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ABSTRACT
Knowledge tracing is a fundamental area of educational data
modeling that aims at gaining a better understanding of the
learning occurring in tutoring systems. Knowledge tracing
models fit various parameters on observed student perfor-
mance and are evaluated through several goodness of fit met-
rics. Fitted parameter values are of crucial interest in order
to diagnose learning mastery as well as knowledge models
and qualitative aspects of the learning environment. Unfor-
tunately, parameter values are rarely associated with stan-
dard errors or confidence intervals, both of which are criti-
cal information to validate the inferences that can be made
from the model. Taking the example of the Additive Factor
Model, we describe how to obtain standard errors on the
model parameters. We propose two methods to compute
those and discuss results obtained on a public dataset.
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1. INTRODUCTION
Educational Data Mining (EDM) has already produced nu-
merous predictive models to accurately detect, anticipate
and measure meaningful outcomes of learning activities. Pre-
dicting student performance has been available for years.
For instance, it was the goal of the Knowledge Discovery
and Data mining (KDD) Cup 2010 [1], where teams around
the world competed to get the most accurate predictions
on student test item successes. While predictive accuracy
and overall model goodness of fit remain central concerns,
others considerations have since emerged in the EDM scien-
tific community. Model usefulness is one of them. A model
can be accurate in its predictions but useless to provide ad-
ditional educational values in a learning environment [10].
Another concern, of even greater interest for the work pre-
sented in this paper, is the identifiability of the models pro-
duced and used by the EDM community. The cognitive
models we use for knowledge tracing are validated towards

their predictive quality but their prediction performance is
not necessarily where they are most useful. This is the case,
for instance, for the Additive Factor Model (AFM) [3] or
the Bayesian Knowledge Tracing model (BKT) [5]. Both are
widely used in intelligent tutoring systems to detect when a
student has mastered a skill [15] in order to provide her with
the next adequate learning material. In this situation, BKT
is not used only to evaluate the probability that the student
will give a correct answer at time t. It is also used to check
whether the “p known” value calculated on fitted model pa-
rameters has reached the 0.95 threshold [15]. In that case,
inferring learning mastery based on fitted parameter values
is risky when there is uncertainty on the fitted values. First,
there is a risk that different combinations of parameters may
yield functionally identical models that explain observations
in the same way. This is known as the identifiability issue, an
important problem that keeps being discussed and solved in
the BKT community [2, 7]. A second issue involves the relia-
bility and confidence in the fitted parameter values. In other
words, how sure we are of the fitted parameter value that
will be used to infer that the learning mastery threshold has
been reached. That issue has been of primary importance
in recent usage of AFM to perform advanced learning factor
analysis in the field [8] or when building tools to tentatively
offer guidance for building competency frameworks [9]. For
instance, Durand et al. [9] describe a situation where a skill
was first fitted as fairly difficult (low β) with fast learning
rate (high γ). After a small modification of the training
dataset, the same skill was estimated easy (large β) with no
learning (small γ). In addition, it is also known from the
literature that latent variable models, including skill-based
cognitive models such as AFM, are difficult to estimate pre-
cisely [18]. In light of these results, it becomes crucial to
take a closer look at the uncertainty on model parameters,
beyond predictive accuracy. Quantifying the uncertainty on
fitted parameter values by estimating their standard error
appears necessary in order to increase our ability to make
correct, and hopefully useful, inference from fitted models.

The rest of the article is organized as follows. The next
section presents related works. Section 3 presents the AFM
model, its use for diagnosing learning, and the computation
of the standard error on fitted parameter values, using two
different techniques. Experimental results on several cogni-
tive models from the PSLC-Datashop [11] are presented in
Section 4 and discussed in Section 5. We then summarize
the contributions presented in this paper and their impact
on future developments.



2. RELATED WORK
A recent and fundamental paper by Philipp et al. [17] inves-
tigates the estimation of Standard Errors in cognitive diag-
nostics models. Clearly identifying the need of assessing the
uncertainty of the estimated model parameters using confi-
dence intervals, they presented the theoretical background
for estimating parameter standard errors for the G-DINA
cognitive diagnostic model [17]. In their explanations, they
essentially presented and discussed different ways of com-
puting standard errors by either considering the complete
or the incomplete information matrix. In their experiments,
they managed to highlight the necessity of considering the
complete information matrix rather than using the incom-
plete one to compute parameters standard error. This re-
sult, while interesting, was not the only focus of our interest.
The authors detailed two ways of computing both the com-
plete and incomplete information matrix in the context of
G-DINA that were of primary relevance for an application
to AFM. The first way uses an Outer Product of Gradient
(OPG) estimator. This estimator has the advantage to be
relatively easy to implement but slightly less precise than
the method using the Hessian of the log-likelihood, which
has the drawback of being more cumbersome to implement.
In our experiments we used the Hessian estimator of the
information matrix.

Computation of the standard error of parameter estimates
is a classic approach in statistics method and a dense lit-
erature details its applications. However, it seems to have
drawn a limited interest in the EDM community so far, as
we did not find implementation examples in the EDM lit-
erature. Nevertheless, a connecting point could be found
in the renewed interest on model identifiability issues [2, 7].
Identifiability issues can lead to an information matrix that
is ill conditioned and that cannot be inverted. As we will see
later, parameter standard error is obtained by inverting the
information matrix using OPG or Hessian approaches. If
the information matrix cannot be inverted, there is no stan-
dard error that can be obtained by these methods. Philip
et al. mentioned that such situation can occur in the DINA
model [6] whenever a“test does not involve a single-attribute
item for each of the K attributes” [17]. This is a result we
intuitively implemented in rules when guiding competency
framework refinement with AFM [9]. Howeverm this intu-
itive ruleturns out to be a requirement for standard error
estimation. While BKT identifiability conditions are start-
ing to be well documented, we have not been able to find
an equivalent for AFM and we hope that the scientific com-
munity will address this issue. The main objective of this
contribution is to present, illustrate, and discuss the imple-
mentation of AFM parameter standard error estimation. To
the best of our knowledge, this had not been addressed yet
in the literature.

3. THE ADDITIVE FACTOR MODEL
The AFM [3] models the probability that a student i suc-
ceeds on an item j by a mixed-effect logistic regression:

P (Yij = 1|αi, β, γ) = logit−1(αi+
K∑
k=1

βkqjk+
K∑
k=1

γkqjktik) (1)

where logit−1(x) = 1/(1 + e−x). Parameters αi, βk and γk
represent the proficiency of student i, easiness of skill k and

learning rate for skill k, respectively.1 The Q-matrix Q =
[qjk], also known as the Knowledge Component model in the
PSLC-Datashop [11], represents the item-to-skills mapping
by a binary matrix, as in the following example:

Q =


Skill.1 Skill.2 Skill.3

ItemA 1 0 0
ItemB 0 1 0
ItemC 1 1 0
ItemD 0 0 1

,

where items A, B and D evaluate one skill each, and item C
evaluates two.

Finally, variable tik is the number of times student i has
practiced skill k, also known as the opportunity number.
Parameters β and γ are key differentiators for AFM as a
cognitive diagnostics model [8]. They model the learning
process for each skill, making AFM a powerful and very
unique model to finely characterize the acquisition of skills
[8]. Learning parameters allow to plot useful learning curves
detailing learning acquisition.

3.1 Learning curves
Learning curves are an essential tool to improve learning
systems. They “give us a measure of the amount of learning
that is taking place relative to the system’s model” allowing
to compare and improve them [14]. Concretely, a learning
curve is a “graph that plots performance on a task versus
the number of opportunities to practice” [14]. The perfor-
mance measured can be the time spent assembling an engine
component in a production line or as it is often the case in
the educational field, the error rate at applying a set of, or
individual skills.

Displaying learning curves in multidimensional learning en-
vironments can be difficult. Those environments are not
necessary built for single skills learning measurement and
they usually combine different set of skills evaluated to-
gether (multidimensionality). In such situation, we need to
“retrofit” the analysis and AFM is the perfect model to do
that as it tries to detect each skill specific (additive) contri-
bution towards each item success.

Learning curves when modeling learning performance over
time follow a “power law of practice” [16] which states per-
formance over time should increase following a power law.
In the Intelligent Tutoring Systems (ITSs) context, we can
expect the error rate to drop as a power law over practice
opportunities. Comparing ITS or sections of them can be
done by considering the steepness of the curve. A steeper
curve indicates a faster acquisitions of the skills practiced
[14].

Another advantage of using AFM to draw learning curves is
that we can compensate for the attrition bias. Over time,
fewer learners tend to perform the items because many of
them have learned the skill and the curves tend to quickly
degenerate, impacting the value of slopes and the power law

1We refer to β and γ as the skill and learning parameters
in the rest of the article.
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Figure 1: Example of a error curve for a moderately hard
skill with a moderately fast learning rate.

fit. A convenient way to produce a learning curve for skill
k in AFM is to use Eq. 1 with βk, γk, and a ”typical”
value of the student proficiency. Using αi = 0 is convenient,
and usually roughly corresponds to the average value of the
estimated α’s. This individual theoretical learning curve for
skill k is given by:

LCk(t) = logit−1 (βk + γkt) =
1

1 + exp (−βk − γkt)
. (2)

Typically, we consider error curves while talking about learn-
ing curves. The error curve is obtained by plotting ECk(t) =
1− LCk(t) as illustrated in Figure 1.

3.2 Computing the Standard Error
We present two methods to estimate the standard errors
on parameters. The first one is a classical approach in the
statistics literature. It involves the computation of the nega-
tive Hessian of the log-likelihood. The second one is inspired
by the parametric bootstrap and estimates the standard er-
ror by computing empirical standard deviations on the pa-
rameters obtained from simulated observation samples.

3.2.1 Negative Hessian of the log-likelihood
Technically, the standard errors of estimated parameters can
be retrieved from the covariance matrix of the parameters
(eq. 3). More precisely, they are equal to the square root of
the diagonal elements in:

Cov(α, β, γ) =

 Vα Vα,β Vα,γ
Vβ,α Vβ Vβ,γ
Vγ,α Vγ,β Vγ

 . (3)

However, this covariance matrix is not known and we need
to estimate it in order to compute our standard errors. For-
tunately, the estimation of covariance matrices have been
of interests of statisticians for a long time and several ways
have been proposed to solve it. More precisely, it turns out
that the covariance matrix is equal to the inverse of the
information matrix [17], Cov(α, β, γ) = I(α, β, γ)−1. This
means we can compute estimators of standard deviation on
parameter estimates as long as we can compute and invert
the information matrix. At the maximum likelihood, I is

given by the negative Hessian matrix of the log-likelihood:

H(L) =


∂2L
∂2α

∂2L
∂α∂β

∂2L
∂α∂γ

∂2L
∂β∂α

∂2L
∂2β

∂2L
∂β∂γ

∂2L
∂γ∂α

∂2L
∂γ∂β

∂2L
∂2γ

 (4)

In our implementation of AFM, we use a penalized version
of the log-likelihood, as detailed in [8], and adapt Eq. 4
accordingly.

3.2.2 Simulation
Keeping in mind that “a standard error is the standard de-
viation of the distribution of parameter estimates over mul-
tiple samples” [20], we simulate multiple samples from the
initial data, estimate parameters on each samples, and cal-
culate the empirical standard deviation on these results:

Algorithm 1: Pseudo-code of the simulated standard error
estimation function. Values in square brackets are defaults.

Data: Q-matrix Q, first attempt observations O and α, β,
γ parameter values

Parameters: Penalization parameter λ [1], number of
simulations n [1000]

Result: std(α), std(β), std(γ)
Compute P (Yij = 1|αi, β, γ) according to Eq. 1 for each
first attempt observation Oij ;

repeat
Create R, a matrix of P size with random values
between 0 and 1;

Create O′ a matrix equal to O;
for first attempt observation Oij do

if Rij > P (Yij) then
O′ij ←− 0;

Estimate α, β, γ for each simulation iteration with
respect to Q and O′;

until n simulation iterations;
std(α) ←− Standard deviation of n simulation estimated α;
std(β) ←− Standard deviation of n simulation estimated β;
std(γ) ←− Standard deviation of n simulation estimated γ;

This simulation approach aimed at providing us with an al-
ternative method to validate the Hessian’s detailed in previ-
ous section but also to provide us with an alternative should
inverting the Hessian matrix would be impossible or too
cumbersome to implement outside of our experimental envi-
ronment. The simulation takes as input a Q-matrix and per-
formance observations. It fits the AFM parameters before
computing a prediction for each observation. If the predic-
tion is below a random value uniformly distributed between
0 and 1 then the observation is changed to a failure. Then we
iterate again by computing new values of AFM parameters
on the new observations dataset, computing the predictions
and creating another observations sample. The pseudo-code
of this simulation process is presented in Algorithm 1.

We also tried another estimation method using a Jackknife
approach (iterative leave-one-out on students) that provided
us with overly optimistic values. Standard errors were clearly
underestimated in the PSLC dataset we experimented.



Table 1: Overall predictive quality of KC models as com-
puted by PSLC-Datashop

Model Name KCs #Obs. AIC BIC RMSE
Arith0 18 5,104 4,948 5,569 .397095
Context 12 5,104 5,030 5,573 .399431
Original 15 5,104 5,180 5,762 .407192

4. EXPERIMENTS
4.1 Dataset
In our experiments, we used the “Geometry Area (1996-97)”
dataset from DataShop [11]. It contains 6778 observations
of the performance of 59 students completing 139 unique
items from the “area unit” of the Geometry Cognitive Tutor
course (school year 1996-1997). This is a classic Datashop
collection, associated with many prior publications [3, 4, 12,
13]. We selected three Knowledge components (KCs) models
to run our experiments:

• hLFASearchAICWholeModel3arith0 (Arith0 henceforth);

• hLFASearchModel1-context (Context hereafter);

• Original.

They were selected for their reasonable numbers of skills and
observations but also because they have distinctive goodness
of fit metrics allowing to differentiate their predictive qual-
ities. Characteristics of these KC models, as reported in
Datashop are presented in Table 1. This suggests that the
best predictive model would be Arith0, followed by Context
and Original. The number of skills (KCs) do not seem to
correlate with the goodness of fit for these models.

4.2 Method
Our implementations are done using Matlab and Octave.2

The AFM estimation used in previous work[8, 9], was ex-
tended with the developments described above. The Hessian
of the log-likelihood was computed using an off the shelf nu-
merical method using a central difference approximation.3

This has the advantage of requiring no calculus for comput-
ing second derivatives, but has the disadvantage of being
notably slower than direct Hessian computation. The full
Hessian computation takes around three hours on a regular
laptop, for each of the KC models. The simulation-based es-
timates were obtained using a Go language implementation
of AFM parameter estimation. It takes less than 15 minutes
in Go to compute 1000 simulation iterations.

4.3 Results
Table 5 shows the estimated values and standard errors for
learning parameters β and γ for KC models Arith0, Context
and Original. At first glance, we can see that none of the
parameters take large values compared to the others. This
suggests that the KC models are of excellent quality. Over-
all inter-model differences in parameter values and standard
errors are also relatively small.

2Octave/Matlab implementations are available on request.
3Octave Optim package, numhessian function.

Table 2: Mean parameter values

KC Model
Mean parameter values

α β γ
Arith0 0(.639) .367(1.261) .199(.269)
Context 0(.647) .205(1.323) .185(.327)
Original 0(.624) .308(.877) .147(.127)

Table 3: Mean standard Errors computed with the Hessian

KC Model
Mean standard errors

α β γ
Arith0 .366(.149) .349(.137) .083(.075)
Context .364(.149) .320(.175) .073(.093)
Original .361(.149) .284(.073) .051(.038)

Mean parameter values (across models) in Table 2 show that
all models share the same (at .001 precision) mean and al-
most identical standard deviations of α. This suggest that
changing the KC model had a limited impact on students’
proficiencies. In other words, students proficiencies remain
consistently estimated from one model to another. It seems
unlikely that a student proficiency would drastically change
from one model to another. Interestingly the mean values of
γ are higher in the better models but the standard deviation
also increases suggesting higher values with more variance.
If we look at the mean standard errors in Table 3, we notice
that it is very similar between models for α, suggesting again
a limited impact of the KC models on students proficien-
cies. However the values obtained for learning parameters
are very interesting as the mean standard errors increase
with the predictive quality of the models. One would have
excepted the opposite to happen as Arith0 is expected to
have a better fit of the observations than Original. In ad-
dition, standard deviations on the errors are also higher for
Arith0 than Original. One assumption could be that Arith0
managed to get few better curves with more bad ones and
less average good ones. More investigation would be neces-
sary to clarify this point.

5. DISCUSSION
5.1 Model goodness of fit
The dataset used in this experiment is very adapted to con-
duct learning factor analysis and it is advertised as a good
one to showcase PSLC-Datashop features. Consequently the
discrepancy obtained between goodness of fit and mean stan-
dard error may not generalize to other situations. In addi-
tion, we have little knowledge of the intention that led to
the design of these KC models. Those cautionary consider-
ations made, we still have been able to characterize a situa-
tion were an overall better model does not necessarily lead
to a a more reliable KC model. This is an interesting re-
sult, for instance, if we want to automatically refine models
as in learning factor analysis as it would imply to not only
look at model goodness of fit but also KC model goodness of
fit. Standard errors can also inform us on the problematic
skills to modify as it allow us to get a better grasp on the
reliability of learning parameters for each skill.

5.2 Learning detection
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Figure 2: A skill with a flat curve suggesting limited learning
for most values in the 95% confidence interval
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Figure 3: A skill with a steep curve clearly showing learning
for all values in its 95% confidence interval

Standard errors allow us to compute confidence intervals
on parameters and learning curves. Figures 2 and 3 plot
learning curves for a skill with low difficulty and no learning
(Fig. 2) and a difficult skill with fast learning rate (Fig.
3). In both cases, the ”Fitted” learning curve uses fitted
learning parameters, the ”Upper” curve is obtained using
the parameters at the lower end of the confidence interval
(1.96 × StdErr below fitted values), and the ”Lower” curve
uses parameters are the top of the C.I. (1.96×StdErr above
fitted). The Upper and Lower curves provide us with the
extreme slopes that the learning curve can take in a 95%
confidence interval, and show the range of difficulty the skill
can take while still remaining in the confidence interval.

Some values taken by these curves are not possible in prac-
tice. For instance in Figure 2, the Upper curve is impossible
under AFM parameter fitting constraints, as γ is constrained
to be positive. On the other hand, the Lower curve can be
observed and shows limited learning. In this configuration of
learning parameters, stating no learning after looking only
at the Fitted learning curve could be an overstatement even

Table 4: RMSE and r2 computed between the Hessian and
the simulation standard errors

KC Model
RMSE r2

α β γ α β γ
Arith0 .052 .050 .022 .906 .963 .987
Context .053 .061 .020 .890 .900 .973
Original .047 .026 .004 .917 .947 .992

though it is very likely that no learning is occurring. How-
ever as Murray et al. [15] showed, flat aggregated curves
showing no learning could, in fact, hide the learning occur-
ring for sub-group of students. In their study of an algebra
curriculum containing performance data of 15,414 students
on 881 skills, they discovered that around 16% of skills were
misidentified as showing no learning. Standard error compu-
tation gives another reason why we should be cautious when
claiming no learning. But can standard errors help us claim
learning? The skill in Figure 3 answers this question. We
can see that all the difficulties and slopes that can be taken
in the 95% confidence interval leads to conclude that this
skill is learned. In conclusion to this subsection, consider-
ing fitted parameter standard errors is important to confirm
that learning is occurring but not necessarily the opposite.

5.3 Simulation and Hessian methods
Table 5 shows that standard errors computed from the log-
likelihood Hessian and by simulation are very close. This
means that our method can potentially provide an estimate
of the standard errors when the Hessian is hard to com-
pute or invert. This also confirms the validity of our sim-
ulation results. Table 4 shows the Root Mean Square Er-
ror (RMSE) and correlation (r2) between simulation esti-
mates and the standard errors over all parameters of each
KC Model. Although not insignificant, the difference be-
tween the two methods is sufficiently small, and the value of
r2 large enough, to consider that simulation results provide
good estimates of the standard errors on parameters.

6. CONCLUSION AND FUTURE WORK
Estimating the reliability of parameter estimates is a crucial
aspect of model inference. We showed how to compute stan-
dard errors on AFM model parameters, and applied the pro-
posed methods to public datasets from the PSLC Datashop.
This yields several observations.

First, the more accurate model is not always the one with
the better KC model: parameter validity and predictive abil-
ity are different. That confusion is not new however and al-
lowed progress in cognitive psychology in the first half of the
nineteenth century before the community realized it failed
to “provide a strong foundation for deducing likely relation-
ships among variables, and hence for the development of
generative theory”[19].

Second, standard errors, and the associated confidence inter-
vals, provide precious insight into learning. However, char-
acterizing the absence of learning is more complicated, es-
pecially when γ is less reliable.

Finally, standard errors on parameters can be easily esti-
mated by the simulation method we describe. This can be



Table 5: Estimated parameters and standard errors for several PSLC models.

Model Skill β StErrβ Simul. γ StErr γ Simul.
Arith0 Geometry*parallelogram-area 1.939 0.233 0.224 0.028 0.016 0.016
Arith0 Geometry*parallelogram-area*Textbk New Decomp. . . 2.540 0.617 0.659 0.180 0.149 0.192
Arith0 Geometry*Textbk New Decompose-circle-area 1.136 0.374 0.399 0.183 0.093 0.111
Arith0 arithmetic 1.992 0.272 0.250 0.027 0.023 0.022
Arith0 Geometry 0.781 0.260 0.197 0.000 0.036 0.021
Arith0 Geometry*decomp-trap*trapezoid-area -0.624 0.200 0.202 0.092 0.017 0.017
Arith0 Geometry*ALT:TRIANGLE-AREA 1.501 0.341 0.260 0.000 0.056 0.035
Arith0 Geometry*ALT:TRIANGLE-AREA-PART 0.204 0.400 0.416 0.230 0.124 0.132
Arith0 Geometry*compose-by-multiplication -0.675 0.390 0.400 0.267 0.121 0.126
Arith0 Geometry*pentagon-area -0.550 0.199 0.200 0.110 0.015 0.016
Arith0 Geometry*ALT:CIRCLE-AREA-INDIRECT -0.268 0.305 0.306 0.312 0.066 0.071
Arith0 Geometry*Textbk New Decompose-circle-area*circle. . . 0.871 0.255 0.258 0.073 0.030 0.031
Arith0 Geometry*ALT:CIRCLE-AREA 0.973 0.280 0.281 0.124 0.039 0.042
Arith0 Geometry*circle-area -0.393 0.348 0.342 0.171 0.089 0.093
Arith0 Geometry*circle-diam-from-subgoal 0.126 0.275 0.268 0.071 0.045 0.043
Arith0 Geometry*equi-tri-height? -2.986 0.714 0.888 1.232 0.310 0.385
Arith0 Geometry*decomp-trap -0.555 0.304 0.304 0.146 0.057 0.060
Arith0 compose-subtract 0.588 0.524 0.540 0.329 0.200 0.222
Context parallelogram-area 2.105 0.234 0.227 0.019 0.012 0.012
Context context 0.105 0.168 0.117 0.000 0.005 0.002
Context Geometry 0.873 0.168 0.171 0.016 0.005 0.006
Context Subtract-rectangles 2.475 0.571 0.398 0.000 0.137 0.091
Context decomp-trap -0.529 0.181 0.184 0.060 0.012 0.012
Context compose-by-multiplication 0.284 0.248 0.245 0.114 0.023 0.023
Context pentagon-area -0.552 0.199 0.197 0.110 0.015 0.016
Context circle-area 0.393 0.212 0.217 0.106 0.019 0.020
Context radius-from-area -0.427 0.351 0.347 0.165 0.089 0.091
Context radius-from-circumference 0.134 0.275 0.269 0.067 0.045 0.044
Context equ-tri-height-from-base/side -2.972 0.713 0.819 1.230 0.310 0.354
Context Subtract 0.576 0.523 0.554 0.336 0.200 0.227
Original ALT:PARALLELOGRAM-AREA 2.326 0.250 0.197 0.011 0.016 0.013
Original ALT:PARALLELOGRAM-SIDE 1.054 0.494 0.473 0.345 0.152 0.157
Original ALT:COMPOSE-BY-ADDITION 1.035 0.191 0.135 0.000 0.012 0.008
Original ALT:TRAPEZOID-AREA -0.860 0.344 0.340 0.344 0.092 0.094
Original ALT:TRAPEZOID-HEIGHT -0.800 0.329 0.340 0.243 0.079 0.083
Original ALT:TRAPEZOID-BASE -0.498 0.334 0.334 0.233 0.084 0.085
Original ALT:TRIANGLE-AREA 0.964 0.249 0.237 0.042 0.028 0.027
Original ALT:TRIANGLE-SIDE 0.122 0.297 0.245 0.037 0.056 0.044
Original ALT:COMPOSE-BY-MULTIPLICATION 0.393 0.231 0.221 0.113 0.022 0.023
Original ALT:PENTAGON-AREA -1.000 0.334 0.327 0.392 0.081 0.083
Original ALT:PENTAGON-SIDE -0.413 0.235 0.226 0.151 0.028 0.029
Original ALT:CIRCLE-RADIUS 0.360 0.234 0.210 0.046 0.027 0.026
Original ALT:CIRCLE-AREA 0.473 0.209 0.197 0.104 0.019 0.020
Original ALT:CIRCLE-CIRCUMFERENCE 0.876 0.268 0.251 0.073 0.037 0.037
Original ALT:CIRCLE-DIAMETER 0.593 0.258 0.252 0.074 0.034 0.036

convenient when the Hessian of the log-likelihood is not eas-
ily calculated or inverted.

Our work also raised significant questions. For instance, the
identifiability of the AFM model needs to be addressed, as
it is likely that AFM could, like DINA be in trouble on a
dataset that “does not involve a single-attribute item for
each of the K attributes” [17].
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