Master in Statistical Practice Carnegie Mellon University

Cheyenne Ehman

Ziyan Zhu

Carnegie Mellon University

Are School aged children vectors of COVID-19 in Ohio?

PHIGHT COVID RESEARCH PROJECT

PHIGHT COVID: Seema Lakdawala, Annika Avery, Rebecca Nugent MSP Team: Cheyenne Ehman, Yixuan Luo, Zi Yang, Ziyan Zhu Faculty Advisor: Valerie Ventura

05/11/2021

Ohio

Ohio because:

- Counties are comparable with respect to public health interventions;
 - Most interventions are statewide,
 - Few are at county-level.
- But there is a wide range of school teaching methods so we can study their effect on covid infections.

Majority teaching methods are clustered together in Ohio geography

County-wise variables

Majority Teaching Method	Teaching method with highest proportion
-----------------------------	---

Starting mid-semester, death numbers increase faster for On premises counties

Yellow area represents Fall Semester

County-wise variables

Majority Teaching Method	Teaching method with highest proportion
Death Incidence	Cumulative Deaths per 1000 population

Other non-schooling factors could also explain the differences between the curves

• Percent of senior population

- Rural-urban status
- Percent of uninsured population
 Death rate before fall semester
- Population density

• Average mobility level

On Premises counties have a higher percentage of seniors than **Online Only** counties

Online Only counties have higher population density than **On Premises** counties

We estimate the exponential growth coefficient to summarize the state of the disease

Infection model

Implied death model

$$I_t = I_{t-1} e^{B \over \downarrow} + \delta_t$$

- I_t : new infections on day t
- δ_t : random error

$$I_t = I_{t-1}e^B + \delta_t$$
$$\approx I_{t-1}e^B$$

$$I_t = I_{t-1}e^B + \delta_t$$
$$\approx I_{t-1}e^B$$

$$I_{t} = I_{t-1}e^{B} + \delta_{t}$$
$$\approx I_{t-1}e^{B}$$
$$\approx I_{t-2}e^{B}e^{B}$$

$$I_{t} = I_{t-1}e^{B} + \delta_{t}$$
$$\approx I_{t-1}e^{B}$$
$$\approx I_{t-2}e^{B}e^{B}$$

$$egin{aligned} I_t &= I_{t-1}e^B + \delta_t \ &pprox I_{t-1}e^B \ &pprox I_{t-2}e^Be^B \ &pprox I_{t-3}e^Be^Be^B \end{aligned}$$

$$I_{t} = I_{t-1}e^{B} + \delta_{t}$$

$$\approx I_{t-1}e^{B}$$

$$\approx I_{t-2}e^{B}e^{B}$$

$$\approx I_{t-3}e^{B}e^{B}e^{B}$$

$$\approx \dots$$

$$egin{aligned} I_t &= I_{t-1}e^B + \delta_t \ &pprox I_{t-1}e^B \ &pprox I_{t-2}e^Be^B e^B \ &pprox I_{t-3}e^Be^Be^B e^B \ &pprox \dots \ &pprox I_1e^{Bt} \end{aligned}$$

Every new person infected at time *s* will die with probability *d*

Every new person infected at time *s* will die with probability *d*

If the person dies, the time from infection to death is a "known" distribution with mean **24 days**

Every new person infected at time *s* will die with probability *d*

If the person dies, the time from infection to death is a "known" distribution with mean **24 days**

We assume that the time from infection to death is **exactly 24 days**

Every new person infected at time *s* will die with probability *d*

We assume that the time from infection to death is exactly 24 days

 \longrightarrow If there are I_s new patients at time s, dI_s will die at time t = s + 24

Every new person infected at time *s* will die with probability *d*

We assume that the time from infection to death is exactly 24 days

If there are I_s new patients at time s, dI_s will die at time t = s + 24

 \implies The number of expected deaths at time t is

 $D_tpprox d\ I_{t-24}$

Reference: Unwin, H. J. T., Mishra, S., Bradley, V. C., Gandy, A., Mellan, T. A., Coupland, H., Ish-Horowicz, J., Vollmer, M. A., Whittaker, C., Filippi, S. L. et al. (2020). State-level tracking of COVID-19 in the United States. *Nature communications* 11 1–9.

 $D_tpprox d\ I_{t-24}$

$$D_tpprox d\ I_{t-24}$$

Recall:

$$I_t pprox I_1 e^{Bt}$$

 $egin{aligned} D_t pprox d \ I_{t-24} \ & I_{t-24} pprox I_1 e^{B(t-24)} \ & \Longrightarrow D_t pprox d \ I_1 e^{B(t-24)} \end{aligned}$

$$egin{aligned} D_t &pprox d \ I_{t-24} \ & I_{t-24} &pprox I_1 e^{B(t-24)} \ & \Longrightarrow D_t &pprox d \ I_1 e^{B(t-24)} \ & \Longrightarrow \log(D_t) &pprox \log(d \ I_1) + B(t-24) \end{aligned}$$

We estimate **B** as the slope of the regression of $log(D_t)$ on (t - 24)

We estimate **B** as the slope of the regression of $\log(D_t)$ on (t - 24)But $B \equiv B(t)$ varies with time \implies Estimate B(t - 24) as the slope of the **local** regression of $\log(D_t)$ on t - 24

The instantaneous exponential growth coefficient captures the state of disease

We measure transmission by maximum severity and change in growth

- Max exponential growth during the fall semester
 - Severity of the pandemic

We measure transmission by maximum severity and change in growth

- Max exponential growth during the fall semester
 - Severity of the pandemic

- Change in exponential growth at the beginning of the semester
 - Direct School Effect

33

On premises counties experienced the lowest transmission rates

Distribution of Maximum Growth Coefficient

Hybrid

Majority Teaching Method

Online Only

0.01

On Premises

Surprising negative association between disease severity and mobility

Population density has a larger effect on pandemic severity for On premises counties

Max B in Fall v.s. Log of Population Density All Counties

36

0.08
Only micropolitan counties present all school postures

On premises counties have higher maximum severity than Online only counties

On premises counties have higher maximum severity than Online only counties

Take away:

- **Scientific**: micropolitan on premises counties have a higher exponential growth than online only counties
- **Statistical**: blocking removed the effects of (some) confounders

Maximum severity occurs in the second half of the semester, so we should look right after school starts

The change in growth after school starts better captures the effect of school posture

Change in Growth for On Premises counties shifted above others after school reopens

Take away:

- Micropolitan counties in Ohio are the most comparable
- On-premises counties had a larger maximum severity than Online-only counties
- On-premises counties had a **larger change in growth** than Online-only counties after school reopened

Next step:

Explore other states in similar settings to check if similar schooling effects can be observed

Carnegie Mellon University

Thank you!

Carnegie Mellon University

Appendix

11/1/1

References

- Bonvini, M., Kennedy, E.H., Ventura, V., Wasserman, L. (2021) Causal inference in the time of COVID-19. [*Preprint*]. Mar 7, 2021. Available from: <u>https://arxiv.org/abs/2103.04472</u>
- Unwin, H. J. T., Mishra, S., Bradley, V. C., Gandy, A., Mellan, T. A., Coupland, H., Ish-Horowicz, J., Vollmer, M. A., Whittaker, C., Filippi, S. L. et al. (2020). State-level tracking of COVID-19 in the United States. *Nature communications* **11** 1–9.
- Ventura, Valerie. (2021). PHIGHT notes.

Storyline

Does School teaching method have an effect in Ohio?

- 1. We see a striking difference in death incidence
- 2. This can be explained by many confounders (elderly population, uninsured, mobility, pop density, etc.), and cumulative death may exaggerate severity at a given time
- 3. Math for better measure of transmission *Exp. Growth Coefficient*

How do we control for confounders in this new measure?

- 4. By looking only at micropolitan counties: counties have comparable pop density and mobility and have counties from all three colors
- 5. When looking at the effect before and 3 weeks after school starts, we see that on premises counties have higher changes in growth!
- 6. This means that school posture (teaching method) probably has an effect! Next Steps:

We can confirm with other states in the future.

Data Details

Data Overview

- Data Sources
 - Cases & Deaths: John Hopkins Open Source Data API
 - K12 school policies: MCH.com
 - Mobile Mobility: <u>SafeGraph.com</u> via <u>CMU DELPHI Group</u>
- Time Range: 01/22/2020 02/22/2021
- About Ohio State:
 - 88 counties (2 dropped due to missing data)
 - 11,755,535 Population
 - 1,615,134 student enrolled in K12 schools (13.7% of population)
 - 2,871 schools

Data Relation

We aggregate K12 data to the county level

Data Wrangling

Death Incidence per 1000	Cumulative Deaths * 1000 / population
Online Only Proportion	#Student went Online Only / County Student Enrollment
Hybrid Proportion	#Student went Hybrid / County Student Enrollment
On Premises Proportion	#Student went On Premises / County Student Enrollment
Majority Teaching Method	Teaching method in county with highest proportion

- Manually drop redundant columns
- Manually correct wrong entries and NA values
- Missing values:
 - Only impute missing county with the city information
 - Remove COVID cases observations with missing values in cases & deaths

Ohio Maps

Summary Statistics

Ohio State

- 88 Counties (86 counties enclosed in data)
- Depulation: 11,755,535
- Student enrollment:
 1,615,134 (13.7%)
- Number of schools:2,871

Distribution of Student Enrollments in Ohio by Teaching Method

Urban Rural Status Large central metro Large fringe metro Medium metro Micropolitan Noncore Small metro

Metropolitan Status Metro Non-metro

Urban Rural Status Large central metro Large fringe metro Medium metro Micropolitan Noncore Small metro

Motivation

COVID Death Trend in Ohio State

Student enrollments back to school

The peak in proportion of cases from 0-19 year olds is followed by a peak in total cases after the start of the fall semester

Yellow Area represents the fall semester

% Daily cases under 29 years old peaks in late August, overlapping with school reopening

Death Incidence

Starting mid-semester, death incidence increases faster for on premises counties

Death Incidences Increase Faster for Red Counties

Yellow area represents Fall Semester

A statistical test confirms what we see:

Death proportions averaged within on premises, hybrid and online only counties are significantly different (p= .0076)

Death numbers are different in In-person Counties

Deaths plot mystery:

But note:

- Low (high) death rates before the semester implies low (high) death rates during the semester
- Low (high) death rates before the semester implies mostly on premises (online) teaching

Death rates before the semester is a confounder

Deaths vs. Cases Ratio

Online Only counties a have higher percentage of uninsured people than **On Premises** counties

Modeling Methodology

24 Days from Infections to Deaths on Average

Mobility
On premises counties have higher percent of cell phones away from home for 6 hours + in Fall

Similar ordering in death numbers and cell phone mobility for on-premises and online-only counties

Death Incidences Increase Faster for Red Counties Yellow area represents Fall Semester Percent Cell Phones Away Home for 6hr+ Yellow area represents Fall Semester

Part-time work -- different peaks?

Majority Teaching Method — On Premises — Hybrid — Online Only

Max B and Average B

Max B1 and Ave B1 very correlated

Micropolitan

Micropolitan counties spread out

Log population density is comparable in Micropolitan counties

Max B vs. Change in growth

Max Growth B

No significant difference in average Max B among different teaching method

Distribution of Max B in Micropolitan Counties

On premises counties are more severe for higher average mobility level

Severity of the pandemic during Fall semester is **negatively related** to the averaged mobility in **Hybrid** and **Online Only** counties

Max Growth for Micropolitan Counties

Majority Teaching Method - Hybrid - On Premises - Online Only

Change in Growth

Change in growth after start of school

Estimated *Change in Growth*:

Before School Reopens	B(3) - B(0)
After School Reopens	B(6) - B(3)

Assume that school posture takes 3 weeks to reflect on the change in the growth coefficient

Change in Growth for On Premises counties shifted above others after school reopens

Speed in On Premises counties shifted above others after school reopens

Change in growth before school does not correlate with change after school reopens

On Premises counties have a larger slope of change in growth

Sensitivity Analysis (Change in Growth v.s. Log Population Density)

Change in growth before school

No obvious change for three lines

Change in growth before school

The red line becomes even much lower according to time.

Change in growth after school

The red line starts to become above the other lines.

Change in growth after school

The red line is above the other lines.

Sensitivity Analysis (Change in Growth before school v.s. after school)

Change in growth before school does not correlate with change after school reopens: B(3) - B(0) v.s. B(0) - B(-3)

Change in growth before school does not correlate with change after school reopens: *B(4) - B(1) v.s. B(1) - B(-2)*

Change in growth before school does not correlate with change after school reopens: B(5) - B(2) v.s. B(2) - B(-1)

Change in growth before school does not correlate with change after school reopens: *B(6) - B(3) v.s. B(3) - B(0)*

Change in growth before school does not correlate with change after school reopens: *B(7) - B(4) v.s. B(4) - B(1)*

Old Modeling

Conditional on this patient dying, the time from infection to death is a "known" function $f_0(s,t)$

Conditional on this patient dying, the time from infection to death is a "known" function $f_0(s,t)$

the probability that a new covid patient at s dies at t is $d(s) = f_0(s,t)$

Conditional on this patient dying, the time from infection to death is a "known" function $f_0(s,t)$

the probability that a new covid patient at s dies at t is $d(s) = f_0(s,t)$

out of the I_s new patients at time s, d(s) f_0(s,t) I_s will die at time t
Every new person infected at time **s** will die with probability d(**s**)

Conditional on this patient dying, the time from infection to death is a "known" function f_0(s,t)

the probability that a new covid patient at s dies at t is $d(t) = f_0(s,t)$

out of the I_s new patients at time s, d(s) f_0(s,t) I_s will die at time t

Therefore, the number of deaths at t is: