If You Take The Road Less Travelled by, Does it Make a Difference?

Pittsburgh Penguins MSP Consulting Project

5/11/2021

Minyue Fan, Steve Kim, Kexiong Shen, Linda Yang Advisor: Brian MacDonald Client: Sam Ventura

> Carnegie Mellon University

Agenda

Торіс	Slides No.	
Introduction	3-5	
Data	6-10	
Methods	11-12	
Propensity Scores Matching & Weighting	13-18	
Bayesian Additive Regression Trees	19-29	
Discussion	30	
Q&A	31	Carnegie Mellon
		 Mellon University 2

Introduction: Overview

- There are multiple traditional paths hockey prospects can take to get to the NHL:
 - $\circ \quad \mathsf{USHL} \to \mathsf{NCAA} \to \mathsf{NHL}$
 - $\circ \quad \mathsf{USHL} \to \mathsf{NCAA} \to \mathsf{AHL} \to \mathsf{NHL}$
 - $\circ \quad \text{International} \rightarrow \text{KHL} \rightarrow \text{NHL}$
 - Other defined paths
- Most players do not immediately go to the NHL when they are eligible (drafted or not). They stay in or move to some "development leagues" before entering the NHL.
 - Draft eligibility (North America): Players must be 18 years old by 15 September and under
 20 years old by 31 December in the year of the draft.
 - Development leagues: USHL, NCAA, etc.

Carnegie

University³

Mellon

Introduction: Research Question

• Questions:

Does taking different development paths matter? How do players' development paths impact their performance and success in the NHL?

- The understanding in the scouting community is that development path does matter
 - Only anecdotal
 - We intend to establish grounding on this thought

Introduction: Overview

- People have very strong opinions about how players' development paths impact their future in the NHL.
 - Typically, American players who take the NCAA path have higher success rates (e.g. 20% make the NHL, compared to 5% from the USHL path)
 - However, the NCAA player pool are already better in terms of quality. Better players are getting their opportunities in the NCAA.
 - Is there causal impact of taking the NCAA path?

Data

- Two datasets:
 - Leagues: NHL, NCAA, USHL and AHL
 - O Time period: 2001 2020
 - contains some data earlier than 2001
 - Players' biographical information
 - Players' performance data each season
 - box score statistics

Carnegie Mellon

University₆

Data Description

- Biographical information:
 - 15786 players

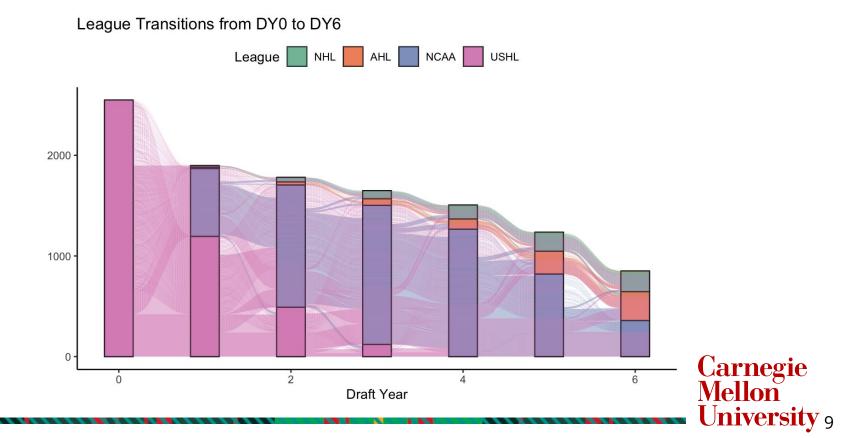
*	\$	Position [©]	DateofBirth ⁺⁺	Height [‡]	Weight	Nation	Shoots 🍧
1	Scott May	С	Jan 08, 1982	5'10" / 178 cm	187 lbs / 85 kg	Canada	R
2	Kent Gillings	F	Jun 14, <mark>1</mark> 979	5'10" / 177 cm	194 lbs / 88 kg	Canada / Ireland	R
3	Tyler Kindle	D	Feb 20, 1978	5'8" / 173 cm	165 lbs / 75 kg	USA	L
4	D'Arcy McConvey	С	Oct 23, 1981	5'10" / 177 cm	185 lbs / 84 kg	Canada	L
5	Lloyd Marks	С	Oct 21, 1977	5'8" / 173 cm	174 lbs / 79 kg	Canada	L
6	Jason Deskins	С	May 06, 1979	5'10" / 178 cm	185 lbs / 84 kg	USA	-
7	Jim Abbott	LW/C	May 03, 1980	6'1" / 186 cm	185 lbs / 84 kg	USA	L

• Rare missing data

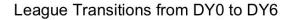
Carnegie Mellon

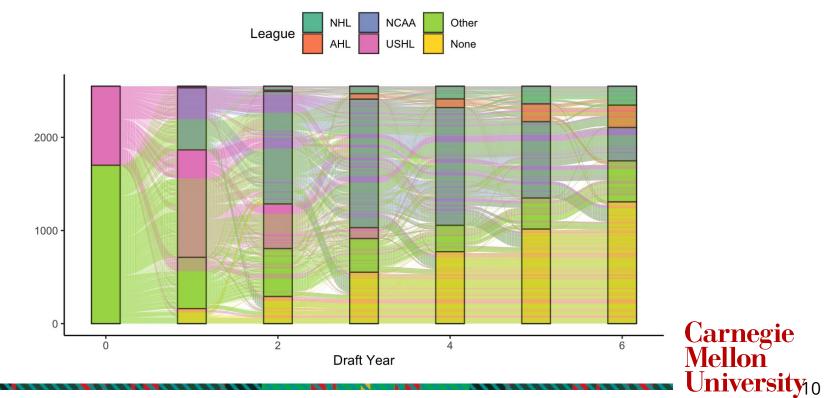
University 7

Data Description


- Player performance:
 - 266,326 rows (15,220 players * the number of seasons they played)

*	Player	Season	[©] Team	League	[©] Games	Goals	Assists 🎈	TotalPoints	PenaltyMinutes	PlusMinus
1	Scott May	1998-99	South Surrey Eagles	BCHL	45	10	28	38	23	
2	Scott May	1999-00	South Surrey Eagles	BCHL	54	42	42	84	86	
3	Scott May	2000-01	Ohio State Univ.	NCAA	37	9	9	18	26	-3
4	Scott May	2001-02	Ohio State Univ.	NCAA	40	12	17	29	42	4
5	Scott May	2002-03	Ohio State Univ.	NCAA	43	10	25	35	56	5
6	Scott May	2003-04	Ohio State Univ.	NCAA	41	15	19	34	42	4
7	Scott May		St. John's Maple Leafs	AHL	5	1	1	2	2	3
8	Scott May	2004-05	St. John's Maple Leafs	AHL	16	0	1	1	21	-3


Carnegie Mellon


University₈

Exploratory Data Analysis

Exploratory Data Analysis

Method: Causal Inference

- Goal: determine the causal effect of development paths (Treatment **Z**) on players' future in the NHL (Response **Y**), controlling for player quality etc. (Confounders **X**)
 - Conditional Average Treatment Effect (CATE):

E[Y | Z = z1, X] - E[Y | Z = z0, X]

• The fundamental problem: our samples are biased

(e.g. better prospects are more likely to enter NCAA than USHL)

Method: Two solutions

- Solution 1: Control the treatment assignment mechanism; then estimate causal effect just as in a randomized experiment
 - Method: Propensity Score Matching & Weighting

- Solution 2: If we can precisely estimate a model for the outcome Y = f (z, x) + ε , then we can calculate CATE
 - Method: Bayesian Additive Regression Trees (BART)

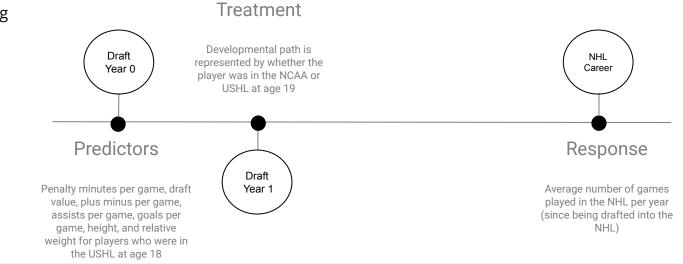
Method

Propensity Score Weighting

- Used to reweight the data so that we don't have any selection effect or bias in our treatment.
- We use logistic regression to predict the treatment T as well as possible from all of the predictors.
 - P(T = NCAA | X) is our **propensity score.** $\hat{e}(x) = P(T = NCAA | X)$
 - Reweight the original data based on the propensity score. We explored two weighting methods:

Metho	<u>od 1</u>	Method 2
For treatment group	For control group	
$\omega = \frac{1}{1 - \hat{e}(x)}$	$\omega = \frac{1}{\hat{e}(x)}$	$\omega = \hat{e}(x)(1-\hat{e}(x))$

- A potential drawback of propensity scores when used for matching is that a very large number of subjects may be needed
- Propensity scores can also be used as weights in a linear model such as regression or ANOVA, so all the subjects in the control and treatment group can be used for this application
 Carnegie

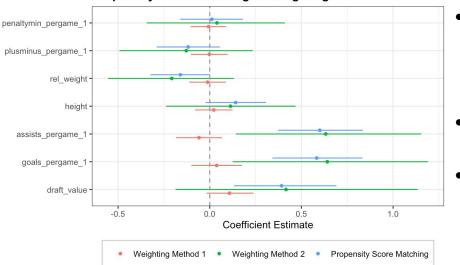

Mellon

University₁₃

Method

Propensity Score Weighting

What is the causal effect of developmental path on player success in the NHL?

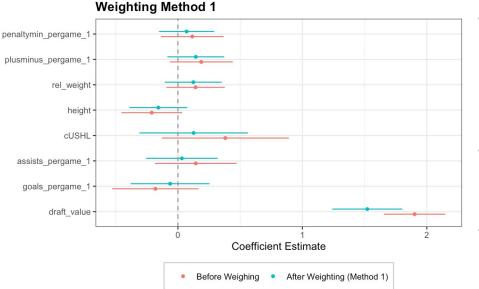

Forwards

Defensemen

- 1. Obtain the propensity score by modeling P(T = NCAA) based on predictors in draft year 0
- 2. Predict success in NHL with propensity score weights on the data
- 3. Interpret coefficient estimate for the treatment variable

- 1. Obtain the propensity score by modeling P(T = NCAA) based on predictors in draft year 0
- 2. Predict success in NHL with propensity score weights on the data
- 3. Interpret coefficient estimate for the treatment variable

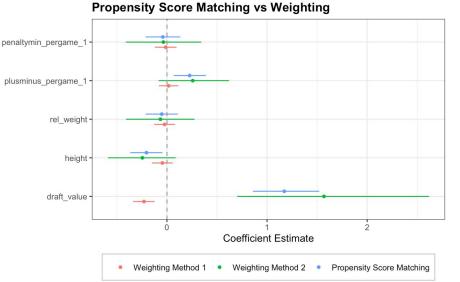
Propensity Score Weighting vs Matching : Forward Players


Propensity Score Matching vs Weighting

- We have **removed selection bias if the coefficient estimates are zero** when predicting treatment effect
 - This indicates that the confounders no longer have an effect on the treatment assignments
- Weighting Method 1 has 95% CIs that contain zero in all coefficient estimates
- Rel_weight is player weight after adjusting for its relationship with height

Predicting the development league at draft year 1 based on success metrics and player information in draft year 0

Propensity Score Weighting: Forward Players

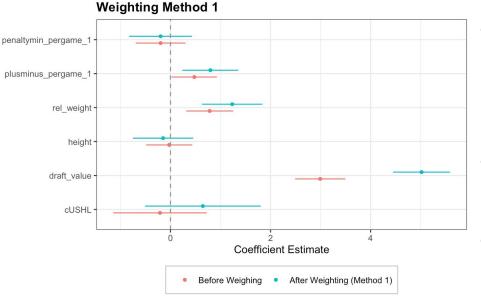


- After addressing for selection bias using weight method 1, we observe that
 developmental league is not a significant
 predictor for success in the NHL for
 forward positioned players
- Player success metrics in draft year 0 such as draft value appears to be a significant predictor after propensity score weighting
- Thus, draft value is an indicator of success in the NHL

Predicting the average number of NHL games played per year based on success metrics and player information in draft year 0 and developmental league (USHL vs NCAA) in draft year 1

Carnegie Mellon University₁₆

Propensity Score Weighting vs Matching : Defensemen



- We have **removed selection bias if the coefficient estimates are zero** when predicting treatment effect
 - This indicates that the confounders no longer have an effect on the treatment assignments
- Weighting Method 1 has 95% Cls that contain zero in most coefficient estimates
- Removed goals and assists per game due to correlation with draft value and lower adjusted r squared
- Rel_weight is player weight after adjusting for its relationship with height

Predicting the development league at draft year 1 based on success metrics and player information in draft year 0

Carnegie Mellon University₁₇

Propensity Score Matching: Defensemen

- After addressing for selection bias using weight method 1, we observe that developmental league is not a significant predictor for success in the NHL for defensemen
- Player success metrics in draft year 0 such as draft value appears to be a significant predictor after propensity score weighting
- Thus, draft value is an indicator of success in the NHL

Predicting the average number of NHL games played per year based on success metrics and player information in draft year 0 and developmental league (USHL vs NCAA) in draft year 1

Carnegie Mellon

University₁₈

Method

Bayesian Additive Regression Trees (BART)

- Estimate Y = f (z, x) + ε , where ε ~ N(0, σ ^2) using a **sum-of-trees** model
- The idea is to fit a bunch of **weak-learning** (small) trees each fitting to the residuals of the previous trees **additively** combine these trees to reduce bias, similar to boosting.
- Introduce a **regularization prior** to avoid overfitting. controls the size of the trees (T), the magnitude of the outputs trees (M), and the value of σ^{2} .
- Compute the **posterior** using **Markov Chain Monte Carlo** (MCMC)
- At each iteration of MCMC, T, M and σ are redrawn to seek a good posterior.
- Using BART, we can calculate CATE by $\frac{1}{n} \sum_{i=1}^{n} f(1, x_i) f(0, x_i)$

Carnegie Mellon

University₉

Method

Bayesian Additive Regression Trees (BART)

- Selected 2826 players (1830 Forward and 996 Defensemen) who played in USHL in their initial draft year
 - 233 players who played in either USHL or NCAA in the following year
- Predictors:
 - Position (Forward/Defensemen), Height, Weight, Penalty minutes, Draft value, League in the following season
- Response variable:
 - The average number of games played in the NHL per season

Carnegie Mellon

University₂₀

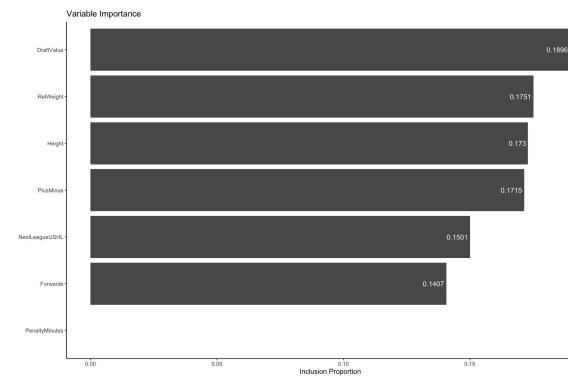
Result -- Treatment Effects (NCAA vs. USHL)

BART

Y = The average number of games played in the NHL per season

Observed Average Difference = average Y for the NCAA group - average Y for the USHL group

CATE = E [Y | Z = NCAA , X] - E [Y | Z = USHL, X]


	Observed Average Difference	CATE using BART	CATE from propensity score weighting	
Forward	13.36513	0.0541	2.0297	
Defense*	14.65782	0.0554	0.1871	

*Defense: "D/F", "D/LW", "D"

Result -- Variable Importance

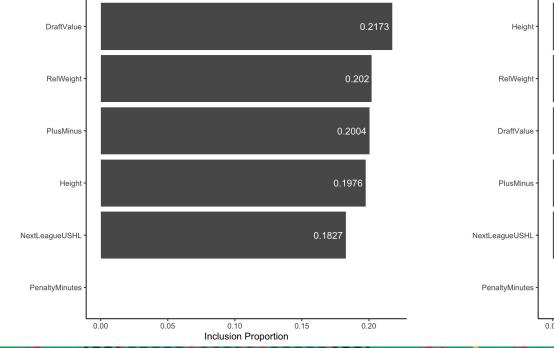
BART

NextLeagueUSHL = binary (1 if USHL, 0 if NCAA)

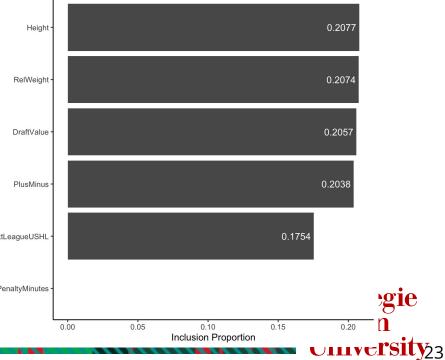
Forwards = binary (1 if Forwards, 0 if Defensemen)

Developmental path and position take less impact in predicting for the average number of NHL games per season

Penalty minutes seems irrelevant


Carnegie Mellon University₂₂

Result -- Variable Importance


BART

Variable Importance, separated by position

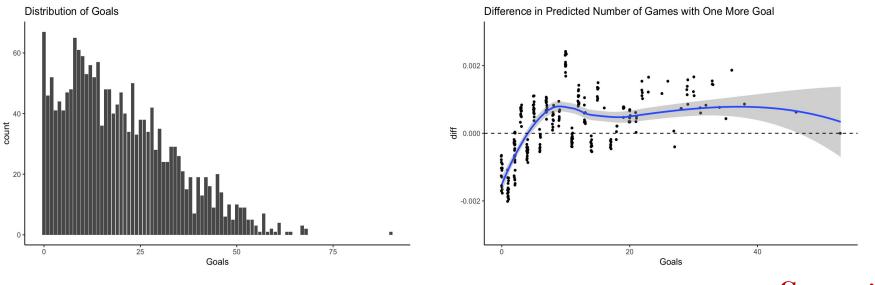
Variable Importance (Forwards)

Variable Importance (Defensemen)

I have one more goal?

I have one more assist?

What if ...

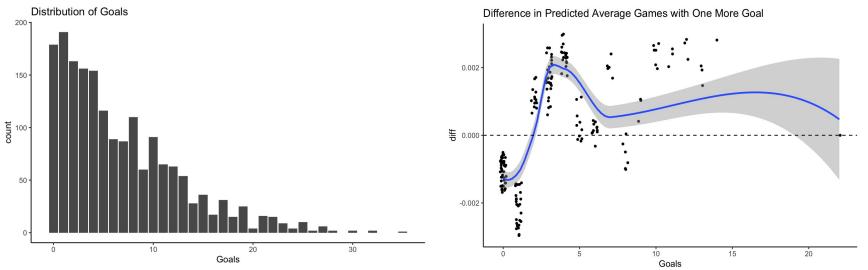

I am 1 inch taller?

I am 1 pound heavier?

Carnegie Mellon University₂₄

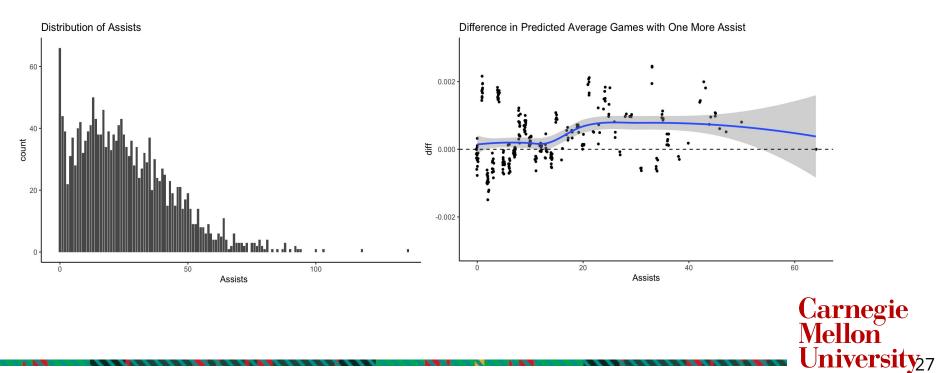
BART

What if one more goal for forward players? •

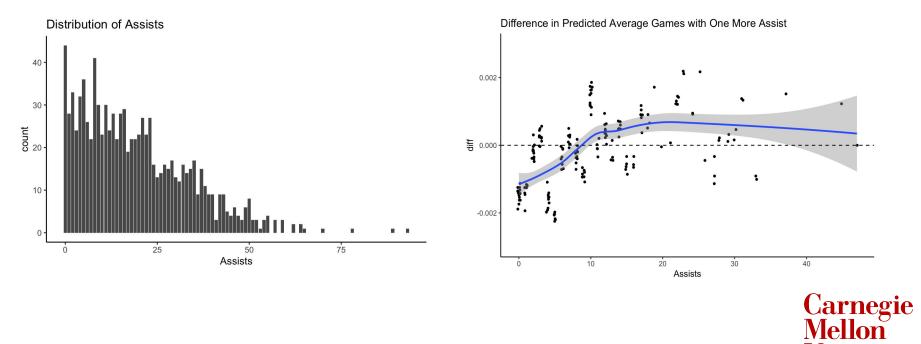


Carnegie Mellon

University₂₅

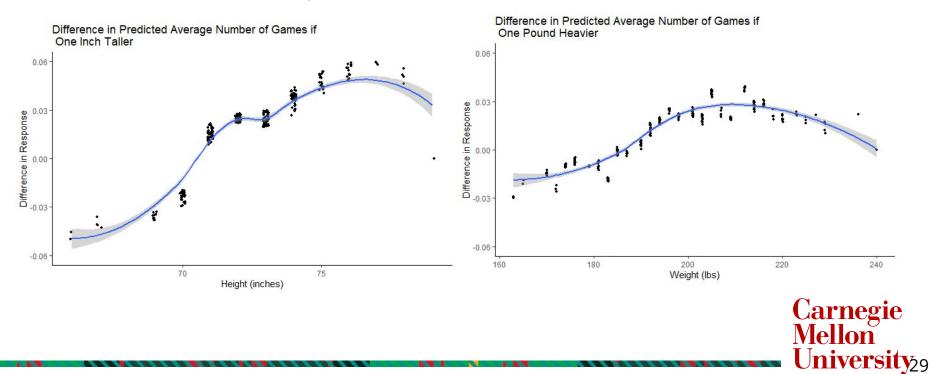

BART

• What if one more goal for defense players?


BART

• What if one more assist for forward players?

BART


• What if one more assist for defense players?

University₂₈

BART

• What if one inch taller or one pound heavier?

Discussion

- Developmental path does not seem to have much causal effect
- We only took players just entering their draft year
 - Potential causal effect may change (may have more impact) later in their developmental phase
- We only considered two main developmental leagues (USHL and NCAA)
 - \circ So much other developmental leagues, including overseas leagues

Q&A

Thank You!

Parameter Testing with Priors

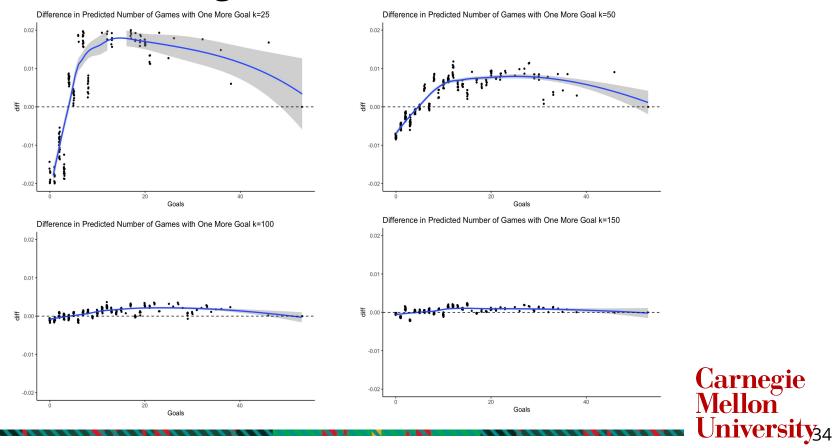
The prior for the BART model has three	
components:	

(1) the tree structure itself,

(2) the leaf parameters given the tree structure

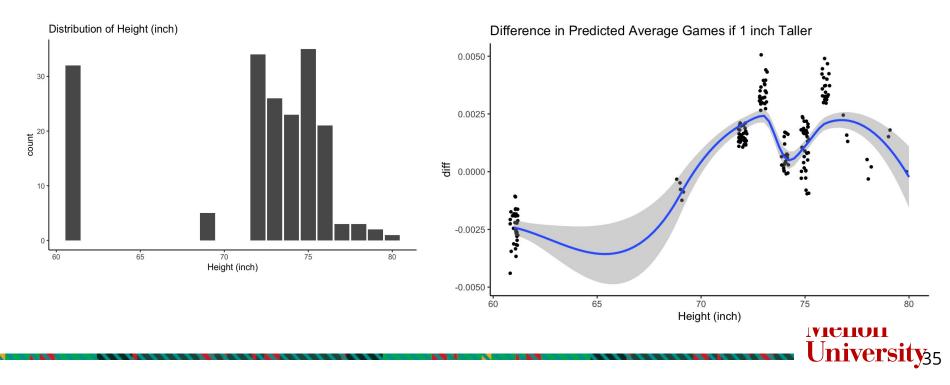
(3) the error variance σ^2 which is independent of the tree structure and leaf parameters

K: larger k means more model regularization

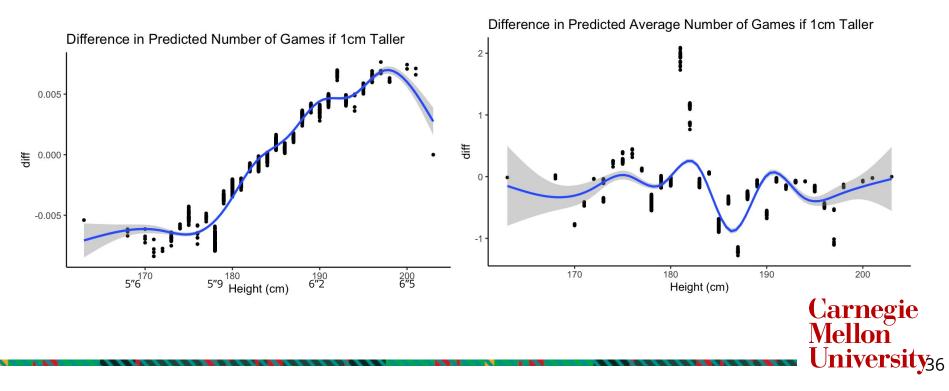

 μ :

a:

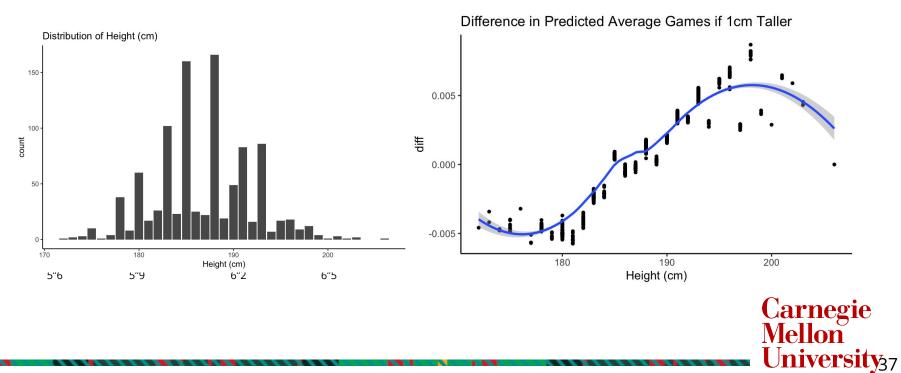
q:


Carnegie Mellon University₃₃

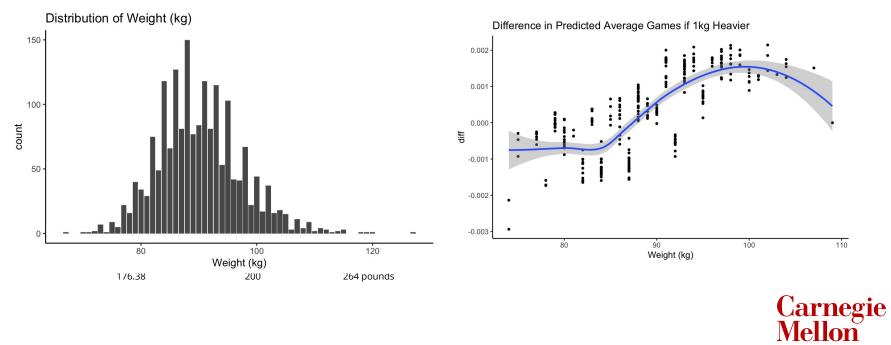
Parameter Testing with Priors


BART

• What if one inch taller for defend players?

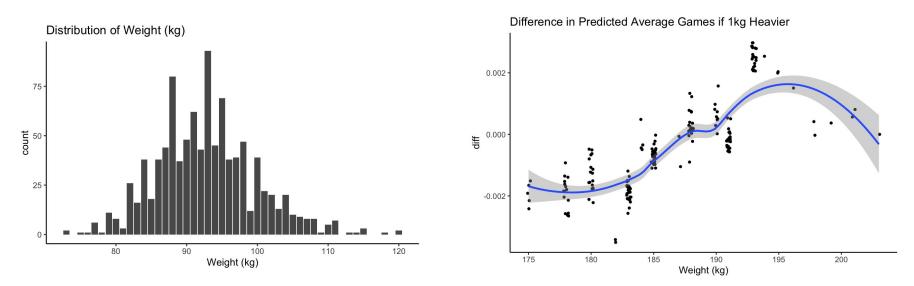

BART

• What if one centimeter/(0.39 inches) taller for forward players?


BART

• What if one centimeter/(0.39 inches) taller for defense players?

BART


• What if 1kg/2.2 pounds heavier for forward players?

University₃₈

BART

• What if one 1kg/2.2 pounds for defense players?

Carnegie Mellon

University₃₉