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ABSTRACT
Learning curves are an important tool in cognitive diagnos-
tics modeling to help assess how well students acquire new
skills, and to refine and improve knowledge component mod-
els. Learning curves are typically obtained from a model
estimated on real data obtained from a finite, and usually
limited, sample of students. As a consequence, there is some
uncertainty associated with estimating the model from that
sample, and a risk that the inferences made using learning
curves derived from the estimated model are over-confident
one way or another. Based on previous work modeling the
uncertainty on Additive Factors Model parameters, we de-
rive a principled way to quantify the confidence in learning
curves associated with each knowledge component. We show
that our approach leads to relatively tight bounds on the
learning curves, much tighter than a naive approach relying
only on parameter uncertainty. This also reveals a disparity
across knowledge components regarding how confident one
can be in how well these skills are mastered.

Keywords
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1. INTRODUCTION
Learning curves are a crucial tool for cognitive diagnostics
modeling. They help build relevant competency frameworks
to accurately measure learners skills and to give them mean-
ingful guidance and feedback in intelligent tutoring systems
(ITSs). More precisely, learning curves measure the rate at
which students, or simulated artefacts [22], acquire compe-
tencies. This allows to evaluate the suitability of a com-
petency framework (aka Q-matrix) and a principled com-
parison of different learning systems. Learning curves are
“graphs that plots performance on a task versus the number
of opportunities to practice” [17]. In the educational field,
learning curves usually take as learning performance metric
the error rate (or equivalently success rate) when applying

an individual skill or a set of skills. They were empirically
found to follow a “power law of practice” [18], which means
that the error rate over time decreases roughly linearly with
the logarithm of the number of practice trials taken (aka op-
portunities). Comparing ITSs or sections of ITS can be done
by considering the steepness of the curve: A steeper curve
indicates a faster acquisition of the skills practiced [17].

However, tracking the performance of skills learned in a mul-
tidimensional learning environment can be difficult, as those
environments combine different set of skills evaluated to-
gether. In such situations, some cognitive diagnostic models
can be useful to compare learning systems but also to under-
stand the learning mechanisms at play [10]. The Additive
Factors Model (AFM) [1], a well known cognitive diagnos-
tics model, does this by assuming that each necessary skill
in an item comes with a skill-specific additive contribution
towards the probability of success on the item. Fitted AFM
parameters can also be used to draw learning curves that
compensate for the attrition bias [9]: Over time, fewer learn-
ers tend to practice some items because many of them have
learned the skill, and the curves tend to quickly degenerate,
impacting the estimates of the slopes and the diagnostics of
how much learning has occurred. In addition, when learning
curves are drawn directly from AFM parameters, the valid-
ity of the inferences that can be made will depend greatly on
the reliability of the parameters values, and ultimately on
the quality of the fitted data. More precisely, fitted parame-
ter values tend to compensate for noise, missing values (e.g.
due to attrition) or mis-specified competency models. Rupp
and Templin [21] showed for instance how the fitted values
of model parameters in DINA [11] would inflate when fit-
ted with purposely erroneous Q-matrices. We can expect a
similar impact with any model using Q-matrices, including
AFM, a situation made worse by the fact that, in reality,
perfect Q-matrices are difficult to identify [5], even when
they are retro-engineered from performance data [19]. This
motivates the necessity to estimate not only parameter val-
ues, but also the statistical confidence on those values, and
take into account this uncertainty in any model interpre-
tation, whether based on those values or on the associated
learning curves.

Previous work investigated the estimation of standard er-
rors on DINA [20] or AFM [7] parameters, and showed how
it could impact learning curves shape and utimately AFM
interpretability and usefulness [15]. Assuming independence
across parameters, they produced bounds on learning curves
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using standard confidence intervals on parameter values.
However, in practice, the AFM skills parameters (Section 2)
are clearly not independent. In this contribution, we show
how we can take into account the structure of the covariance
between the AFM parameters in order to better model and
control the uncertainty on those parameters. We describe
a technique for generating confidence intervals on the learn-
ing curves using a sampling approach. We illustrate how
this works on several competency models from a well-known
dataset obtained from a geometry tutoring course, and we
show how it allows us to compare how different competency
models may model the same skills with different confidence.

In the following Section, we quickly describe the AFM model
and introduce our method for obtaining more adequate es-
timates of the confidence intervals on the learning curves.
Section 3 quickly describes the well known EDM dataset
that we experiment with in Section 4. Section 5 discusses
the results and their impact before we conclude.

2. METHOD
The Additive Factors Model (AFM) introduced by Cen et al.
[1, 3] is used in the PSLC-Datashop [12] in order to evaluate
domain models. It models the probability of success of a
student i on item j using user and skill specific parameters:

P (Yij = 1|αi,β,γ) = σ

(
αi +

K∑
k=1

βkqjk +

K∑
k=1

γkqjktik

)
(1)

with σ(x) = 1/(1 + e−x) the logistic function, and

αi is the proficiency of student i,
βk is the easiness of skill k = 1 . . .K,
γk is the learning rate for skill k,
Q = [qjk] is the J×K Q-matrix, representing the cognitive

model mapping items to skills,
tik is the number of times student i has practiced skill k

(on any item).

Parameters θ = (α,β,γ) are estimated by maximizing the
(penalized) likelihood of the model over observed student
outcomes (see e.g. [6]). One attractive feature of AFM
is that it easily provides performance curves showing how
students acquire skills. Among the different types of learning
curves that can be derived from AFM [9, 8], we focus on the
data- and student-independent idealized learning curve [8],1

that simply traces the probability of error for an idealized
student with α = 0 proficiency, on an item with a single skill
k:

lck(t) = 1− P (Y = 1|α = 0,β,γ) = σ (βk + γkt) . (2)

Learning curves are typically computed with the maximum

penalized likelihood parameters θ̂ =
(
α̂, β̂, γ̂

)
. As noted

for example by Philipp et al. [20] and derived for AFM by
Durand et al. [7], one can also estimate the uncertainty on(
α̂, β̂, γ̂

)
, in the form of standard errors. This is relatively

straightforward as the covariance matrix on parameter esti-
mates is asymptotically equal to the inverse of the informa-

tion matrix, Cov
(
θ̂
)

= I−1

θ̂
. The information matrix Iθ̂ can

1aka Individual Learning Curve in [9].

Algorithm 1: Error bars on learning curve for skill k.

Data: Parameters θ̂, covariance Cov
(
θ̂
)

Parameters: Target skill k, simulation sample size N
Result: Error bars for the learning curve for skill k, at

a set of opportunities {t = 1 . . . T}
repeat

Sample θ(i) ∼ N
(
θ̂,Cov

(
θ̂
))

;

Compute learning curve lck
(i)(t) for target skill k

until N simulations;
For each opportunity t, compute confidence interval

[`k(t), uk(t)] using relevant quantiles2 of
{
lck

(i)(t)
}

.

be estimated from first or second order derivatives of the cost
function [20, eq. 3, 4]. This also provides a key to quanti-
fying the uncertainty on the learning curves. Using the fact
that parameters are (asymptotically) normally distributed

around θ̂ with the known covariance matrix Cov
(
θ̂
)

[7], we

can sample sets of parameters from that multivariate Gaus-
sian distribution, compute the learning curve for each set
of parameters, then empirically estimate the error bars on
the learning curve through the relevant quantile statistics,
as outlined in Algorithm 1.

Although Algorithm 1 focuses on producing error bars on
the learning curves, we can also use the simulated sample
to evaluate the stability of the entire learning curve, using
for example the average standard deviation across opportu-
nities:

σk =
1

T

T∑
t=1

st.dev.{lck(i)(t)}

Lower σk indicate that the sampled learning curves are closer
together, thus the learning curve is more stable.

3. DATA
For our experiments, we used the “Geometry Area (1996-
97)”, a public dataset from DataShop [12]. This dataset
contains 6778 observations of the performance obtained by
59 students completing 139 unique items from the“area unit”
of the Geometry Cognitive Tutor course (school year 1996-
1997). This dataset has been extensively used [1, 2, 7, 13,
14]. We selected three knowledge component (KC) models:

• hLFASearchAICWholeModel3arith0 (referred to sim-
ply as arith below),

• hLFASearchModel1-context (context below),

• Original (orig below).

These KC models were selected for their reasonable numbers
of skills and observations but also because they have distinc-
tive goodness of fit metrics, suggesting that they are high-
performing KC models. Table 1 shows that the best pre-
dictive model would be arith. The number of skills (KCs)
seems to have limited impact on the goodness of fit metrics.

2For example, the 95% confidence interval is obtained as
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Figure 1: Left: Sampled β and γ for KC#11 of the context model. Right: Corresponding learning curves (in
light gray); the LC given by the AFM model is in red, with 95% confidence intervals at opportunities up to
10 shown as red vertical bars. The 95% CI from [7] is indicated in black crosses for comparison.

Table 1: Characteristics and predictive quality of
the KC models, as computed by PSLC-Datashop.

Name KCs Stud. #Obs. AIC BIC RMSE
arith 18 59 5104 4948 5569 .397
context 12 59 5104 5030 5573 .399
orig 15 59 5104 5180 5762 .407

Another motivation for choosing these KC models is their
skills sharing as some skills have an identical mapping to
items in another model, allowing to compare the stability of
the same skill accross KC models.

4. EXPERIMENTS
In this section, we first illustrate how we derive error bars
on the learning curve for a specific KC, then show results for
an entire KC model, and finally we compare the stability of
learning curves for equivalent skills in different KC models.

4.1 Illustration
We focus on KC#11 (equi-tri-height-from-base/side)
from KC-model context. This is a relatively hard (β =
−2.97) skill, but with quick learning (γ = 1.23). Figure 1
(left) shows the values of β11 and γ11 that were sampled by
Algorithm 1 for this KC. As seen in the plot, the marginal
uncertainty on β11 and γ11 is quite high (from -4.5 to -1.5 for
β11), but they are also very correlated: samples with higher
easiness have lower learning rate.

Each of the points in Fig. 1 (left) is translated into a corre-
sponding learning curve (Eq. 2) in dotted light gray in Fig.
1 (right). Due to the correlation noted before, we can see
that the sampled learning curves are actually fairly stable,
compared to what extremes of the distributions of β11 and
γ11 would suggest (see dashed lines with crosses in Fig. 1,

[q2.5, q97.5], where qε is such that ε% of the sample is below
qε and (100− ε)% is above.

which replicates Fig. 4 from [7]). The red curve in Fig-
ure 1 (right) is the learning curve computed from the AFM
solution, with 95% confidence intervals obtained from the
sample at each opportunity indicated as red bars. We see
that although there is some uncertainty around the steep
part of the curve, the learning curve is well-controlled and
easy to diagnose, indicating that the skill is completely ac-
quired after around 5 opportunities.

4.2 Application to KC models
We now show how we can generate learning curves with con-
fidence intervals for a full KC model. The process illustrated
above is applied to each KC, producing one learning curve
with confidence bounds. For improved readability, we show
the results on KC-model context, which has the smallest
number of KCs among our three models.

Figure 2 shows the learning curves for the twelve knowledge
components. We can see that most learning curves are well-
controlled. The average standard deviation σ, depending on
the skill, ranges from 2% to 8%. ”Flat” KCs tend to have
lower uncertainty, which is understandable: when the error
rate for a skill is low and flat, this is easy for the model to
pick up with confidence by predicting high success (high β)
for that skill.

4.3 Comparison of KC models
By better estimating and controlling the uncertainty in learn-
ing curves, we can more reliably compare how skills are ac-
quired according to different KC models.

In Figure 3 we show the same skill, compose-by-multiplication,
as modeled by the 12-skill model context, and by the 15-
skill model orig. The shapes of the learning curves are very
similar, which is not surprising as both KCs are associated
to the same items, and estimated from the same student out-
comes. Despite differences due to the influence of other KCs
in the models, the resulting values of β and γ are similar.
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Figure 2: All learning curves with confidence intervals for KC model context.
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Figure 3: KC compose-by-multiplication from KC models context (left) and orig (right). σ is the average
uncertainty across opportunities (lower is better).

The error bars, however, show that the confidence is slightly
better in the orig model, showing an average dispersion of
around 3.5% error across the learning curve (versus 4.3% in
context). This shows that even in a model with more KCs,
learning curves can be modelled with higher confidence.

Our second example, in Figure 4, compares similar skills,
compose-subtract from arith, and Subtract from orig. Again,
the general shape of the learning curves are similar, due to
similar values for the estimated β and γ in each model.3

The sampled learning curves also seem quite similar, sug-

3For arith, β = .588 ± .524 and γ = .329 ± .200, while for
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Figure 4: KC compose-subtract from model arith (left) and KC Subtract from orig (right). σ is the average
uncertainty across opportunities (lower is better).
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Figure 5: Structure of the correlation between β (y-
axis) and γ (x-axis) for all KCs in model context.

esting that both KC models represent that skill with similar
levels of confidence. This is confirmed by the value of the
average dispersion, which is 5.4% for one model and 5.1%
for the other. We see again that the different number of
KCs has limited impact on how confident the models are on
a particular skill.

5. DISCUSSION
Figure 1 (left) showed that there is a strong correlation be-
tween the sampled values of β11 and γ11. The impact of this
correlation on the actual learning curve is that, according to
the model, this knowledge component can be modeled by a
higher easiness (starting with lower error) and lower learn-
ing rate (flatter curve), or by a lower easiness and higher
learning rate (i.e. starting higher but dropping faster). This
finding actually generalizes to the entire KC model, as shown
by the correlation matrix in Figure 5. We see that there is a
consistently strong negative correlation between the β and γ
parameters for each knowledge component, due to this com-
pensatory mechanism. There are also some correlations be-
tween parameters of different KC, which may suggest some
compensatory effects in the AFM model.

context, β = .576± .523 and γ = .336± .200.

One straightforward outcome of this work is that the pro-
posed method provides a much better estimate of the confi-
dence in a learning curve than the method proposed in [7],
which relied on the marginal distribution of AFM parame-
ters β and γ and used the boundaries of straight confidence
intervals on each parameter independently. We included
their 95% confidence interval as black crosses in Figure 1:
that suggests that the uncertainty on the learning curve is
high up to 8 or more opportunities. By contrast, our ap-
proach shows that the actual uncertainty is much better
controlled, and that the skill is essentially learned by op-
portunity 5 or 6.

In this paper, we have worked with the basic learning curve
called the individual learning curve in [9] or the idealized
learning curve in [8]. We note that this work can be applied
to any learning curve that relies on the parameters of the
AFM model. This includes in particular the completed learn-
ing curve [9], where empirical observations of success/failure
are completed by model estimates.

In previous work, Harpstead and Aleven [10] used empirical
learning curve analysis to inform educational game design.
They derive empirical curves and AFM-fitted curves, with
standard errors on the curves, using a completely different
approach from ours. Contrary to the approach advocated
here, which relies on the core uncertainty on model param-
eters resulting from a maximum (penalized) likelihood es-
timation, their learning curves and error bars are obtained
using non-parametric smoothing (LOESS [4], presumably
from the stat-smooth function of the ggplot2 R package).
On the empirical measurements of success, this produces
learning curves that are based on observations alone, and
therefore may not have the desirable properties enforced by
the AFM model, such as monotonicity (decreasing learning
curves). On the fitted AFM predictions, those properties
are enforced and apparent from the learning curves.4 Two
key differences with our approach, however, are:

1. The use of fitted AFM values to produce error rate

4Blue curves in [10], Figs 3, 4 and 7.
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predictions does not take into account the uncertainty
in parameter values due to estimation from a finite
sample, and

2. The width of the error bars are directly impacted by
the number of students at each opportunity, typically
resulting in widening errror bars as attrition kicks in.
By contrast our sampling-based algorithm often yields
narrowing error bars as opportunities increase and the
error rates near zero (for all sampled parameters).

A more systematic study of differences between our ap-
proach and the non-parametric smoothing of model esti-
mates would require further study. The opportunity of com-
bining both approaches in order to take into account the
uncertainty due to parameter estimation and sampling un-
certainty across the finite set of students seems particularly
promising.

6. CONCLUSION
In this contribution, we provided a principled way to esti-
mate and control the confidence in learning curves derived
from the Additive Factors Model. Error bars on the learn-
ing curves account for the statistical uncertainty associated
with estimating the AFM model from a finite set of stu-
dents. They allow to more accurately and more confidently
interpret how skills are acquired by students. We showed
how this allows to characterize learning for all skills of a
KC model of a geometry tutoring course. We also showed
how modeling the confidence of learning curves can help
compare how two different KC models represent the same
skill. Our approach was illustrated here on one type of learn-
ing curve, but it can be applied to any alternative learning
curve, as long as it can be computed from the usual AFM
parameters. In addition, the same idea can be applied in
a straightforward way to any cognitive diagnostic model for
which a covariance on parameters can be computed. This
includes in particular, models estimated by penalized maxi-
mum likelihood. For instance, the Individualized-slope Ad-
ditive Factors Model (iAFM) [16], that extends AFM with a
student learning rate, could be an excellent candidate to our
method, especially as authors noticed that iAFM ”[student]
learning rate is significantly related to estimates of student
ability”. Finally, our hope is that this work will help spread
the use of learning curves with well-controlled confidence
among practitioners of AFM.
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