
4/22/2021 Capstone Project Report-Drafty Draft

file:///C:/Users/18608/Documents/36726/JPMorgan Project/paper_first_draft.html 1/10

Capstone Project Report-Drafty Draft
Ryan Harty
4/21/2021

Community Detection in Corporate
Environments
Authors: Ryan Harty, Ernest Kufuor, Aline Niyonsaba, Eric Ngabonzima

Email Addresses: rjharty@andrew.cmu.edu (mailto:rjharty@andrew.cmu.edu), ekufor@andrew.cmu.edu
(mailto:ekufor@andrew.cmu.edu), aniyonsa@andrew.cmu.edu (mailto:aniyonsa@andrew.cmu.edu),
engabonz@andrew.cmu.edu (mailto:engabonz@andrew.cmu.edu)

Abstract:
This paper seeks to explore the development of graphical structures in order to build and analyze corporate
relationships using a large amount of data. Namely, we are interested in community detection and information
prediction through these methods. We have collected both news article data and financial performance data on 30
companies and the financial index fund they all belong to (the Dow Jones Industrial Average) for the purposes of
graph creation. We have built methods for graph creation, as well as named entity recognition, graph combination,
and node attribute prediction, though some of these are still being tweaked as we progress on the project. We
have succeeded in visualizing the graphs we have created, the communities we have detected, and the analysis of
these graphs as we proceed to collect even better results. Finally, we have evidence that community detection is
both possible and useful in this context, but we have additional steps to take in order to successfullly predict
information about our companies of interest.

Introduction:
There is an abundance of data in the Financial Services industry- there may be quantitative data describing a
firm’s individual financial performance, qualitative data describing a company’s relationships to other companies
both similar and dissimilar in industry type, and other data sources on anything that could affect a company’s
financial well-being. However, different datasets with different levels of structure are often used independently in
machine learning tasks such as modeling and prediction, when much more could be learned from building an
ensemble model that can learn to account for interactions between different data sources. In this project, we are
seeking to construct knowledge graphs that provide information on the relationships between publicly-traded
companies. These different knowledge graphs will each provide us with key insights into business relationships
between companies, and combining them however possible should allow us to perform more accurate, informative
clusters of similar companies from which we can infer different features of each company in a cluster. The
applications for this are very open-ended, but some of the main ways that financial companies could benefit from
this analysis are through enhancement of investment strategy and improvement in anomaly detection of
companies that do not have strong relationships to many others. After conducting significant research into this
topic, we have set our research questions as follows:

Research Question 1: How well does community detection in corporate environments work as a basis for
anticipating future community formation?

mailto:rjharty@andrew.cmu.edu
mailto:ekufor@andrew.cmu.edu
mailto:aniyonsa@andrew.cmu.edu
mailto:engabonz@andrew.cmu.edu

4/22/2021 Capstone Project Report-Drafty Draft

file:///C:/Users/18608/Documents/36726/JPMorgan Project/paper_first_draft.html 2/10

Research Question 2: How can we use graphical structures governing relationships between different companies
to determine future information about those companies?

Data:
There are two main datasets that we are incorporating here. The first is news article co-mentions data, where the
goal is to identify which companies are mentioned together frequently in news articles as a basis for drawing
edges in a graph. A single news article co-mention for two specified companies is considered to be a news article
that mentions both companies. This is based on graph theory, where a graph G is defined by a set of edges E and
nodes (or vertices) V, where nodes are connected to other nodes by edges formed between them. In the
knowledge graph we’d like to build out of news article co-mentions, our nodes are going to be different companies,
and an edge between two nodes will represent a high frequency of news article co-mentions between them. Since
co-mentions are nondirectional (both companies are treated equally in the co-mention process), our edge set will
be non-directed in this case, which means that an edge reflects an equal connection for both nodes it joins. When
building our news article dataset, we decided to use the GoogleNews python package to pull in news articles from
GoogleNews, which itself pulls from several different news sources in compiling online news for those who are
interested in reading it. One of the main reasons for this is that we wanted to bring in news articles from numerous
different sources to avoid single-publication bias affecting the relationships we notice, and another reason is the
convenience with which several thousand news articles can be pulled at a time. For this project, we decided to
focus on the Dow Jones Industrial Average (DJIA), a stock market index that takes into account the stock
performance of the largest 30 publicly-traded companies in the United States. We set this small cap on companies
to build an interpretable graph with a visually-appealing number of individually-important nodes, and to simplify
and expediate downstream data-processing tasks. Below is a table displaying the news sources that GoogleNews
pulled from in creating our article database:

Article Sources for News Article Data

From there, we conducted a GoogleNews search on the stock ticker of each company in question, and returned
the top 40 news articles mentioning that company in each year from 2011-2020, and after removing duplicate
articles we wound up with about 12000 news articles available for further processing, each with information on the

4/22/2021 Capstone Project Report-Drafty Draft

file:///C:/Users/18608/Documents/36726/JPMorgan Project/paper_first_draft.html 3/10

date of the article, the title, the link to the article, and the full text content of the article. From there, we conducted
Named Entity Recognition on the content of each article, a topic that will be more fully described in our Methods
section, in order to establish a list of co-mentions between companies (with identical co-mentions allowed as long
as they came from different articles). We then summed the identical co-mentions to develop a list of co-mention
frequencies- the number of times each pair of companies had been mentioned together in the same article. This
list of co-mention frequencies was ultimately stored as a 31 x 31 matrix, with each of the 31 rows and columns
corresponding to a single company node (each company was deemed to have 0 co-mentions with itself for ease of
usage, so the diagonal of the matrix was 0). Finally, when any two companies had a co-mention frequency greater
than 6 (chosen as the cutoff to allow a visually-interpretable graph), an edge was drawn between the nodes
representing those two companies in the graph that was drawn. The resulting knowledge graph was treated as our
first dataset.

Our second main dataset was in terms of stock price correlations and transaction volume correlations between
publicly-traded companies. The goal of this dataset was to build a knowledge graph using more quantitative
financial relationship data than a graph constructed on news article co-mentions. To do this, we pulled stock price
and transaction volume data from Yahoo Finance data, with our dataset also ranging from 2011-2020 and utilizing
the same 30 companies used in the first dataset (as well as the DJIA index itself, which we treated as a company
for research purposes). Both the stock price and transaction volume were calculated for each business day in the
time period, adding up to about 264 days’ worth of data per year per company. The recorded stock price and
transaction volume were those measured at the close of business each day, giving us a time series dataset of
each of these financial variables over time for each company. Overall, each of the companies had about 2600 data
points on stock price and volume available, and with these data points we were able to calculate the change in
price for each company on each day as well. Below is a graphic showing the scatterplot for the correlation
between JP Morgan and Goldman Sachs that shows the process behind finding the correlation coefficient for each
pair of companies:

Correlation Between JP Morgan and Goldman Sachs

Methods:
One very important step in our process regarding our first dataset was to conduct Named Entity Recognition on
the content of the articles we pulled in order to generate a list of co-mentions from our list of articles. The process
here was to search the content of each article for entities, which in our case were companies represented by their
stock ticker symbols. For each article, there was guaranteed to be at least one entity of interest since our news
articles were pulled based on the companies we were interested in, but given that business articles usually discuss
competition there were often mentions of competitors in a given company’s articles. We used the flair package in
python to perform Named Entity Recognition on the article content, since the flair package is a recently-developed
solution that outperforms many older solutions for this process by utilizing a neural language model to assign tags
to text data and learn which words in an article count as entities. After performing this Named Entity Recognition

4/22/2021 Capstone Project Report-Drafty Draft

file:///C:/Users/18608/Documents/36726/JPMorgan Project/paper_first_draft.html 4/10

for each article, we removed corporate entities that were not listed in our 31 entities of interest (the 30 companies
currently in the DJIA, plus the DJIA itself) so that our graphs would be visually interpretable. The next step was to
take the entities found in each article and create a list of co-mentions for each pair of entities found in the article;
so, if 6 entities were found in an article, there would be 15 different co-mentions returned in order to connect all the
entities found in that article to each other. After standardizing the co-mentions so that there were not separate co-
mentions for a company and its stock ticker, the large list of co-mentions (about 3000 co-mentions with the two
companies, the date, and the link to the article attached) was passed along to the next overarching step-
knowledge graph creation. Shown below is the database containing these co-mentions before any removal of
duplicate and non-interest entities was applied, to give a sense of why these measures are important and also a
feel for the data:

Example Data for News Article Co-Mentions

Knowledge graph creation was a requirement for both datasets, as we were seeking to perform community
detection and prediction using graphical data. After completing Named Entity Recognition on the first dataset, we
had a list of about 3000 instances of co-mentions in news articles between our 31 entities of interest. From there,
we summed identical co-mentions to develop a list of co-mention frequencies- the number of times each pair of
companies had been mentioned together across our entire dataset of articles. This list of co-mention frequencies
was ultimately stored as a 31 x 31 matrix, with each of the 31 rows and columns corresponding to a single
company node (each company was deemed to have 0 co-mentions with itself for ease of usage, so the diagonal of
the matrix was 0). Finally, when any two companies had a co-mention frequency greater than 6 (chosen as the
cutoff to allow a visually-interpretable graph), an edge was drawn between the nodes representing those two
companies in the graph that was drawn. The resulting knowledge graph was treated as our first dataset. To create
the knowledge graphs for the financial dataset, we began with the stock price and transaction volume for each
business entity of interest. To aggregate this data effectively, we calculated both the correlation in price change
and the correlation in transaction volume for each pair of companies over the time period being measured, giving
us two 31 x 31 matrices of correlation coefficients, one for price changes and one for transaction volume. These
31 x 31 correlation matrices are how we created our edges for this dataset- if you assign a number to each
corporate entity we measured, then each entry in the matrix would reference one company by its row index and
one company by its column index, so each of the calculated correlation coefficients became an entry in the
corresponding graph. For each of the 31 company nodes in the graph, we drew an edge between the nodes if
there was a moderate (0.40-0.60) correlation between the companies for both price changes and transaction
volume, or a strong correlation (>0.60) for either of the metrics. The resulting knowledge graph was our second
dataset, and the 31 x 31 matrix for price changes is shown below to aid in comprehension:

4/22/2021 Capstone Project Report-Drafty Draft

file:///C:/Users/18608/Documents/36726/JPMorgan Project/paper_first_draft.html 5/10

Correlation Matrix for Companies of Interest

Three more methods are currently being developed for this research project. The first is graph combination, where
multiple graphs are fused through the use of edge regulation metrics or development of a multiplex graph. By
using edge regulation metrics, two graphs with identical nodes can be combined into one graph by strictly
delineating the requirements for an edge to be formed between two nodes. Since our knowledge graphs rely on
news article co-mentions and financial correlations, we are currently testing different metrics for edge regulation to
ensure the combined graph that we form will perform as well as possible in downstream community detection
tasks. This part of our methods will be much better fleshed-out when we finish developing community detection
methods and their evaluation tasks. Multiplex graphs are singular graphs which combine multiple knowledge
graphs by joining common nodes in the two graphs, and the edges connecting the nodes in separate graphs are
an additional part of the graphical structure. The multiplex graph construction is also currently in development, and
we are weighing whether it will be better suited to a visual enhancer for our project or a viable solution for
community detection and prediction. A sample multiplex graph we have constructed is shown below:

Sample Multiplex Graph

The second method mentioned above is community detection, where communities of nodes are formed from a
knowledge graph to give us insight into which nodes are more connected than others. We detected communities
by searching for groups of nodes within a graph which all had at least n edges among the nodes selected. After
evaluation of which values of n would provide us with useful cliques for detecting communities, we then split the

4/22/2021 Capstone Project Report-Drafty Draft

file:///C:/Users/18608/Documents/36726/JPMorgan Project/paper_first_draft.html 6/10

graph into the k cliques that result from the choice n and then compare them to known corporate communities to
evaluate whether we have established a new community on the basis of news mentions and financial correlation.
These evaluations are very much under development and review as this is a temporary draft.

The final method of interest here is Node Attribute Prediction, where we take information about a node, combine it
with information built into the graph we have built, and use it to prediction future information about that node.
Currently, this is being developed on the financial data graph, using previous stock prices as the data we are
aiming to predict- in particular, whether a certain stock will increase or decrease in price in the next available time
period. There are two approaches we are pursuing here- one involves utilizing Graphical Neural Networks, with
our node information as a node attribute, to train a black-box statistical model that tends to predict accurately (if
not comprehensibly) whether the stock price will increase. Another option is to convert each node’s graphical
information into a vectorized format using a python package such as Node2Vec, which creates a representation of
each node’s place in the graph that can be easily combined with the price information for each node to form a
feature set that can be modeled on. Both of these techniques will involve the labeling of price data and the
development and training of a statistical model that can predict well even in the presence of only 30 different
companies.

Results:
Our results are almost completely under construction at this point, as we gather intermediate results, use them to
refine the methods, and rinse and repeat as our clients guide us. However, we have made several achievements
in results gathering, and I will highlight them in succession. The first achievement is the construction of knowledge
graphs from our data- we have been able to build both news article and financial data graphs, and visualize them
as well. Shown below is the visualization of a news article graph created with a selection of the entities of interest,
using stricter edge criteria than normal in order to show the graph more clearly in this stage. The letters on each
dot correspond to a company’s stock ticker, so MSFT corresponds to Microsoft, and CAT to Caterpillar, for
example.

4/22/2021 Capstone Project Report-Drafty Draft

file:///C:/Users/18608/Documents/36726/JPMorgan Project/paper_first_draft.html 7/10

News Articles Graph- First Pass

We also have several results on community detection. Using n = 2 in our community detection process, we were
able to identify two distinct communities in a later version of our news article graph. Only the largest community is
shown below, but we can see that there are both technology and financial companies included in this community,
with larger bars on the right-hand side corresponding to more central nodes in the graph we are analyzing. So, we
do have some progress in graph analysis, though we are looking to make even bigger strides.

4/22/2021 Capstone Project Report-Drafty Draft

file:///C:/Users/18608/Documents/36726/JPMorgan Project/paper_first_draft.html 8/10

Community Detection in the News Article Graph

Shown below is the largest community found in the financial data graph- and this one seems to show a much
bigger breadth of industries included. Home goods, construction equipment, and insurance all appear here,
highlighting the potential behind this approach- we may not have thought to look for connections between these
industries if not for these graphical structures we created.

Community Detection in the Financial Data Graph

We also have results on which entities are most central to the graphs we create. Here, we can see that in the
news article data graph, we have tech companies dominating- Apple, Microsoft, IBM, Intel, Cisco, Verizon, and
Salesforce are all tech companies before we arrive at American Express. In the graphical structure we have
created, there is evidence of tech companies being more dominant in the news than financial companies such as
American Express and Goldman Sachs, as the more central nodes have more connections to other nodes in the
graph and thus are related to more companies that we have sampled.

4/22/2021 Capstone Project Report-Drafty Draft

file:///C:/Users/18608/Documents/36726/JPMorgan Project/paper_first_draft.html 9/10

Eigenvector Centrality in the News Article Graph

Here we notice a much different effect- in the financial data graph, financial companies are connected to many
more nodes than other companies, which makes sense as they must invest in different industries. So, we have
evidence that our two distinct knowledge graphs are going to provide us with two different perspectives on
connections between companies of interest, and thus that our methods may be worth it for their potential
applications to new data.

Eigenvector Centrality in the Financial Data Graph

Discussion:
When it comes to community detection, we have made significant progress. We are able to detect communities in
the graphs we have created, and the only step that remains is to test these methods on combination graphs that
we are creating. We are still in the process of evaluating these detected communities using some form of real-life
data on which to compare, but the completion of this tasks seems to be closer in the pipeline rather than further.
We may need to make some tweaks to our data pipeline as well as our graph creation methods in order to detect
the communities that show up most often in other datasets, but there is significant progress here, as well as very
good signs that our research in this subject will prove fruitful in detecting communities that are not easily
detectable to a human being given the large amount of data we are pulling in.

Predicting new information is further off for us as a team. While we have made progress in Node Attribute
Prediction, we are currently in the modeling stage for this data, so we are not yet able to say whether our graphs
and communities are well-suited to predicting new information about their member nodes. This is our number one
priority going forward and our main focus, but evaluation may be tricky- while we can likely develop strong
accuracy levels given the right statistical model and evaluate them on a test set, we may have trouble discerning
the graphical contribution to these results. We may need some creativity in order to measure this technique’s
performance against more standard machine learning methods.

4/22/2021 Capstone Project Report-Drafty Draft

file:///C:/Users/18608/Documents/36726/JPMorgan Project/paper_first_draft.html 10/10

References
Anon. 2021. “PyTorch Geometric Documentation¶.” PyTorch Geometric Documentation - pytorch_geometric 1.7.0
Documentation. Retrieved April 23, 2021 (https://pytorch-geometric.readthedocs.io/en/latest/ (https://pytorch-
geometric.readthedocs.io/en/latest/)).

Ferencz, Marcell. 2020. “Building a Social Network from the News Using Graph Theory by Marcell Ferencz.”
Medium. Retrieved April 23, 2021 (https://towardsdatascience.com/building-a-social-network-from-the-news-using-
graph-theory-by-marcell-ferencz-9155d314e77f (https://towardsdatascience.com/building-a-social-network-from-
the-news-using-graph-theory-by-marcell-ferencz-9155d314e77f)).

Kung-Hsiang, Huang (Steeve). 2019. “Hands on Graph Neural Networks with PyTorch & PyTorch Geometric.”
Medium. Retrieved April 23, 2021 (https://towardsdatascience.com/hands-on-graph-neural-networks-with-pytorch-
pytorch-geometric-359487e221a8 (https://towardsdatascience.com/hands-on-graph-neural-networks-with-pytorch-
pytorch-geometric-359487e221a8)).

Leskovec, Jure. 2016. “Scalable Feature Learning for Networks.” node2vec. Retrieved April 23, 2021
(https://snap.stanford.edu/node2vec/ (https://snap.stanford.edu/node2vec/)).

Techical Appendix

https://pytorch-geometric.readthedocs.io/en/latest/
https://towardsdatascience.com/building-a-social-network-from-the-news-using-graph-theory-by-marcell-ferencz-9155d314e77f
https://towardsdatascience.com/hands-on-graph-neural-networks-with-pytorch-pytorch-geometric-359487e221a8
https://snap.stanford.edu/node2vec/

4/22/2021 financial_RH_edits.ipynb - Colaboratory

https://colab.research.google.com/drive/1m-s9DrcU4Ys2yoFYWiU49DIkOLu6JtLd#scrollTo=_Sb0uWcix5jQ&printMode=true 1/9

Obtaining a list of equities tickers and the corresponding
timeseries

from google.colab import drive
drive.mount('/content/drive')
#newsframe.to_csv('/content/drive/My Drive/dow_raw_2011.csv')
import random
import numpy as np
import pandas as pd

import seaborn as sns
sns.set(rc={'figure.figsize':(10,8)})
import matplotlib.pyplot as plt

import pandas_datareader.data as web
from datetime import datetime

Mounted at /content/drive

Configure filepaths for data storage
#data_dir = "data"
#if not os.path.exists(data_dir):
os.makedirs(data_dir)

Code Text

4/22/2021 financial_RH_edits.ipynb - Colaboratory

https://colab.research.google.com/drive/1m-s9DrcU4Ys2yoFYWiU49DIkOLu6JtLd#scrollTo=_Sb0uWcix5jQ&printMode=true 2/9

High Low Open Close Volume Adj Close

Date

2019-03-20 53.500000 49.500000 52.750000 49.799999 2350800.0 44.312790

2019-03-21 50.000000 48.200001 49.990002 48.980000 1764700.0 43.583141

2019-03-22 49.950001 48.160000 48.799999 48.599998 844700.0 43.245010

2019-03-25 49.400002 48.000000 48.599998 49.150002 440900.0 43.734417

2019-03-26 49.750000 48.180000 49.000000 48.849998 504700.0 43.467468

...

2020-12-24 54.967999 54.334999 54.919998 54.790001 1074700.0 54.187817

2020-12-28 55.770000 54.180000 55.270000 54.290001 3668200.0 53.693314

2020-12-29 54.820000 53.849998 54.500000 54.330002 2222000.0 53.732876

2020-12-30 55.660000 54.299999 54.349998 55.470001 3790000.0 54.860344

2020-12-31 56.099998 55.110001 55.470001 55.500000 2663500.0 54.890015

452 rows × 6 columns

We will obtain and store the list of the constituents from Wikipedia.

Get list of companies in Dow-Jones Industrial Average (DJIA)

today = datetime.today().strftime('%Y-%m-%d')
print(today)

data = pd.read_html('https://en.wikipedia.org/wiki/Dow_Jones_Industrial_Average#Components
table = data[1]
symbols = list(table.Symbol.values) + list(['DJIA'])

df = pd.DataFrame(symbols, columns=['Symbol'])

print("{} symbols in total".format(len(df)))

2021-04-19
31 symbols in total

Now that we have a list of ticker symbols, we can download the corresponding timeseries from
Yahoo Finance.

Download price timeseries

start_date = '2000-01-01'
end_date = '2020-12-31'

#start_date = '2000-01-01'
#end_date = '2020-12-31'

symbols = sorted(symbols)
print("Downloading {} files".format(len(symbols)))
for i, symbol in enumerate(symbols):
 try:
 df = web.DataReader(symbol,'yahoo', start_date, end_date)
 df = df[['Adj Close','Volume']]
 #df.to_csv(os.path.join(data_dir, "{}.csv".format(symbol)))
 df.to_csv('/content/drive/My Drive/JPM_financial_data/' + "{}.csv".format(symbol))
 except KeyError:
 print("Error for {}".format(symbol))
 pass
print("Stored {} files".format(i+1))

4/22/2021 financial_RH_edits.ipynb - Colaboratory

https://colab.research.google.com/drive/1m-s9DrcU4Ys2yoFYWiU49DIkOLu6JtLd#scrollTo=_Sb0uWcix5jQ&printMode=true 3/9

Downloading 31 files
Stored 31 files

History for INTC

Adj Close Volume

Date

2000-01-03 27.169121 57710200.0

2000-01-04 25.900448 51019600.0

2000-01-05 26.115145 52389000.0

2000-01-06 24.592737 55171200.0

2000-01-07 25.607666 41096400.0

Printing a sample dataframe
idx = np.random.randint(len(symbols))
print("History for {}".format(symbols[idx]))
df = pd.read_csv('/content/drive/My Drive/JPM_financial_data/' + symbols[idx]+".csv").set_ind
df.head()

Pre-process Financial Timeseries

index = pd.date_range(start=start_date, end=end_date, freq='D') # initialize an empty Dat
df_price = pd.DataFrame(index=index, columns=symbols) # initialize empty datafr
df_volume = pd.DataFrame(index=index, columns=symbols)

Aggregate all symbols into a price dataframe and volume dataframe
for symbol in symbols:
 symbol_df = pd.read_csv('/content/drive/My Drive/JPM_financial_data/' + symbol+".csv").se
 symbol_df.index = pd.to_datetime(symbol_df.index)

 df_price[symbol] = symbol_df['Adj Close']
 df_volume[symbol] = symbol_df['Volume']

Removing NaNs

Let's drop the dates where all the stocks are NaNs, ie., weekends/holidays where no trading
df_price.dropna(how='all', inplace=True)
df_volume.dropna(how='all', inplace=True)
assert((df_price.index == df_volume.index).all())

4/22/2021 financial_RH_edits.ipynb - Colaboratory

https://colab.research.google.com/drive/1m-s9DrcU4Ys2yoFYWiU49DIkOLu6JtLd#scrollTo=_Sb0uWcix5jQ&printMode=true 4/9

Let's see how many NaNs exist at this point, as some companies would've gone public later than
others (so they won't have equally long price histories)

pd.isnull(df_price).sum()

AAPL 0
AMGN 0
AXP 0
BA 0
CAT 0
CRM 1122
CSCO 0
CVX 0
DIS 0
DJIA 0
DOW 4832
GS 0
HD 0
HON 0
IBM 0
INTC 0
JNJ 0
JPM 0
KO 0
MCD 0
MMM 0
MRK 0
MSFT 0
NKE 0
PG 0
TRV 0
UNH 0
V 2063
VZ 0
WBA 0
WMT 0
dtype: int64

Backfill NaNs followed by forward fill
df_price = df_price.bfill(axis='rows')
df_price = df_price.ffill(axis='rows')

pd.isnull(df_price).sum()

AAPL 0
AMGN 0
AXP 0
BA 0
CAT 0
CRM 0
CSCO 0
CVX 0

4/22/2021 financial_RH_edits.ipynb - Colaboratory

https://colab.research.google.com/drive/1m-s9DrcU4Ys2yoFYWiU49DIkOLu6JtLd#scrollTo=_Sb0uWcix5jQ&printMode=true 5/9

DIS 0
DJIA 0
DOW 0
GS 0
HD 0
HON 0
IBM 0
INTC 0
JNJ 0
JPM 0
KO 0
MCD 0
MMM 0
MRK 0
MSFT 0
NKE 0
PG 0
TRV 0
UNH 0
V 0
VZ 0
WBA 0
WMT 0
dtype: int64

Storing the cleaned dataframes

df_price.to_csv('/content/drive/My Drive/JPM_financial_data/' + "prices.csv")
df_volume.to_csv('/content/drive/My Drive/JPM_financial_data/' + "volume.csv")

We need to convert prices to percent change in price as opposed to the actual $ price. This is
because stocks with very similar prices can behave very differently and vice-versa. For e.g., if a
stock moves from 110, we want the price column to say 10% (indicating the change).

However, for volume, we will retain magnitude.

Obtain Percentage Change and Correlation

100to

df_price_pct = df_price.pct_change().dropna(how='all')
df_volume_pct = df_volume.pct_change().dropna(how='all')

Calculate Correlations

price_corr = df_price_pct.corr()
volume_corr = df_volume.corr()

4/22/2021 financial_RH_edits.ipynb - Colaboratory

https://colab.research.google.com/drive/1m-s9DrcU4Ys2yoFYWiU49DIkOLu6JtLd#scrollTo=_Sb0uWcix5jQ&printMode=true 6/9

Text(0.5, 1.0, 'Correlation heatmap for Volume')

sns.heatmap(volume_corr).set_title("Correlation heatmap for Volume")

sns.heatmap(price_corr).set_title("Correlation heatmap for Price Changes")

4/22/2021 financial_RH_edits.ipynb - Colaboratory

https://colab.research.google.com/drive/1m-s9DrcU4Ys2yoFYWiU49DIkOLu6JtLd#scrollTo=_Sb0uWcix5jQ&printMode=true 7/9

Text(0.5, 1.0, 'Correlation heatmap for Price Changes')

As we can see above, the price histories of JP Morgan (JPM) and Goldman Sachs (GS) are highly
correlated. This makes sense as they are both �nancial sector stocks. That forms the motivation
behind using correlation to form the graph.

This can be observed in the plots below.

Examining correlations further

Text(0.5, 1.0, 'Price Change Scatterplot between JPM and GS. Correlation = 0.72106

plt.figure(figsize=(5,5))
plt.scatter(df_price_pct['JPM'], df_price_pct['GS'])
plt.title('Price Change Scatterplot between JPM and GS. Correlation = {}'.format(price_corr['

plt.title('JPM and GS price change histories')
plt.plot(df_price_pct['JPM'], label='JPM', linewidth=0.5)
plt.plot(df_price_pct['GS'], label='GS', linewidth=0.5)
plt.legend()

4/22/2021 financial_RH_edits.ipynb - Colaboratory

https://colab.research.google.com/drive/1m-s9DrcU4Ys2yoFYWiU49DIkOLu6JtLd#scrollTo=_Sb0uWcix5jQ&printMode=true 8/9

<matplotlib.legend.Legend at 0x7facdd7f17d0>

Saving correlation dataframes

df_price_pct.to_csv('/content/drive/My Drive/JPM_financial_data/' + 'price_pct.csv')
price_corr.to_csv('/content/drive/My Drive/JPM_financial_data/' + 'price_corr.csv')
volume_corr.to_csv('/content/drive/My Drive/JPM_financial_data/' + 'volume_corr.csv')

You can now use these correlations to create graphs.

4/22/2021 Graph_RH_edits.ipynb - Colaboratory

https://colab.research.google.com/drive/1teb9hgmZJsO6aJGB6ZwyESu-0pXVOwEy#scrollTo=2iPQlg6AKByd&printMode=true 9/38

Node Attribute Prediction

!pip install -q torch-scatter -f https://pytorch-geometric.com/whl/torch-1.8.0+cu101.html

djia_31 = pd.Series(['AXP','AAPL','AMGN','BA','CAT','CRM','CSCO','CVX','DIS','DJIA','DOW',
 'GS','HD','HON','IBM','INTC','JNJ','JPM','KO','MCD','MMM',
 'MRK','MSFT','NKE','PG','TRV','UNH','V','VZ','WBA','WMT',])

djia_label= pd.Series([1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1])

!pip install -q torch-sparse -f https://pytorch-geometric.com/whl/torch-1.8.0+cu101.html
!pip install -q torch-geometric

import torch
import torch_geometric.utils as tgu

nx.set_node_attributes(gr_price, df_change.loc[0:4527].to_dict('series'), name="x")
tgu.from_networkx(gr_price)

pct_returns= pd.Series([0.25, 0.44, 0.24, 0.20, 0.01, 0.19, 0.16, 0.12, 0.20, 0.22, 0.15,
 0.26, 0.38, 0.34, 0.33, 0.12, 0.02, 0.23, 0.18, 0.23, -0.12,
 0.12, 0.38, 0.28, 0.38, 0.26, -0.12, 0.31, 0.11, -0.17, 0.29])
#could standardize to quantiles

label dict = {djia 31[entry]: djia label[entry] for entry in range(len(djia label))}

 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

#try ^DJI in yahoo finance-check whether DJIA is working
#fix adjacency matrix to be of size 31 x 31
#we want all nodes- some may have no edges
#try passing correlations as edge weights to see if it improves performance

4/22/2021 Graph_RH_edits.ipynb - Colaboratory

https://colab.research.google.com/drive/1teb9hgmZJsO6aJGB6ZwyESu-0pXVOwEy#scrollTo=2iPQlg6AKByd&printMode=true 10/38

label_dict {djia_31[entry]: djia_label[entry] for entry in range(len(djia_label))}

nx.set_node_attributes(gr_price, label_dict, name="y")
dataset=tgu.from_networkx(gr_price)

#df_change.loc[4520:4530]
dataset.x.size()

torch.Size([26, 4528])

from torch_geometric.nn import GCNConv
from torch.nn import Linear

class GCN(torch.nn.Module):
 def __init__(self, hidden_channels):
 super(GCN, self).__init__()
 torch.manual_seed(12345)
 self.conv1 = GCNConv(4528, hidden_channels)
 self.conv2 = GCNConv(hidden_channels, 2)

 def forward(self, x, edge_index):
 x = self.conv1(x, edge_index)
 x = x.relu()

import torch.nn.functional as F

%matplotlib inline
import matplotlib.pyplot as plt
from sklearn.manifold import TSNE

def visualize(h, color):
 z = TSNE(n_components=2).fit_transform(out.detach().cpu().numpy())

 plt.figure(figsize=(10,10))
 plt.xticks([])
 plt.yticks([])

 plt.scatter(z[:, 0], z[:, 1], s=70, c=color, cmap="Set2")
 plt.show()

 x = F.dropout(x, p=0.5, training=self.training)
 x = self.conv2(x, edge_index)
 return x

model = GCN(hidden_channels=16)
print(model)

model = GCN(hidden_channels=16).double()
model.eval()

out = model(dataset.x.double(), dataset.edge_index)
visualize(out, color=dataset.y)

4/22/2021 Graph_RH_edits.ipynb - Colaboratory

https://colab.research.google.com/drive/1teb9hgmZJsO6aJGB6ZwyESu-0pXVOwEy#scrollTo=2iPQlg6AKByd&printMode=true 11/38

GCN(
 (conv1): GCNConv(4528, 16)
 (conv2): GCNConv(16, 2)
)

tensor([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1,
 1, 1])

dataset.y

from IPython.display import Javascript # Restrict height of output cell.

display(Javascript('''google.colab.output.setIframeHeight(0, true, {maxHeight: 300})'''))

model = GCN(hidden_channels=16).double()
optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=5e-4)
criterion = torch.nn.CrossEntropyLoss()

def train():
 model.train()
 optimizer.zero_grad() # Clear gradients.
 out = model(dataset.x.double(), dataset.edge_index) # Perform a single forward pass.
 loss = criterion(out, dataset.y) # Compute the loss solely based on the training nodes

()

from sklearn.model_selection import ShuffleSplit

4/22/2021 Graph_RH_edits.ipynb - Colaboratory

https://colab.research.google.com/drive/1teb9hgmZJsO6aJGB6ZwyESu-0pXVOwEy#scrollTo=2iPQlg6AKByd&printMode=true 15/38

p ,
Epoch: 116, Loss: 0.2976
Epoch: 117, Loss: 0.3057
Epoch: 118, Loss: 0.2962
Epoch: 119, Loss: 0.3070
Epoch: 120, Loss: 0.2677
Epoch: 121, Loss: 0.2841
Epoch: 122, Loss: 0.2858
Epoch: 123, Loss: 0.2873
Epoch: 124, Loss: 0.2873
Epoch: 125, Loss: 0.2854
Epoch: 126, Loss: 0.2783
Epoch: 127, Loss: 0.2890
Epoch: 128, Loss: 0.2868
Epoch: 129, Loss: 0.2959
Epoch: 130, Loss: 0.2890
Epoch: 131, Loss: 0.2833
Epoch: 132, Loss: 0.2802
Epoch: 133, Loss: 0.2915
Epoch: 134, Loss: 0.2847
Epoch: 135, Loss: 0.2788
Epoch: 136, Loss: 0.2660
Epoch: 137, Loss: 0.2722
Epoch: 138, Loss: 0.2787
Epoch: 139, Loss: 0.2677
Epoch: 140, Loss: 0.2696
Epoch: 141, Loss: 0.2825
Epoch: 142, Loss: 0.2763
Epoch: 143, Loss: 0.2595
Epoch: 144, Loss: 0.2971
Epoch: 145, Loss: 0.2922
Epoch: 146, Loss: 0.2665
Epoch: 147, Loss: 0.2868
Epoch: 148, Loss: 0.2915
Epoch: 149, Loss: 0.2776
Epoch: 150, Loss: 0.2824
Epoch: 151, Loss: 0.2632
Epoch: 152, Loss: 0.2624
Epoch: 153, Loss: 0.2710
Epoch: 154, Loss: 0.2841
Epoch: 155, Loss: 0.2856
Epoch: 156, Loss: 0.2747
Epoch: 157, Loss: 0.2686
Epoch: 158, Loss: 0.3089
Epoch: 159, Loss: 0.3057
Epoch: 160, Loss: 0.2829
Epoch: 161, Loss: 0.2746
Epoch: 162, Loss: 0.2765
Epoch: 163, Loss: 0.2987
Epoch: 164, Loss: 0.2712
Epoch: 165, Loss: 0.2436
Epoch: 166, Loss: 0.2659
Epoch: 167, Loss: 0.3060
Epoch: 168, Loss: 0.3108
Epoch: 169, Loss: 0.2332
Epoch: 170, Loss: 0.2480
Epoch: 171, Loss: 0.2682
Epoch: 172, Loss: 0.3096
Epoch: 173 Loss: 0 2665

test_acc = test()
print(f'Test Accuracy: {test_acc:.4f}')

model.eval()

out = model(dataset.x, dataset.edge_index)
visualize(out, color=dataset.y)

4/22/2021 Graph_RH_edits.ipynb - Colaboratory

https://colab.research.google.com/drive/1teb9hgmZJsO6aJGB6ZwyESu-0pXVOwEy#scrollTo=2iPQlg6AKByd&printMode=true 16/38

Epoch: 173, Loss: 0.2665
Epoch: 174, Loss: 0.2660
Epoch: 175, Loss: 0.2660
Epoch: 176, Loss: 0.2784
Epoch: 177, Loss: 0.2912
Epoch: 178, Loss: 0.2929
Epoch: 179, Loss: 0.2936
Epoch: 180, Loss: 0.2858
Epoch: 181, Loss: 0.2679
Epoch: 182, Loss: 0.2498
Epoch: 183, Loss: 0.2716
Epoch: 184, Loss: 0.2808
Epoch: 185, Loss: 0.2699
Epoch: 186, Loss: 0.2635
Epoch: 187, Loss: 0.2655
Epoch: 188, Loss: 0.2719
Epoch: 189, Loss: 0.2783
Epoch: 190, Loss: 0.2406
Epoch: 191, Loss: 0.2666
Epoch: 192, Loss: 0.2745
Epoch: 193, Loss: 0.2552
Epoch: 194, Loss: 0.2680
Epoch: 195, Loss: 0.2584
Epoch: 196, Loss: 0.2727
Epoch: 197, Loss: 0.2748
Epoch: 198, Loss: 0.2793
Epoch: 199, Loss: 0.2662
Epoch: 200, Loss: 0.2723

Test Accuracy: 0.8846

Requirement already satisfied: node2vec in /usr/local/lib/python3.7/dist-packages (0.4.3
Requirement already satisfied: gensim in /usr/local/lib/python3.7/dist-packages (from no
Requirement already satisfied: numpy in /usr/local/lib/python3.7/dist-packages (from nod
Requirement already satisfied: networkx in /usr/local/lib/python3.7/dist-packages (from
Requirement already satisfied: tqdm in /usr/local/lib/python3.7/dist-packages (from node
Requirement already satisfied: joblib>=0.13.2 in /usr/local/lib/python3.7/dist-packages
Requirement already satisfied: smart-open>=1.2.1 in /usr/local/lib/python3.7/dist-packag
Requirement already satisfied: six>=1.5.0 in /usr/local/lib/python3.7/dist-packages (fro
Requirement already satisfied: scipy>=0.18.1 in /usr/local/lib/python3.7/dist-packages (
Requirement already satisfied: decorator<5,>=4.3 in /usr/local/lib/python3.7/dist-packag

Computing transition probabilities: 100%

Generating walks (CPU: 1): 20%|██ | 2/10 [00:00<00:00, 15.40it/s]
Generating walks (CPU: 1): 100%|██████████| 10/10 [00:01<00:00, 9.54it/s]

26/26 [00:00<00:00, 36.60it/s]

!pip install node2vec
from node2vec import Node2Vec
n2v = Node2Vec(gr_price)
n2v_model = n2v.fit(window=10, min_count=1, batch_words=4)

n2v_model.wv.get_vector('AAPL')

df newie = pd DataFrame(columns=('Node' 'X' 'Y'))

4/22/2021 NER_RH.ipynb - Colaboratory

https://colab.research.google.com/drive/1EqepduKYvyUzrW3V2pEJJCswlf4VEVIS#printMode=true 1/10

1. Import Packages

install flair
!pip install flair

load basic packages
import pandas as pd
from itertools import combinations, product
import string
import re
import matplotlib.pyplot as plt
import seaborn as sns

from tqdm import tqdm

load Flair and NLTK
import torch
from flair.data import Sentence
from flair.models import SequenceTagger
from nltk import tokenize

import nltk
nltk.download('punkt')

is cuda available?
torch.cuda.is_available()

Requirement already satisfied: future in /usr/local/lib/python3.7/dist-packages (from
Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.7/dist-pac
Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local
Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.7/dist-packages
Requirement already satisfied: wrapt<2,>=1.10 in /usr/local/lib/python3.7/dist-packag
Requirement already satisfied: typing-extensions in /usr/local/lib/python3.7/dist-pac
Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.7/dist-packages (f
Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-pa

Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/python3.7/dist
Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-packages
Requirement already satisfied: chardet<5,>=3.0.2 in /usr/local/lib/python3.7/dist-pac
Requirement already satisfied: click in /usr/local/lib/python3.7/dist-packages (from
Requirement already satisfied: decorator>=4.3.0 in /usr/local/lib/python3.7/dist-pack
Building wheels for collected packages: gdown
 Building wheel for gdown (PEP 517) ... done
 Created wheel for gdown: filename=gdown-3.12.2-cp37-none-any.whl size=9693 sha256=3
 Stored in directory: /root/.cache/pip/wheels/81/d0/d7/d9983facc6f2775411803e0e2d30e
Successfully built gdown
Building wheels for collected packages: ftfy, sqlitedict, langdetect, segtok, mpld3,
 Building wheel for ftfy (setup.py) ... done
 Created wheel for ftfy: filename=ftfy-6.0-cp37-none-any.whl size=41622 sha256=5ba08
 Stored in directory: /root/.cache/pip/wheels/22/8b/08/7d1c17849e10371206a262304973b
 Building wheel for sqlitedict (setup.py) ... done
Created wheel for sqlitedict: filename=sqlitedict-1 7 0-cp37-none-any whl size=1437

4/22/2021 NER_RH.ipynb - Colaboratory

https://colab.research.google.com/drive/1EqepduKYvyUzrW3V2pEJJCswlf4VEVIS#printMode=true 2/10

 Created wheel for sqlitedict: filename=sqlitedict-1.7.0-cp37-none-any.whl size=1437
 Stored in directory: /root/.cache/pip/wheels/cf/c6/4f/2c64a43f041415eb8b8740bd80e15
 Building wheel for langdetect (setup.py) ... done
 Created wheel for langdetect: filename=langdetect-1.0.8-cp37-none-any.whl size=9931
 Stored in directory: /root/.cache/pip/wheels/8d/b3/aa/6d99de9f3841d7d3d40a60ea06e6d
 Building wheel for segtok (setup.py) ... done
 Created wheel for segtok: filename=segtok-1.5.10-cp37-none-any.whl size=25019 sha25
 Stored in directory: /root/.cache/pip/wheels/b4/39/f6/9ca1c5cabde964d728023b5751c3a
 Building wheel for mpld3 (setup.py) ... done
 Created wheel for mpld3: filename=mpld3-0.3-cp37-none-any.whl size=116679 sha256=0b
 Stored in directory: /root/.cache/pip/wheels/c0/47/fb/8a64f89aecfe0059830479308ad42
 Building wheel for overrides (setup.py) ... done
 Created wheel for overrides: filename=overrides-3.1.0-cp37-none-any.whl size=10174
 Stored in directory: /root/.cache/pip/wheels/5c/24/13/6ef8600e6f147c95e595f1289a86a
 Building wheel for sacremoses (setup.py) ... done
 Created wheel for sacremoses: filename=sacremoses-0.0.44-cp37-none-any.whl size=886
 Stored in directory: /root/.cache/pip/wheels/3e/fb/c0/13ab4d63d537658f4483667446543
Successfully built ftfy sqlitedict langdetect segtok mpld3 overrides sacremoses
ERROR: torchvision 0.9.1+cu101 has requirement torch==1.8.1, but you'll have torch 1.
ERROR: torchtext 0.9.1 has requirement torch==1.8.1, but you'll have torch 1.7.1 whic
ERROR: google-colab 1.0.0 has requirement requests~=2.23.0, but you'll have requests
ERROR: datascience 0.10.6 has requirement folium==0.2.1, but you'll have folium 0.8.3
Installing collected packages: ftfy, requests, overrides, konoha, sqlitedict, sentenc
 Found existing installation: requests 2.23.0
 Uninstalling requests-2.23.0:
 Successfully uninstalled requests-2.23.0
 Found existing installation: gdown 3.6.4
 Uninstalling gdown-3.6.4:
 Successfully uninstalled gdown-3.6.4
 Found existing installation: torch 1.8.1+cu101
 Uninstalling torch-1.8.1+cu101:
 Successfully uninstalled torch-1.8.1+cu101
Successfully installed bpemb-0.3.3 deprecated-1.2.12 flair-0.8.0.post1 ftfy-6.0 gdown
[nltk_data] Downloading package punkt to /root/nltk_data...
[nltk_data] Unzipping tokenizers/punkt.zip.

2. Load Flair NER model

2021-04-13 06:09:23,271 --
2021-04-13 06:09:23,278 The model key 'ner' now maps to 'https://huggingface.co/fl
2021-04-13 06:09:23,281 - The most current version of the model is automatically
2021-04-13 06:09:23,283 - (you can alternatively manually download the original m
2021-04-13 06:09:23,284 --

Downloading: 100%

2021-04-13 06:09:36,316 loading file /root/.flair/models/ner-english/4f4cdab26f24c

432M/432M [00:13<00:00, 32.5MB/s]

#Load NER Model
tagger = SequenceTagger.load('ner')

https://huggingface.co/flair/ner-english

4/22/2021 NER_RH.ipynb - Colaboratory

https://colab.research.google.com/drive/1EqepduKYvyUzrW3V2pEJJCswlf4VEVIS#printMode=true 3/10

3. Load Data

from google.colab import drive

import functools
drive.mount('/content/drive')
df = pd.read_csv('/content/drive/My Drive/eval_content_2016.csv')

#Above two lines may have to be changed to import your data depending on where it is
#and what the file name is

Mounted at /content/drive

4. Remove pronouns

pronouns = ['I', 'You', 'It', 'He', 'She', 'We', 'They']
suffixes = ["", "’m", "’re", "’s", "’ve", "’d", "'m", "'re", "'s", "'ve", "'d", "m", "re", "s

contraptions = [(p, s) for p in pronouns for s in suffixes]

df_contraptions = pd.DataFrame(contraptions, columns=['pronoun', 'suffix'])

df_contraptions['contraption'] = df_contraptions.apply(lambda x: x['pronoun'] + x['suffix'],

contraptions = df_contraptions.contraption.values

4. De�ne NER function

define function

def get_ner_data(df_row):
 '''
 - function to extract named entities from a paragraph
 - returns two data frames:
 - the first is a dataframe of all unique entities (persons and orgs)
 - the second is the links between the entities
 '''
 paragraph=df_row.content

h d b

4/22/2021 NER_RH.ipynb - Colaboratory

https://colab.research.google.com/drive/1EqepduKYvyUzrW3V2pEJJCswlf4VEVIS#printMode=true 4/10

 #changed above row
 # remove newlines and odd characters
 paragraph = re.sub('\r', '', paragraph)
 paragraph = re.sub('\n', ' ', paragraph)
 paragraph = re.sub("’s", '', paragraph)
 paragraph = re.sub("“", '', paragraph)
 paragraph = re.sub("”", '', paragraph)

 # tokenise sentences
 sentences = tokenize.sent_tokenize(paragraph)
 sentences = [Sentence(sent) for sent in sentences]

 # predict named entities
 for sent in sentences:
 tagger.predict(sent)

 # collect sentence NER's to list of dictionaries
 sent_dicts = [sentence.to_dict(tag_type='ner') for sentence in sentences]

 # collect entities and types
 entities = []
 types = []
 for sent_dict in sent_dicts:
 entities.extend([entity['text'] for entity in sent_dict['entities']])
 types.extend([str(entity['labels'])[1:4] for entity in sent_dict['entities']])
 #The above line is what I changed from the default notebook to get things working

 # create dataframe of entities (nodes)
 df_ner = pd.DataFrame(data={'entity': entities, 'type': types})
 df_ner = df_ner[df_ner['type'].isin(['ORG'])]
 df_ner = df_ner[df_ner['entity'].map(lambda x: isinstance(x, str))]
 df_ner = df_ner[~df_ner['entity'].isin(df_contraptions['contraption'].values)]
 df_ner['entity'] = df_ner['entity'].map(lambda x: x.translate(str.maketrans('', '', strin
 #df_ner['entity'] = df_ner.apply(lambda x: x['entity'].split(' ')[len(x['entity'].split('
 df_ner = df_ner.drop_duplicates().sort_values('entity')

 # get entity combinations
 combs = list(combinations(df_ner['entity'], 2))

 # create dataframe of relationships (edges)
 df_links = pd.DataFrame(data=combs, columns=['from', 'to'])

 #Adding information to links for data tracking and visualization- use one section OR the

 df_links['title']=df_row.title
 df_links['date']=df_row.date
 #Use these two for Kaggle datasets- they do not have URLs since they are old now, so we u

 #df_links['url']=df_row.link
 #df_links['date']=(df_row.datetime)[0:10]
 #df_links['time']=(df_row.datetime)[10:25]

4/22/2021 NER_RH.ipynb - Colaboratory

https://colab.research.google.com/drive/1EqepduKYvyUzrW3V2pEJJCswlf4VEVIS#printMode=true 5/10

_ [] (_)[]
 #Use these for any of our own datasets pulled using Goose (they have URLs and datetimes)

 return df_ner, df_links

5. Apply function

df_domain = df.groupby('media').agg({'content': 'count'}).reset_index()
df_domain.columns = ['media', 'count']
df_domain = df_domain.sort_values('count', ascending=False)
dfd_small=df_domain.iloc[1:21,:]

dfd_small

g2 = sns.barplot(data=dfd_small,
x='count',
y='Domain',
dodge=False,
orient='h',
hue='count',
palette='viridis')

g2.set_yticks([])
g2.set_title('Number of articles from each provider')
g2.set_xlabel('Count')
g2.set_ylabel('')
g2.set_xlim(0, max(dfd_small['count'])+150)
g2.legend_.remove()
g2.tick_params(labelsize=5)

for i in dfd_small.index:
g2.text(df_domain.iloc[i]['count']+5, i+0.25, df_domain.iloc[i]['Domain'], font

sns.despine()
g2.get_figure().savefig('domain_plot.png', dpi=1000)

4/22/2021 NER_RH.ipynb - Colaboratory

https://colab.research.google.com/drive/1EqepduKYvyUzrW3V2pEJJCswlf4VEVIS#printMode=true 6/10

media count

108 Fortune 37

287 The Motley Fool 33

304 TheStreet 32

224 Quartz 29

161 MarketWatch 27

218 Profit Confidential 22

277 The Guardian 21

48 Business Wire 20

107 Forbes 19

56 CNBC 18

233 Reuters 16

183 Nasdaq 15

330 Wall Street Journal 15

252 Smarter Analyst 13

313 USA Today 12

44 Business - Insider 12

199 PCMag 11

102 FierceBiotech 11

281 The Indian Express 11

180 NPR 11

df_ner = pd.DataFrame()
df_links = pd.DataFrame()

for row in tqdm(df.itertuples(index=False)):
#changed above row
 try:
 df_ner_temp, df_links_temp = get_ner_data(row)

 df_ner = df_ner.append(df_ner_temp)
 df_links = df_links.append(df_links_temp)
 except:
 continue

1228it [1:08:11, 3.33s/it]

praph=df['content'].iloc[1]
praph = re.sub('\r', '', praph)
praph = re.sub('\n', ' ', praph)
praph = re.sub("’s", '', praph)
praph = re.sub("“", '', praph)
praph = re.sub("”", '', praph)

tokenise sentences
sentences = tokenize.sent_tokenize(praph)

4/22/2021 NER_RH.ipynb - Colaboratory

https://colab.research.google.com/drive/1EqepduKYvyUzrW3V2pEJJCswlf4VEVIS#printMode=true 7/10

from to title date

0 AXP American Express Analysts Remain Positive on Starbucks
Corporat...

Jan 22,
2016

1 AXP American Express
Company

Analysts Remain Positive on Starbucks
Corporat...

Jan 22,
2016

2 AXP Costco Analysts Remain Positive on Starbucks
Corporat...

Jan 22,
2016

3 AXP Deutsche Bank Analysts Remain Positive on Starbucks
Corporat...

Jan 22,
2016

4 AXP MarriottStarwood Analysts Remain Positive on Starbucks
Corporat...

Jan 22,
2016

...

73 USDA Walmart How Aldi is beating Walmart in the grocery
aisle

Mar 29,
2016

74 USDA WillardBishop How Aldi is beating Walmart in the grocery
aisle

Mar 29,
2016

How Aldi is beating Walmart in the grocery Mar 29

sentences = [Sentence(sent) for sent in sentences]

predict named entities
for sent in sentences:
tagger.predict(sent)

collect sentence NER's to list of dictionaries
sent_dicts = [sentence.to_dict(tag_type='ner') for sentence in sentences]

collect entities and types
entities = []
types = []
for sent_dict in sent_dicts:
entities.extend([entity['text'] for entity in sent_dict['entities']])
types.extend([str(entity['labels'])[1:4] for entity in sent_dict['entities']])

types
df_links

6. Remove plurals and possessives

def remove_s(entity, entity_series):
 if (entity[-1] == 's') & (entity[:-1] in entity_series):
 return entity[:-1]

l

4/22/2021 NER_RH.ipynb - Colaboratory

https://colab.research.google.com/drive/1EqepduKYvyUzrW3V2pEJJCswlf4VEVIS#printMode=true 8/10

 else:
 return entity

df_links['to'] = df_links['to'].map(lambda x: remove_s(x, df_ner['entity'].values))
df_links['from'] = df_links['from'].map(lambda x: remove_s(x, df_ner['entity'].values))
df_ner['entity_cl'] = df_ner['entity'].map(lambda x: remove_s(x, df_ner['entity'].values))

from to title date

df_links[df_links['to'].str.contains('They')]

7. Export Data

djia_31_tix = pd.Series(['AXP','AAPL','AMGN','BA','CAT','CRM','CSCO','CVX','DIS','DOW','DJIA'
 'GS','HD','HON','IBM','INTC','JNJ','JPM','KO','MCD','MMM',
 'MRK','MSFT','NKE','PG','TRV','UNH','V','VZ','WBA','WMT',])

djia_31_names= pd.Series(['American Express','Apple','Amgen','Boeing', 'Caterpillar',
 'Salesforce', 'Cisco', 'Chevron', 'Disney', 'Dow Chemical', 'Dow Jo
 'Goldman Sachs', 'Home Depot', 'Honeywell', 'International Business
 'Intel', 'Johnson Johnson', 'JPMorgan', 'Coca-Cola',
 'McDonalds', '3M', 'Merck', 'Microsoft', 'Nike', 'Proctor Gamble',
 'Travelers', 'UnitedHealth', 'Visa', 'Verizon', 'Walgreens', 'Walma

djia_31_comb=djia_31_tix.append(djia_31_names)

df_ner_dj=df_ner[df_ner.entity_cl.isin(djia_31_comb)]
df_links_dj=df_links[df_links['from'].isin(djia_31_comb)]
df_links_dj=df_links_dj[df_links_dj['to'].isin(djia_31_comb)]

conv_dict = {djia_31_names[company]: djia_31_tix[company] for company in range(len(djia_31_na
df_ner_dj=(df_ner_dj.replace({'entity_cl':conv_dict})).drop_duplicates(subset=['entity_cl'])
df_links_dj=df_links_dj.replace({'from':conv_dict})
df_links_dj=(df_links_dj.replace({'to':conv_dict})).drop_duplicates()
df_links_dj=df_links_dj[df_links_dj['from'] != df_links_dj['to']]
df_ner_dj

4/22/2021 NER_RH.ipynb - Colaboratory

https://colab.research.google.com/drive/1EqepduKYvyUzrW3V2pEJJCswlf4VEVIS#printMode=true 9/10

entity type entity_cl

5 AXP ORG AXP

15 Apple ORG AAPL

34 Disney ORG DIS

4 Goldman Sachs ORG GS

1 Microsoft ORG MSFT

84 KO ORG KO

86 NKE ORG NKE

37 Visa ORG V

38 JPM ORG JPM

15 IBM ORG IBM

16 WMT ORG WMT

4 BA ORG BA

65 JNJ ORG JNJ

130 MMM ORG MMM

25 Cisco ORG CSCO

0 Amgen ORG AMGN

39 MRK ORG MRK

14 CRM ORG CRM

18 Verizon ORG VZ

73 UNH ORG UNH

18 Dow Jones Industrial Average ORG DJIA

31 INTC ORG INTC

3 Chevron ORG CVX

11 Caterpillar ORG CAT

7 DOW ORG DOW

11 Home Depot ORG HD

3 HON ORG HON

21 PG ORG PG

3 MCD ORG MCD

7 TRV ORG TRV

2 WBA ORG WBA

df_ner_dj.to_csv('/content/drive/My Drive/df_ner2_eval_2016.csv', index=False)
df_links_dj.to_csv('/content/drive/My Drive/df_links2_eval_2016.csv', index=False)

