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In this paper, we proposed a new cognitive modeling approach: Instructional Factors Analysis Model (IFM). It belongs to a
class of Knowledge-Component-based cognitive models. More specifically, IFM is targeted for modeling student’s performance
when multiple types of instructional interventions are involved and some of them may not generate a direct observation of
students’ performance. We compared IFM to two other pre-existing cognitive models: Additive Factor Models (AFMs) and
Performance Factor Models (PFMs). The three methods differ mainly on how a student’s previous experience on a Knowledge
Component is counted into multiple categories. Among the three models, instructional interventions without immediate direct
observations can be easily incorporate into the AFM and IFM models. Therefore, they are further compared on two important
tasks—unseen student prediction and unseen step prediction—and to determine whether the extra flexibility afforded by addi-
tional parameters leads to better models, or just to over fitting. Our results suggested that, for datasets involving multiple types
of learning interventions, dividing student learning opportunities into multiple categories is beneficial in that IFM out-performed
both AFM and PFM models on various tasks. However, the relative performance of the IFM models depends on the specific
prediction task; so, experimenters facing a novel task should engage in some measure of model selection.

1. INTRODUCTION

For many existing Intelligent Tutoring Systems (ITSs), the system-student interactions can be viewed as a
sequence of steps [VanLehn 2006]. Most ITSs are student-driven. That is, at each time point the system elicits
the next step from students, sometimes with a prompt, but often without any prompting (e.g., in a free form
equation entry window where each equation is a step). When a student enters an attempt on a step, the I'TS
records whether it is a success or failure without the tutor’s assistance and may give feedbacks and/or hints
based on the entry. Students’ first attempt records on each step are then collected for student modeling.
Often times in ITSs, completion of a single step requires students to apply multiple Knowledge Components.
A Knowledge Component (KC) is: “a generalization of everyday terms like concept, principle, fact, or skill,
and cognitive science terms like schema, production rule, misconception, or facet” [VanLehn et al. 2007].
They are the atomic units of knowledge. Generally speaking, students’ modeling on conjunctive-KC steps
are more difficult than that on steps that require a single KC.

The three most common student modeling methods are: Knowledge Tracing (KT) [Corbett and Ander-
son 1995], Additive Factor Models (AFM) [Cen et al. 2006; 2008], and Performance Factor Models
(PFM) [Pavlik et al. 2009]. When performing student modeling we seek to construct a cognitive model
based upon these observed behaviors and to apply the model to make predictions. Generally speaking, we
are interested in three types of predictions: type 1 is about how unseen students will perform on the observed
steps same as those in the observed dataset; type 2 is about how the same students seen in the observed data
will perform on unseen steps; and type 3 is about how unseen students will perform on unseen steps, that
is, both. For the present purposes we classifie students or steps that appear in the observed training data



as seen and those that appear only in the unobserved test data as unseen. In this paper we will examine
prediction types 1 and 2 and leave type 3 for future work.

Previously KT and PFM have been directly compared both on datasets involved single-KC steps [Pavlik
et al. 2009] and those involved conjunctive-KC steps[Gong et al. 2010]. Results have shown that PFM is as
good or better than KT for prediction tasks under Bayesian Information Criteria (BIC) [Schwarz 1978] in
[Pavlik et al. 2009] or using Mean Squared Error (MSE) as criteria in [Gong et al. 2010]. For both BIC and
MSE, the lower the value, the better.

While PFM and KT have been compared on datasets involved conjunctive-KC step, prior applications of
AFM and PFM have mainly been with single-KC steps and indicated no clear winner. More specifically, while
AFM is marginally superior to PFM in that the former has lower BIC and cross-validation Mean Absolute
Deviance (MAD) scores in [Pavlik et al. 2009], PFM performed better than AFM under MAD scores in
[Pavlik et al. 2011]. For MAD, same as MSE, the lower the value, the better. On the other hand, previous
research have shown that AFM can, at least in some cases, do a fine job in modeling conjunctive KCs [Cen
et al. 2008]. Therefore, in this paper we will compare AFM and PFM directly on a dataset involving many
conjunctive-KC steps.

Moreover, most prior research on cognitive modelings was conducted on datasets collected from classical
student-driven ITSs. Some ITSs, however, are not always student-driven in that they may involve other
instructional interventions that do not generate direct observations on student’s performance. The dataset
used in this paper, for example, was collected from a tutor that, at each step chose to elicit the next step
information from students or to tell them the next step. In our view these tell steps should also be counted
as a type of Learning Opportunity (LO) as they do provide some guidance to students. Yet on the other
hand, these steps do not allow us to directly observe students’ performance. KT model is designed mainly for
student-driven ITSs in that its parameters are directly learned from the sequences of student’s performance
(right or wrong) on each step. When there are multiple instructional interventions and some of them do
not generate direct observations, it is not very clear how to incorporate these interventions directly into
conventional KT models. Therefore, in this paper we are mainly interested in comparing AFM and PFM.

Our dataset was collected from an ITS that can either elicit the next step from the student or tell them
directly. Incorporating tell steps into AFM model is relatively easy in that tells can be directly added to
total LO counts. The PFM, however, uses student’s prior performance counts, the success or failure, in the
equation. Since tells do not generate any observed performance, it is hard to include them in the PFM.
Therefore, we elected to add a new feature to represent instructional interventions such as tells. As shown
later, the new model can be easily modified for modeling datasets with multiple instructional interventions
and thus it is named as Instructional Factors Analysis Model (IFM).

To summarize, in this paper we will compare three models, AFM, PFM and IFM, on a dataset involving
many conjunctive-KC steps and multiple instructional interventions. Previous research has typically focused
on how well the models fit the observed data. In the following, we also investigated how well they perform at
making the predictions of unseen students’ performance on seen steps (type 1) and seen students’ performance
on unseen steps (type 2). Before describing our general methods in details we will first describe the three
models.

2. THREE MODELS: AFM, PFM, AND IFM

All three models, AFM, PFM, and IFM, use a @Q-matriz to represent the relationship between individual
steps and KCs. Q-matrices are typically encoded as a binary 2-dimensional matrix with rows representing
KCs and columns representing Steps. If a given cell Q; = 1, then step j is an application of KC k. Previous
researchers have focused on the task of generating or tuning Q-matrices based upon a dataset [Barnes 2005;
Tatsuoka 1983]. For the present work we employed a static Q-matrix for all our experiments. Equations 1,



2, and 3 present the core of each model. Below the equations are the detailed descriptions of each term used
in the three equations.

The central idea of AFM was originally proposed by [Draney et al. 1995] and introduced into ITS field by
[Cen et al. 2006; 2008]. Equation 1 shows that AFM defines the log-odds of a student i completing a step j
correctly to be a linear function of several covariates. Here p;; is a student 4’s probability of completing a step
j correctly, N; is the prior LO counts. AFM models contain three types of parameters: student parameters
0;, KC (or skill) parameters Sj, and learning rates ;. While AFM is sensitive to the frequency of prior
practice, it assumes that all students accumulate knowledge in the same manner and ignores the correctness
of their individual responses.

PFM, by contrast, was proposed by [Pavlik et al. 2009] by taking the correctness of individual responses
into account. It can be seen as a combination of learning decomposition [Beck and Mostow 2008] and AFM.
Equation 2 expresses a student i’s log-odds of completing a step j correctly based upon performance features
such as S (the number of times student ¢ has previously practiced successfully relevant KC k) and Fjj, (the
number of times student ¢ has previously practiced unsuccessfully relevant KC k). PFM may also include
student parameters such as 6; and skill parameters, such as 5. Additionally, PFM employs parameters to
represent the benefit of students’ prior successful applications of the skill px and the benefit of prior previous
failures py.

While PFM was originally proposed without a 6;, it is possible to include or exclude these student pa-
rameters from either PFM or AFM. In prior work, Corbett et al. noted that models which tracked learning
variability on a per-subject basis, such as with € outperform models that do not [Corbett and Anderson
1995]. Pavlik [Pavlik et al. 2009] further noted that the full AFM model seemed to outperform PFM with-
out # which in turn outperformed AFM without . Pavlik et al. also hypothesized that PFM with 6 would
outperform the other models and they investigated it in their recent work. In this study, our analysis showed
that prediction is better with student parameters, especially for AFM models, thus we include 6; in our
versions of both AFM and PFM.

From PFM, IFM can be seen as adding a new feature to represent the tells together with the success
or failure counts, shown in Equation 3. Equation 3 expresses a student i’s log-odds of completing a step
Jj correctly based upon performance features including S;i, Fir, Tir (the number of times student i has
previously got told on relevant KC k). IFM also includes student parameters 6;, skill parameters B, t, pk,
and the benefit of prior previous tells v.

AFM: In % =6; + Z BrQrj + Z Qrj (Ve Nik) (1)
vJ k k

PEM: In—— =0+~ BiQu; + > Qus (1 Six + piFi) (2)
K k k

IFM: In # =0; + Z BreQurj + Z Qurj (i Sik + prFir + viTik) (3)
Y k k

Where:

1. represents a student .

j. represents a step j.

k. represents a skill or KC k.

pij. is the probability that student ¢ would be correct on step j.
0;. is the coefficient for proficiency of student 4.

B;. is coefficient for difficulty of the skill or KC k.



Qr;- is the Q-matrix cell for step j using skill k.

k- is the coefficient for the learning rate of skill k¥ (AFM only);

Nj. is the number of practice opportunities student i has had on the skill k¥ (AFM only);
ui- is the coefficient for the benefit of previous successes on skill k& (PFM & IFM);

Sik- is the number of prior successes student ¢ has had on the skill ¥ (PFM & IFM);

Pk is the coefficient for the benefit of previous failures on skill k¥ (PFM & IFM);

Fji.. is the number of prior failures student ¢ has had on the skill ¥ (PFM & IFM);

vi. the coefficient for the benefit of previous tells on skill k& (IFM only);

T;. the # of prior Tells student ¢ has had on the skill £ (IFM only);

3. TRAINING DATASET AND EIGHT LEARNING OPPORTUNITY MODES

The original dataset was collected by training 64 students on a natural-language physics tutoring system
named Cordillera [VanLehn et al. 2007; Jordan et al. 2007] over a period of four months in 2007. The physics
domain contains eight primary KCs including the weight law (K C4), Definition of Kinetic Energy (KCy),
Gravitational Potential Energy (K Cs;), and so on. All participants began with a standard pretest followed
by training 7 physics problems on Cordillera and then a post-test. The pre- and post-tests are identical in
that they both have the same 33 test items. The tests were given online and consisted of both multiple-choice
and open-ended questions. Open-ended questions required the students to derive an answer by applying one
or multiple KCs.

In this study, our training dataset comprises 19301 data points resulted from 64 students solving 7 training
problems on Cordillera. Each student completed around 300 training problem steps. Note that the training
dataset does not include the pre- or posttest. In other words, a data point in our training dataset is either
the first attempt by a student on an elicit step or a system tell during his/her training on Cordillera only.

There are two types of steps in Cordillera. The primary steps are necessary problem-solving and conceptual
discussion steps. The justification steps, on the other hand, are optional steps that occur when students are
asked to justify the primary step they have just completed. The primary steps are designed to move the
solution process forward while the justification steps are designed to help the students engage with the
domain knowledge in a deeper way. When collecting our dataset the Cordillera system decided whether to
elicit or tell each step randomly. Thus, we have two types of LOs: elicit and tell for the primary steps; and
self-explain or explain for the justifications.

Figure 1 shows a pair of sample dialogues taken from the cordillera system for the same series of primary
steps with the same domain content. In dialogue (1.a) the system elects to elicit the students’ answer (steps
2- 3), while in dialogue (1.b) the system chooses to tell the student the answer (steps 2). Similarly in Figure 2
we present a similar comparison between a pair of self-explain and explain dialogues. As before both dialogues
cover the same domain content. In dialogue (2.a) the system asks the student to self-explain their answer
to the question in qualitative terms (steps 3-4). In dialogue (2.b) they are provided with a short qualitative
explanation (step 3).

For the primary steps, the average number of decisions ranges from 2.5 for KCy to 31 for KCsq for elicit
steps and ranges from 4 for KC to 47 for Ky for the tell steps. Compared with primary steps, justification
steps are significantly less frequent in that the average number ranges from 0 for KC to 3.5 for KC5; for
self-explain steps and ranges from 0 for KCy to 2.5 for Ky for explain steps.

In most of the prior research that we have surveyed the authors mainly used datasets involving quantitative
problem-solving steps similar to the primary steps in Cordillera. So when counting LOs in this study, we
first need to decide whether or not to include justification steps. Additionally, most previous research did not
include students’ performance on the pretest when counting LOs. While this makes some sense as students



(1.a) Elicit Version

(1) T: So let’s start with determining the value of v1.

(2) T: Which principle will help you calculate the rock’s instantaneous magnitude of velocity at T1? {ELICIT}
(3) S: definition of kinetic energy

(4) T: Let me just write the equation for you: KE1 = 0.5*m*v1"2.

(1.b) Tell Version

(1) T: So let’s start with determining the value of v1.

(2) T: To calculate the rocks instantaneous magnitude of velocity at T1, we will apply the definition of kinetic
energy. {TELL}

(3) T: Let me just write the equation for you: KE1 = 0.5*m*v1"2.

Fig. 1. Learning Opportunities on Problem-Solving Steps: Elicit vs. Tell

(2.a) Self-Explain
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T:Can we infer the direction of the velocity of the rock at T1 from the rock’s kinetic energy at T1? {ELICIT}
S:nope.

T:Excellent! Please explain why. {Self-Explain}

S:Only the magnitude of the velocity and not the direction of it is part of the definition of kinetic energy.
T:Excellent! Now that we know v1, - --

ot

(2.b) Explain
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T:Can we infer the direction of the velocity of the rock at T1 from the rock’s kinetic energy at T1? {ELICIT}
) S:nope.

—~
w N

) T:Excellent! This is because the kinetic energy only depends on mass and the magnitude of velocity, not the direction
of velocity.{ Explain}
(4) T:Now that we know v1, ---

Fig. 2. SelfExplain vs. Explain

receive no feedback indicating their successes or failures during the test, it is still the case that they do practice
their skills. Therefore, secondly we need to decide whether or not to include student’s pretest performance
in the LO counts.

In order to explore how different choices of LOs would impact different cognitive models, we defined four
ways to count the LOs. In the primary mode we count only the primary steps within the ITS. In pretest-
primary we count the primary mode steps plus the pretest (each test item is treated as one step for training).
Primary-Justify mode counts the primary and justification steps within the I'TS alone. And finally the overall
mode counts all steps in both the pretest and ITS training.

Note that using different modes of LOs neither changes the size of the training dataset which is generated
along students’ logs when training on Cordillera nor changes the number of parameters to be fit. Using
pretest in the LO count means that various LOs do not start with 0 for the pretest-primary and overall



modes but are based on the frequency of KC appearances (and, in the case of PFM, the accuracy) in the
pretest. For example, if a KCy is tested 20 times in the pretest and a student was correct 5 times and
wrong 15 times, then the student’s LOs on Ky for pretest-primary and overall mode would start with
LO = 20, Success = 5, Fail = 15,Tell = 0. For Primary and Primary-Justify modes, all LOs start with 0.
Coupled with this variation we can also count LOs additively or logarithmically. Using logarithmic count
is inspired by the power law relationship between measures of performance (reaction time or error rate) and
the amount of practice [Newell and Rosenbloom 1981]. But others [Heathcote et al. 2000] have argued that
the relationship is an exponential, which corresponds to additive counting. To summarize, we have {Primary,
Pretest-Primary, Primary-Justify, Overall} x {count, In(count)}, a total of eight LO modes.

4. RESULTS

Two measures of quality, the Bayesian Information Criteria (BIC) and the cross-validation Root Mean
Squared Error (RMSE), are used to evaluate how well various instantiated models perform. For both BIC
and cross-validation RMSE, the lower the value, the better. BIC [Schwarz 1978] is a criterion for model
selection among a class of parametric models with different numbers of parameters. In prior research on the
evaluation and comparison of different cognitive models [Cen et al. 2006; Pavlik et al. 2009; Gong et al. 2010]
the authors used BIC as a measure of success. In machine learning, however, it is conventional to use the
cross-validation RMSE, which is a more interpretable metric and, we believe, a more robust measure. For
the purposes of this paper, we will report both BIC and RMSE.

4.1 AFM, PFM, vs. IFM.

First, we will investigate whether considering Tell and Explains into the LOs is beneficial. In traditional
cognitive modeling the focus is solely on steps where the student’s performance is observed. In the context
of Cordillera that means counting only the elicit and self-explain steps as both require students to apply
their knowledge without support and their performance can be directly evaluated. For AFM models, we thus
compared the AFM algorithms shown in equation 1 by either including Tells and Explains into N;; or by
excluding them out of N;i. The two resulted models are referred as AFM-Tell and AFM+Tell respectively.
Therefore, in this section we compared four models: AFM-Tell, AFM+Tell, PFM and IFM across eight LO
modes.

For each of the four models, its corresponding count LOs on corresponding {Primary, Pretest-Primary,
Primary-Justify, Overall} modes are defined in Table I. For example, the IFM has three LO counts: prior
success Sk, prior failures Fjj, and prior tells T;. Under the Primary-Justify mode (shown in the left bottom
of the table), S;r = Success in (Elicit + Self-Explain) on the KC k, F;; = prior failure in (Elicit 4+ Self-
Explain) on the KC k, and T}, = prior tells and explains on the KC k. Once the count mode is defined, the
corresponding Ln(Count) mode is simply taking each count logarithmically. For example, under {Primary-
Justify, Ln(Count)} mode, we have S;; = In[Success in (Elicit + Self-Explain) on KC k], Fj; = In[prior
failure in (Elicit + Self-Explain) on KC k], and T}, = In[prior tells and explains on the KC k.

For each model on each mode, we carried out a 10-fold cross-validation. Such procedure resulted in 8
(modes) x 4 (models) = 32 BIC values and CV RMSE values. Table II shows the comparisons among the
four models when using {Primary-Justify, Count} and {Primary-Justify, Ln(Count)} LO modes respectively.
It shows that across both modes, the IFM is more accurate (both lower BIC and RMSE) than the PFM;
similarly, the latter is more accurate than AFM+Tell and AFM-Tell. However, it is harder to compare
AFM-Tell and AFM+Tell. For example, on {Primary-Justify, Count} mode, although AFM-Tell has lower
BIC than AFM+Tell 9037 vs. 9058, the latter has lower RMSE than the former: 4.456E-01 vs. 4.459E-01.
So on both {Primary-Justify, Count} and {Primary-Justify, Ln(Count)} modes, we have IFM > PFM >
AFM+Tell, AFM-Tell. Such pattern is consistence across all eight modes.



Table I. {Primary, Pretest-Primary, Primary-Justify, Overall} Learning Opportunity Modes

[ [ Primary H Pretest-Primary ]
AFM-Tell Nk Elicit Pretest+Elicit
AFM+Tell | N Elicit+Tell Pretest+Elicit+Tell
PFM Sik Success(Elicit) Success in (Pretest + Elicit)
Fir, Failure(Elicit) Failure in (Pretest + Elicit)
IFM Sik Success(Elicit) Success in (Pretest + Elicit)
Fiy, Failure(Elicit) Failure in (Pretest + Elicit)
T Tell Tell
[ [ Primary-Justify H Overall ]
AFM-Tell N Elicit + SelfExplain Pretest+ Elicit+SelfExplain
AFM+Tell | N;, | Elicit+Tell 4+ SelfExplain +Explain Pretest+ Elicit+Tell + SelfExplain+Explain
PFM Sik Success in (Elicit + Self-Explain) Success in (Pretest+ Elicit + Self-Explain)
Fix, Failure in (Elicit + Self-Explain) Failure in (Pretest+ Elicit + Self-Explain)
IFM Sik Success in (Elicit + Self-Explain) Success in (Pretest+ Elicit + Self-Explain)
Fiy, Failure in (Elicit + Self-Explain) Failure in (Pretest+ Elicit + Self-Explain)
T; Tell4+ Explain Tell+ Explain

Table II. Compare AFM-Tell, AFM+Tell, PFM and IFM on
{Primary-Justify, Count} and {Primary-Justify, Ln(Count)} mode

{Primary-Justify, Count} | {Primary-Justify, Ln(Count)}
Model BIC | 10-fold RMSE | BIC | 10-fold RMSE
AFM-Tell 9037 4.460E-01 9037 4.459E-01
AFM+Tell || 9117 4.470E-01 9058 4.456E-01
PFM 8474 4.235E-01 8461 4.236E-01
IFM 8347 4.217E-01 8321 4.211E-01

In order to compare the performance among four models, Wilcoxon Signed Ranks Tests were conducted
on resulted BICs and RMSEs. Results showed that IFM significantly outperformed the PFMs across eight
modes: Z = —2.52, p = 0.012 for both BIC and cross-validation RMSE. Similarly, it was shown that
across all eight modes IFM beat corresponding AFM-Tell across eight modes significantly on both BIC and
RMSE: Z = —2.52, p = 0.012. Similar results were found between IFM and AFM+Tell in that the former
out-performed the latter across eight modes significantly on both BIC and RMSE: Z = —2.52, p = 0.012.

Comparisons between PFM and AFM-Tell and AFM+Tell showed that PFM beats corresponding AFM-
Tell across eight modes significantly on both BIC and RMSE: Z = —2.52, p = 0.012; and PFM also beat
AFM+Tell significantly on both BIC and RMSE: Z = —2.52, p = 0.012. Finally, comparisons between AFM-
Tell and AFM+Tell showed that adding Tells and Explains into LOs did not statistically significantly improve
the BIC and RMSE of the corresponding AFM model: Z = —0.28, p = 0.78 for BIC and Z = —1.35, p = 0.18
for RMSE respectively. Therefore, our overall results suggested: IFM > PFM > AFM-Tell, AFM+Tell.

Next, we investigated which way of counting LOs is better, using logarithmic or additive tabulation?
Wilcoxon Signed Ranks Tests were conducted on comparing the BIC and RMSE of the performances when
using Count versus using Ln(Count) on the same model and mode. Results showed using Ln(Count) per-
formed significantly better than using Count: Z = —2.27, p = 0.008 for BIC and Z = —2.33, p = 0.02
for RMSE respectively. This analysis is interesting in relation to a long-standing debate about whether the
learning curve is exponential (like additive tabulation) or a power law (logarithmic tabulation) [Heathcote
et al. 2000]. Our results appear to favor the power law.

Next, we investigated the impact of four LO modes. The BICs and RMSEs were compared among the
{Primary, Pretest-Primary, Primary-Justify, Overall} modes regardless of Count and Ln(Count). A pairwise
comparisons on Wilcoxon Signed Ranks Tests showed that the {Primary-Justify} modes generated signifi-



cantly better models than using {Primary} modes Z = —2.1, p = 0.036; the {Primary} modes generated
better models than using {Pretest-Primary} and {Overall} Z = —2.27, p = 0.018 and Z = —2.521, p = 0.012
respectively. While no significant difference was found between {Pretest-Primary} and {Overall} modes. Sim-
ilar results was found on RMSE. Therefore, it suggested that adding justification steps into LOs is beneficial
in that Primary-Justify mode beats Primary; however, adding pretest into the LOs did not produce better
models and it may even have resulted worse models: the benefit of adding justification steps into LOs was
seemingly washed out by including pretest in the LOs in that {Overall} modes generate worse models than
{Primary-Justify} and {Primary}.

To summarize, for modeling the training data, applying IFM model and using {Primary-Justify, Ln(Count)}
as LOs generated the best fitting model. Additionally, comparisons among the IFM, PFM, AFM-Tell,and
AFM-+Tell showed that IFM > PFM > AFM-Tell, AFM+Tell. In this paper, our goal is to compare cognitive
models on datasets involving multiple types of instructional interventions. As shown above, for AFM the tell
steps can be directly added into existing opportunity count N;;; For the PFM model, however, there is no
direct way how tells should be incorporated. Therefore, in the following we will mainly compare IFM and
AFM-+Tell. For the convenient reasons, we will refer to AFM+Tell as AFM.

4.2 IFM vs. AFM for Unseen Student Prediction (Type 1)

Next we compared the AFM and IFM models on the task of unseen student prediction. In order to predict
unseen student’s performance, Student ID was treated as a random factor in both AFM and IFM models.
Here we conducted Leave-one-student-out cross-validation. In other words, 64 students resulted in a 64-fold
cross validation. Thus, we have 8 (modes) x 2 (AFM vs.IFM) BIC values and Cross-Validation RMSE values.

Table IIT shows the correpsonding BIC and RMSE values of AFM and IFM models using { Primary-Justify,
Ln(Count)} mode. Table ITI shows that IFM generates better prediction models (both lower BIC and RMSE)
than AFM and the difference is large. Such pattern is consistence across all eight modes.

Table III. AFM vs. IFM On Unseen Students
with Random Effect Student Parameters
l Model [ BIC [ 64-fold Cross-Validation RMSE ]

AFM 8724 4.6144E-01
IFM 7952 4.1661E-01

To compare IFM and AFM across eight modes, Wilcoxon Signed Ranks Tests were conducted on both
BICs and cross-validation RMSEs. Consistent with the patterns shown in Table III, results showed that
IFM is significant better than AFM across eight modes: Z = —2.52, p = 0.012 for both BIC and cross-
validation RMSE. To summarize, IFM with random student parameter is a better model for predicting
unseens students’ performances on seen steps than AFM model with random student parameter. The best
performance was generated IFM model using {Primary-Justify, Ln(Count)} as LOs.

4.3 AFM vs. IFM for Unseen Step prediction (Type 2).

Finally we compared AFM and IFM models on the task of unseen step prediction. Here we used training
dataset and tested each models’ prediction using students’ post-test performance. For each model on each
mode, we carried out a 10-fold cross-validation. Such procedure again resulted in 8 x 2 BIC values and CV
RMSE values.

Table IV shows the results on comparisons for the AFM and IFM models on both {Primary-Justify,
Ln(Count)} and {Overall, Ln(Count)} modes. Across the eight LO modes, the performance of AFM reaches
its best when using {Primary-Justify, Ln(Count)} mode and IFM reaches its best when using {Overall,
Ln(Count)} mode. Table III shows that when using {Primary-Justify, Ln(Count)} mode, the AFM is even



more accurate (both lower BIC and RMSE) than the corresponding IFM model; while when using {Overall,
Ln(Count)} LO mode, the IFM is more accurate (both lower BIC and RMSE) than the corresponding AFM.
Moreover, the best IFM model, using {Overall, Ln(Count)} LO mode, is still better than the best AFM
which using {Primary-Justify, Ln(Count)} LO mode. Thus, cross 8 modes on both AFM and IFM, the best
prediction model is still generated by IFM but using {Overall, Ln(Count)} LO mode.

Table IV. AFM vs. IFM On Predicting Post-test
Performance by {Primary-Justify, Ln(Count)} and {Overall,
Ln(Count)} modes

[ Mode [ Model | BIC | 10-fold RMSE |
{Primary-Justify, Ln(Count)} | AFM 2414 4.6632E-01
IFM 2428 4.6791
{Overall, Ln(Count)} AFM | 2443 | 4.7027E-01
IFM 2252 4.4529E-01

In order to compare AFM and IFM across eight modes, Wilcoxon Signed Ranks Tests were again conducted
on resulted 8 x 2 BIC and RMSE results. Result showed that IFM is marginally significant better than AFM
across eight modes: Z = —1.68, p = 0.093 for BIC and Z = —1.82, p = 0.069 for 10-fold CV RMSE
respectively. Previously, the best model for fitting the training dataset and type 1 predictions are generated
by IFM using {Primary-Justify, Ln(Count)} LOs; on the task of predicting students’ posttest performance
(type 2), however, the best model is still IFM but using {Overall, Ln(Count)} LO counts. To summarize, the
best performance of IFM is better than the best AFM and across the eight LO modes and IFM is marginally
better than AFM model on type 2 prediction.

5. CONCLUSION

In this paper we investigated student modeling on a dataset involving multiple instructional interventions. We
proposed a cognitive model named IFM. We compared IFM with AFM and PFM on the training dataset.
We determined that including non-standard LOs such as tells and explains as a separated parameter is
effective in that the IFM models’ out-performance PFM, AFM-Tell, and AFM+Tell across all modes; but
for AFM modes, simply adding tells into AFM LO counts did not seemingly significantly improved the AFM
model’s performance. This is probably because AFM gives a same learning rate for different instructional
interventions. For example, under the {Primary, Count} mode, the N;; in AFM+Tell model is Elicit + Tell.
On one KC, K(Cy, the AFM had: the learning rate v, = 0.011462. By contrast, the corresponding IFM
has three parameters: ui for benefit of previous successes on skill k; pg is the coefficient for the benefit of
previous failures, and vy, the coefficient for the benefit of previous tells on skill k. For the same KC, the
IFM resulted pg = 0.083397; pr, = —0.213746, v, = 0.031982. The values of the three parameters are quite
different from each other, which suggested the the benefit of tells is in the middle of the benefit of success
and failure. Such patterns on learned parameters between AFM and IFM showed throughout our analysis.
It suggested that rather than using one learning rate parameters for different instructional interventions, it
is better to break them into categories and learn seperated parameters.

In order to fully exploring the effectiveness of three models, we further compared them on two prediction
tasks — unseen student prediction (type 1) and unseen step prediction (type 2). Our results indicate that the
IFM model is significantly better than the AFM model on predicting unseen student’s performance on seen
steps (type 1) and marginal significant better on predicting seen students’ performance on posttest (type 2).

Additionally, we examined the impact of including pretest performance in the LOs as well as qualitative
justification steps in the LOs. We found that the Primary-Justify mode seems to be most effective. Generally
speaking, models trained with logarithmic tabulation outperformed those trained with additive tabulation



probably because the number of prior LOs counts in this study can be ralatively large. For example, the
average number of primary steps (including both elicits and tells) in the training data varies from 6 for KC
to 83 for KCQO.

Even though IFM model performed the best on modeling the training data on both type 1 and type 2
predictions, its performance is heavily dependent upon the specific prediction task being performed and the
way in which the specific LOs were counted. For modeling the training data and type 1 prediction, it is the
best to using (Primary-Justify,Ln(Count)) mode; but for type 2 predictions, it was best to include the pretest
data as well and thus using(Overall,Ln(Count)) mode for LO counts. Thus we conclude that, for datasets
involving multiple learning interventions, IFM is a more robust choice for student and cognitive modeling.
However the performance of IFM is heavily dependent upon the specific prediction task being performed and
the way in which the specific LOs were counted. Experimenters facing a novel task should engage in some
measure of parameter-fitting to determine the best fit.
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