Comp.8
.000
.040
.424
.013
.470
.053
.010
.270
.153
.020
.281
.005
.273
.027
.015
.096
.047
.137
.025
.038
.195
.030
.315
.182
.209
.018
.017
.241
.191
.003

0.293

Comp.14 Comp.15 Comp. 16

0.020

0.000

0.000

Comp.22 Comp.23 Comp.24

0.000
Comp. 30
0.000

0.000

predict.lm(fit2,new, interval="prediction",level=0.95)

fit

lwr

upr

[1,] 1926.162 1906.653 1945.671

35

0.000



Complete-Bagpipe Models.

The design matrix X is created just as in Appendix 3: it contains 68 variables. Principal components
are computed using the princomp function in the R “mva” library,

pc.cor_princomp(X,cor=T)
summary (pc. cor)
Importance of components:
Comp.1 Comp.2 Comp.3 Comp.4
Standard deviation 5.9101628 3.3868215 2.7341185 2.1213369
Proportion of Variance 0.5136768 0.1686847 0.1099324 0.0661775
Cumulative Proportion 0.5136768 0.6823615 0.7922939 0.8584714
Comp.5 Comp.6 Comp.7 Comp.8
Standard deviation 1.97285571 1.68215378 1.04745964 0.92632009
Proportion of Variance 0.05723764 0.04161237 0.01613488 0.01261866
Cumulative Proportion 0.91570908 0.95732145 0.97345633 0.98607499
Comp.9 Comp. 10 Comp. 11
Standard deviation 0.72244625 0.582442852 0.289746444
Proportion of Variance 0.00767542 0.004988819 0.001234603
Cumulative Proportion 0.99375041 0.998739229 0.999973832

The first eleven principal components capture 99.997% of the variance in the data. The corresponding
scree plot is shown in Figure A4.3.
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FiGURE A4.3. Scree plot for the pricipal component analysis of the
complete-bagpipe data.

No meaningful interpretation was evident from the loadings. Fitting the data with the first eight
principal components results in a model with MSPE = 416.94 and AIC = 80.42. In R format, the
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estimated coefficients of this model are

p_pc.cor$scores
fitl_lm(y~p[,1]1+p[,2]1+p[,3]1+p[,41+p[,5]1+pL,6]1+p[,7]1+p[,8],x=T)
summary(fit1)
Coefficients:

Estimate Std. Error t value Pr(>abs(t))

(Intercept) 1939.8462 5.4386 356.684 3.71e-10 #%*
pl, 1] 3.4558 0.9202 3.756 0.0199 *
pl, 2] -2.2641 1.6058 -1.410 0.2314

pl, 3] 0.5311 1.9891 0.267 0.8027

pl, 4] 0.1905 2.5637 0.074 0.9443

pl, 5] -3.0505 2.7567 -1.107 0.3305

pl, 6] 6.9175 3.2331  2.140 0.0991 .
pl, 7] -7.8553 5.1921 -1.513  0.2049

pl, 8] -15.5158 5.8711 -2.643 0.0574 .

Residual standard error: 19.61 on 4 degrees of freedom
Multiple R-Squared: 0.8865, Adjusted R-squared: 0.6595
F-statistic: 3.905 on 8 and 4 DF, p-value: 0.102

This is not a very good fit. From the ¢-statistics, it looks as if only the first, sixth and eighth principal
components matter. Staring at the model £it1 above, stepwise model selection (restricted to the first
eight principal components) converges to

y - pl,11 + p[,2] + p[,5] + p[,6] + p[,7] + p[,8]

which has MSPE = 220.98 and AIC = 76.30. In R format, the estimated coefficients of this model are
£it2_1m(y~pl,11+pl,2]1+p[,5]1+p[,61+p[,7]1+p[,8],x=T)
summary (£fit2)

Coefficients:
Estimate Std. Error t value Pr(>abs(t))

(Intercept) 1939.8462 4.4830 432.712 1.02e-14 *%*
pl, 1] 3.4558 0.7585 4.556 0.00387 **
pl, 2] -2.2641 1.3237 -1.710 0.13802

pl, 5] -3.0505 2.2723 -1.342 0.22802

pl, 6] 6.9175 2.6650 2.596 0.04090 *
pl, 7] -7.8553 4.2799 -1.835 0.11612

pl, 8] -15.5158 4.8396 -3.206 0.01846 *

Residual standard error: 16.16 on 6 degrees of freedom
Multiple R-Squared: 0.8843, Adjusted R-squared: 0.7687
F-statistic: 7.645 on 6 and 6 DF, p-value: 0.01292
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