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ABSTRACT
One of the key factors that affects automated tutoring sys-
tems in making instructional decisions is the quality of the
student model built in the system. A student model is a
model that can solve problems in various ways as human
students. A good student model that matches with student
behavior patterns often provides useful information on learn-
ing task difficulty and transfer of learning between related
problems, and thus often yields better instruction on intel-
ligent tutoring systems. However, traditional ways of con-
structing such models are often time consuming, and may
still miss distinctions in content and learning that have im-
portant instructional implications. Automated methods can
be used to find better student models, but usually require
some engineering effort, and can be hard to interpret. In this
paper, we propose an automated approach that finds student
models using a clustering algorithm based on automatically-
generated problem content features. We demonstrate the
proposed approach using an algebra dataset. Experimental
results show that the discovered model is as good as one
of the best existing models, which is a model found by a
previous automated approach, but without the knowledge
engineering effort.
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1. INTRODUCTION
A student model is an essential component in intelligent tu-
toring systems. It encodes how to solve problems in various
ways as human students do. One common way of represent-
ing such student models is a set of knowledge components
(KC) encoded in intelligent tutors to model how students
solve problems. As defined in [9], a knowledge component
is an acquired unit of cognitive function or structure that
can be inferred from performance on a set of related tasks.
The set of KCs includes the component skills, concepts, or
percepts that a student must acquire to be successful on

the target tasks. For example, a KC in algebra can be how
students should proceed given problems of the form Nv=N
(e.g. 3x = 6). A student model provides automated tu-
toring systems with important information on how to make
instructional decisions. Better student models are capable
of predicting task difficulty and transfer of learning between
related problems. Thus, intelligent tutoring systems with
better student models often provide more effective learning
experience.

Traditional ways to construct student models include struc-
tured interviews, think-aloud protocols, rational analysis,
and so on. However, these methods are often time-consuming,
and require domain expertise. More importantly, they are
highly subjective. Previous studies [11] have shown that hu-
man engineering of these models often miss components of
knowledge acquisition (e.g., that learning to read algebraic
sentences is difficult) that have important instructional im-
plications. Other methods that apply machine learning tech-
niques to generate student models [16, 27] can find models
that are better than human-generated ones, but may suf-
fer from challenges in interpreting the results. For exam-
ple, Learning Factor Analysis (LFA) [6] apply an automated
search technique to discover student models. Nevertheless,
one key limitation of LFA is that it carries out the search
process only within the space of human-provided factors. If
a better model exists but requires unknown factors, LFA
will not find it. Another approach is to use a learning agent,
SimStudent, to automatically discover student models [15].
Although this method is less dependent on human-provided
factors, it still needs some knowledge engineering effort in
constructing the learning agent.

To address this issue, we formulate the student model discov-
ery approach as a clustering problem, and propose another
automated method that discovers student models using a
machine learning algorithm, k-means, based on automatically-
generated features. To accommodate for both the perfor-
mance prediction accuracy and the interpretability of the
discovered model, the features include both problem content
features and performance features, so that problem steps in
the same cluster are of similar forms and are associated with
similar performance on human students. Each cluster corre-
sponds to a KC that students need to learn. We evaluated
the approach in algebra using real student data. Experiment
results show that the discovered model fits with real student
data as good as the model found by SimStudent.



Table 1: An Example List of Steps with Their Content Features.

Step Tokenized Step -N Nv v= =N -Nv Nv= v=N v+ +N N= Nv+ v+N +N= N=N
-3x = 6 -Nv=N 1 1 1 1 1 1 1 0 0 0 0 0 0 0
2y+5=7 Nv+N=N 0 1 0 1 0 0 0 1 1 1 1 1 1 1

In the following sections, we start by describing how to sta-
tistically evaluate the quality of a student model. Then,
we explain how to generate features and to apply a cluster-
ing algorithm to find student models that meet such crite-
ria. Next, we report experimental results on the compar-
ison between the clustering-based model and the SimStu-
dent model, along with an in-depth study using a recently
developed analysis technique, Focused Benefits Investiga-
tion (FBI) [10]. After this, we discuss the generality of the
proposed approach, and possible improvements that can be
made using SimStudent. In closing, we describe some re-
lated work as well as conclusions drawn from this work.

2. STATISTICAL EVALUATION OF STUDENT
MODEL QUALITY

As we have mentioned before, a student model can be repre-
sented by a set of knowledge components, where each prob-
lem step is associated with one KC that encodes how to
proceed given the current step. Therefore, the problems we
have is that given a dataset recording how human students
solve problems in one domain, how to find a set of KCs that
matches with student behavior well.

There are various ways of matching a student model with
student data. Although other models are also possible (e.g. [8],
in our case, we use the Additive Factor Model (AFM) [6] to
measure the quality of a student model. AFM is an instance
of logistic regression that models student success using each
student, each KC, and the KC by opportunity interaction
as independent variables,

ln
pij

1− pij
= θi +

∑
k

βkQkj +
∑
k

βkQkj(γkNik)

Where:

i represents a student i.

j represents a step j.

k represents a skill or KC k.

pij is the probability that student i would be correct on step
j.

θi is the coefficient for proficiency of student i.

βk is coefficient for difficulty of the skill or KC k.

Qkj is the Q-matrix cell for step j using skill k.

γk is the coefficient for the learning rate of skill k.

Nik is the number of practice opportunities student i has
had on the skill k.

Hence, the better the student model is; the more accu-
rate the predictions are. To train the parameters, we use
maximum-likelihood estimation (MLE). In order to avoid
overfitting, we use cross-validation (CV) to validate the qual-
ity of the student model.

3. STUDENT MODEL DISCOVERY USING
A MACHINE LEARNING ALGORITHM

Given the above evaluation method, we would like to note
that our task here is not only to find a model that predicts
student behavior well, we also want to find a model that is
conceptually meaningful. In other words, steps within the
same KC should be both conceptually similar and performance-
wise similar. In fact, finding a student model over a set
of problem steps is a clustering task, where the algorithm
groups a set of problem steps in a way that steps in the
same group (called cluster) are more similar in some sense
to each other than to those in other groups (clusters). In our
case, each cluster corresponds to a KC in the student model.
From this clustering point of view, if the metric of similarity
measures both content similarity and performance similar-
ity, the KCs that the algorithm finds would have the desired
properties we discussed above. Therefore, we use two types
of features for clustering, content features and performance
features.

3.1 Preprocessing
Before generalizing the features, we first tokenize the prob-
lem steps, so that all numbers are replaced by N , and all
variables are represented as v. For example, the tokenized
representation of −3x = 6 is −Nv = N . In fact, the level
of tokenization affects the result of the discovered model,
since this preprocessing step removes the difference among
steps that are of the same form but with different numbers.
This may cause problems in some cases. For instance, solv-
ing −3x = 6 can be potentially much easier than solving
−452x = 904, but the preprocessing step gives both steps
the same tokenized representation −Nv = N . As we will
discuss later, by making use of SimStudent, we could auto-
matically get different levels of tokenization.

3.2 Feature Generation
After preprocessing, we now generate features for these to-
kenized steps. There are two types of features, content fea-
tures and performance features.

3.2.1 Content Features
Content features are defined based on the problem content
information of the tokenized steps. More specifically, we
generate all of the bigrams and trigrams in each of the tok-
enized steps. For each bigram or trigram, we set the value
of that feature to be 1 if the bigram or trigram appears in
the current step, and 0 otherwise.



Table 2: The List of Performance Features Used for Clustering.

Feature Meaning
Avg. Incorrects Average number of incorrect attempts for the current step
Avg. Hints Average number of the student asking for a hint for the current step
Avg. Corrects Average number of correct attempts for the current step
% First Attempt Incorrects The percentage of times that the first attempt is incorrect
% First Attempt Hints The percentage of times that the first attempt is asking hint
% First Attempt Corrects The percentage of times that the first attempt is correct
Avg. Step Duration (sec) Average number of seconds the student spending on this step
Avg. Correct Step Duration (sec) Average number of seconds the student spending on this step when the

student gets this step correct
Avg. Error Step Duration (sec) Average number of seconds the student spending on this step when the

student gets this step incorrect
Total Students Average number of total students working on this step
Total Opportunities Average number of total opportunities that the student has in solving

the current step

For example, for step −Nv = N , all of the bigram features it
generates are −N , Nv, v =, and = N , and all of the trigram
features it generates are −Nv, Nv =, and v = N . Consid-
ering a bigram feature Nv, and a trigram feature +N =, for
step −Nv = N , the value of the feature Nv is 1, whereas
the value of the feature +N = is 0, since +N = does not
appear in −Nv = N . But for another step Nv + N = N ,
both the value of Nv and the value of +N = are 1, since
both of them appear in Nv +N = N . The trigram feature
+N = here can be used to identify the steps for subtracting
both sides with N . Table 1 shows an example list of steps
with their content features.

By using these content features, we make sure that the steps
in the same cluster share some common content features, and
thus look similar to each other. This satisfies the property of
having conceptually-similar steps in the same cluster. More-
over, by having steps that share content features clustered
in one KC, it is easier for human to interpret the results.

3.2.2 Performance Features
The second set of features we used in the algorithm are per-
formance features. These features measure the average per-
formance of human students on each format of the tokenized
steps. Examples of such measurements are the time to re-
sponse, and whether the student’s first attempt was correct.
Table 2 shows the full list of performance features used for
clustering.

Note that performance features are only used to create the
clusters of the training data. Since we are predicting the
performance of human students, performance data should
not be used in testing. For testing data, we only use the
content features to assign the cluster of the current step. In
other words, for each testing data point, we calculate the
distance of the data point to all of the training data points
based on perceptual features, and assign the testing data
point to the cluster associated with the closest training data
point.

3.3 Principal Component Analysis
Before clustering, we normalize all the features to range from
0 to 1. Then, we perform a principal component analysis

Algorithm 1: K-Means

Input: Points to be clustered P , Number of clusters k
Output: Cluster centroids C, cluster membership M .

1 initialize C with k randomly selected data points in P
2 forall the pi ∈ P do
3 mi := argminj∈1..kdistance(pi, cj)
4 end
5 while m changed do
6 foreach i ∈ {1..n} do
7 Recompute ci as the centroid of {pj |mj = i}
8 end
9 sum ratios := 0

10 forall the p ∈ c ∩ d do
11 sum ratios += wc(p)/wd(p)
12 end
13 forall the pi ∈ P do
14 mi := argminj∈1..kdistance(pi, cj)
15 end

16 end
17 return C, M

over the features we generated. Principal component analy-
sis is a mathematical procedure that projects a set of obser-
vations of possibly correlated variables into a set of values of
linearly uncorrelated variables. These linearly uncorrelated
variables are called principal components. The first prin-
cipal component points to the direction that accounts for
the largest possible variance. The succeeding components
are orthogonal to the previous components, and account for
smaller variance.

After this transformation process, all of the features in the
projected space are orthogonal to each other. Moreover,
in order to remove less informative features, we only select
the first 40 principal components in the projected space. It
covers approximately 95% of the variance in the data.

3.4 Student Model Discovery with a Cluster-
ing Algorithm

To discover student models, we use k-means to cluster the
data over the automatically-generated features. The dis-



Table 3: Cross Validation Results on the Clustering-
Based Model and the SimStudent Model.

SimStudent RMSE Clustering RMSE
Run 1 0.4105 0.4102
Run 2 0.4109 0.4106
Run 3 0.4113 0.4105
Run 4 0.4107 0.4111
Run 5 0.4106 0.4095
Run 6 0.4109 0.4102

Average 0.4108 0.4104

tance between data points is measured by the Euclidean
distance in the feature space.

The algorithm uses an expectation-maximization style ap-
proach. Algorithm 1 shows the psuedocode of the clustering
procedure. Fristly, the algorithm randomly selects k points
as the initial centers of each cluster. Then, in the assignment
step, the rest of the points are assigned to the cluster whose
mean is closest to it among all of the existing clusters. Next,
in the update step, the algorithm calculates the new means
of the new clusters as the centroids of the data points. This
process continues until converge.

K-means needs the number of clusters k to be given as input.
Since we do not know how many clusters are there, we set
the number of clusters to be 20, 25, and 30. The algorithm
then picks the one with the best cross validation result1.
Note that even with the same number of clusters, different
initialization of the clusters can lead to different clustering
results. In this study, we just run k-means once for each
value k. In future study, we could run the clustering algo-
rithm multiple times, and select the clusters that have the
smallest intra-cluster difference and the largest inter-cluster
difference.

4. EXPERIMENT STUDY
In order to evaluate the effectiveness of the proposed ap-
proach, we carried out a study using an algebra dataset.
We compared the clustering-based model with a SimStudent
model. The SimStudent model is discovered by a learning
agent, which is also one of the best student models we have
in the database.

4.1 Method
To generate the SimStudent model, SimStudent was tu-
tored on how to solve linear equations by interacting with
a Carnegie Learning Algebra I Tutor like a human student.
We selected 40 problems that were used to teach real stu-
dents as the training set for SimStudent. Given all of the
acquired production rules, for each step a real student per-
formed, we assigned the applicable production rule as the
KC associated with that step. In cases where there was
no applicable production rule, we coded the step using a
human-generated KC model (Balanced-Action-Typein). The
human-generated model is the best model constructed by
domain experts. It has been shown that the SimStudent

1We tried smaller numbers, but it turns out that when k is
between 20 and 30, the cross validation result is often better.
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Figure 1: Error rates of human students and pre-
dicted error rates of two student models. S stands
for a signed number, N represents an integer, and v
is a variable.

model is better than the human-generated model, and pro-
vides useful instructional implications.

The clustering-based model was discovered using the ap-
proach described above. Each time a student encounters a
step using some KC is considered as an “opportunity” for
that student to show mastery of that KC. In both models,
a total of 6507 steps are coded.

In order to get a better understanding on how the clustering-
based model differs from other student models, we further
utilized DataShop, a large repository that contains datasets
from various educational domains as well as a set of associ-
ated visualization and analysis tools, to facilitate the process
of evaluation, which includes generating learning curve visu-
alization, AFM parameter estimation, and evaluation statis-
tics including AIC (Akaike Information Criterion) and cross
validation.

4.2 Dataset
We analyzed data from 71 students who used an Carnegie
Learning Algebra I Tutor unit on equation solving. The stu-
dents were typical students at a vocational-technical school
in a rural/suburban area outside of Pittsburgh, PA. The
problems varied in complexity, for example, from simpler
problems like 3x=6 to harder problems like x/-5+7=2. A
total of 19,683 transactions between the students and the
Algebra Tutor were recorded, where each transaction repre-
sents an attempt or inquiry made by the student, and the
feedback given by the tutor.

4.3 Measurements
To test whether the generated model fits with real student
data, we used 10-fold cross validation. The cross validation
was performed over ten folds with the constraint that each
of the three training sets must have data points for each stu-
dent and KC. For the clustering-based model, performance
features of the testing steps were not used in constructing the
KCs. We calculated the root mean-squared error (RMSE)
averaged over ten test sets. Due to the random nature of
the fold generation process in cross validation, we repeated
this process six times.



Table 4: FBI Results on Selected KCs That Are Improved in the Clustering-Based Model.

SimStudent KCs SimStudent Model
RMSE

Clustering-Based
Model RMSE

% change of RMSE

ctat-divide 0.5289 0.3984 -24.67
ctat-distribute 0.4292 0.3553 -17.21
ctat-multiply 0.4634 0.3962 -14.50
ctat-clt 0.3757 0.3445 -8.325
ctat-divide-typein 0.3674 0.3368 -8.321

In order to better understand this machine learning ap-
proach, we carried out an in-depth study using FBI [10]
on the clustering-based model and the SimStudent. FBI is
a recently developed technique. It is designed to analyze
which of the differences between the models improves the
prediction the most, and by how much.

4.4 Experimental Results
As shown in Table 3, in five out of the six runs, the clustering-
based models get lower RMSEs than the SimStudent model,
which indicates that the clustering-based model is at least
as good as the SimStudent model. Averaged over the six
runs, the clustering-based models get an average RMSE of
0.4104, while the SimStudent model gets a slightly higher
RMSE (i.e., 0.4108).

As you may have noticed, the difference between the RM-
SEs of the two models is small, but this does not mean
that the difference between the two models is small. In-
stead of using cross validation to measure the quality of the
model as a whole, we applied FBI to evaluate the difference
at the knowledge component level. Table 4 shows the top
five KCs in the SimStudent model that are improved in the
clustering-based model. As we can see that all of these KCs’
names start with “ctat”, which means these KCs are from
the human-generated model. Recall that in the SimStudent
model, if SimStudent could not find any applicable produc-
tion rule to a step, the step would be coded by the human-
generated model. This suggests that the clustering-based
approach is more general than the SimStudent approach in
the sense that it is able to code steps that are not supported
by SimStudent. Among the nine KCs generated by SimStu-
dent, three of them were improved in the clustering-based
student model.

In these five KCs, the clustering-based model successfully
reduced the RMSE by at least 8%. In the KC “ctat-divide”,
the RMSE was reduced by around 25%. This indicates that
the clustering-based approach is able to find KCs that are
better than the existing ones. We can inspect the data more
closely to get a better qualitative understanding of how the
two models are different and what implications there might
be for improved instruction.

We took a closer look at the KC “ctat-divide-typein”. In
the SimStudent model, all steps that require division are
assigned to the “ctat-divide-typein” skill. However, there
are differences among these steps. We checked the KCs in
the clustering-based model associated with these steps, and
found out that these steps were split into different KCs in
the clustering-based model. Table 5 shows the five biggest
KCs associated with the“ctat-divide-typein”steps. Since we

used problem content based features, the KCs in the model
were relatively easy to interpret. Each KC name (e.g., 25)
in the table is followed by the most common form of the
division steps in the KC (e.g., S.N = Sv/S), where N rep-
resents an integer, S means a signed number, and v stands
for a variable. We calculated the average error rate of hu-
man students solving these steps, as well as the predicted
error rates of the steps based on the two student models.
As presented in Figure 1, the predicted error rates of the
clustering-based model are closer to human students’ actual
error rates than the predicated error rates of the SimStu-
dent model. Since the SimStudent model considers all these
steps correspond to one KC, it predicts that they should
have similar error rates, which is reflected by the flat line in
Figure 1. The clustering-based model, on the other hand,
predicts different error rates for problem steps of different
forms.

More specifically, according to human student performance,
steps associated with KC 25 are easier than problem steps
from other KCs. A careful inspection at the data shows
that KC 25 is associated with problem steps of the form
S.N = Sv/S, which means that the left side of the equation
is a decimal number. On the other hand, the problem steps
in other KCs are associated with fractions. For steps with
fractions, human students may have to simplify the fractions
in order to get the final solution, whereas for steps with
decimal numbers, students only need to copy the decimal
numbers as the solution. Therefore, steps associated with
KC 25 have a lower error rate than the other steps, which are
correctly modeled by the clustering-based model. Moreover,
among KC 6, KC 22, and KC 29, human students have a
higher error rate when the variable is on the right side of
the equation (i.e., steps associated with KC 6). This is also
correctly captured by the clustering-based model, while the
SimStudent model again incorrectly predicts similar error
rates.

These results are confirmed in the FBI study as well. As
shown in Table 5, the largest improvement comes from KC
25 reaches 40%, partially because it separates divide-typein
problems with decimal numbers from problems with frac-
tions. KC 15 further models problem steps that have the
variable with coefficients from the other steps that have the
single variable in one side of the equation. This contributes
to an improvement around 8%. The other three KCs differ-
entiate problem steps that have the variable in the left side
of the equation from the ones that have the variable in the
right side of the equation. Two out of these three KCs get
better RMSE. The third KC’s increase in RMSE is mainly
caused by other none divide-typein steps.



Table 5: Selected KCs in the Clustering-Based Model That Correspond to KC “ctat-divide-typein”.

Clustering KCs Clustering-Based
Model RMSE

SimStudent Model
RMSE

% change of RMSE

25 (S.N = Sv/S) 0.1547 0.2170 40.34
6 (S/N=v) 0.4654 0.5516 18.54
15 (Sv/-N = S/S or S/S = Sv/-N) 0.2969 0.3205 7.939
22 (v = S/-N) 0.4194 0.4279 2.016
29 (v = S/N) 0.4238 0.4073 -3.898

3 x

MinusSign Number
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Variable

x
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Figure 2: Different parse trees for -3x and -x.

The clustering algorithm’s split of the original divide-typein
KC into five KCs suggests that human students should be
taught separately on each type of problems. More specif-
ically, intelligent tutors cannot make the assumption that
if students have learned the divide-typein KC for decimal
problems, they will also know how to solve the fraction prob-
lems. Furthermore, the tutoring system should teach human
students not only with problems that have the variables on
the left side, but also with problems that have the variables
at the right side of the equation, so that students get famil-
iar with the concept that variables can be at the either side
of the equation.

5. DISCUSSION
Given the promising results, we would like to further discuss
some interesting future steps for this algorithm.

5.1 Automated vs. Manual Model Discovery
One question we should ask is that why we should use auto-
mated student model discovery approach rather than man-
ual construction. This is mainly due to the fact that much
of human expertise is only tacitly known. In many of the
cases, we know how to solve the problems, while it can be
hard to explain how we solved the problem. For instance,
in language learning, native speakers can accurately select
the correct article in a sentence, but do not know why they
pick that article. Similarly, most algebra experts have no
explicit awareness of subtle transformations they have ac-
quired. Even though such instructional designers may be
experts in a domain, they may still have some blind spots
regarding subtle perceptual differences like this one, which
may make a real difference for novice learners. A machine
learning approach can help get past such blind spots by re-
vealing challenges in the learning process that experts may
not be aware of. In addition, these discovered KCs can serve
as a basis for traditional ways of student model discovery.

5.2 Feature Generation Using SimStudent
Furthermore, in this paper, we simply use bigrams and tri-
grams of the tokenized steps as the content features. Some

of these features may not be very helpful in differentiating
KCs needed for the steps. Moreover, it is possible that differ-
ent tokenization procedures and longer n-grams would lead
to better results in other domains. We can, of course, keep
adding new features in the feature space, and let the learn-
ing algorithm search through the larger space. However,
this is not ideal due to the curse of dimensionality. In pre-
vious work, we have shown that hierarchical representations
of the problem steps as shown in Figure 2 can be acquired
by grammar induction techniques [14]. These hierarchical
representations capture “deep features” in solving problems
at different levels of abstractions. In the future, it would be
interesting to see that whether we can make use of such rep-
resentations to automatically generate high-quality content
features, and lead to the discovery of better student models.

Moreover, the problem content features used in this paper
are perceptual features. This is sufficient for domains like
algebra, since the structure of the problem steps is enough
to decide which skill to apply. But in other domains such
as fraction addition, deciding whether two numbers are co-
primed or not is impossible if using only perceptual features.
In these cases, being able to generate operational features is
required.

In response to this, we propose to use SimStudent to gen-
erate these features. SimStudent is an intelligent learning
agent that uses machine learning techniques to acquire skills.
It has three sets of prior knowledge, a perceptual hierarchy,
a set of operator functions, and a set of feature predicates.
Previous work has shown that by integrating representation
learning with skill learning, instead of manually encoding
this prior knowledge, the learning agent can learn, automat-
ically generate, or partially reduce the need of such prior
knowledge. The extended learning agent becomes a better
model of student learning. To get a more general approach,
we plan to make use of the acquired prior knowledge as well
as the learned skills to generate both perceptual features and
operational features.

5.3 Objective Function Guided Clustering
In this paper, the student model is discovered purely based
on the clustering procedure. The discovered model is then
used to fit with student data in the AFM model. In other
words, the student model does not change once the cluster-
ing process is completed. Another interesting approach is
to guide the student model discovery / clustering process
by the fit to student performance data. Since the second
approach is fully guided by the objective function, presum-
ably, we could get a model with better predictions than the
approach proposed in this paper.

However, there are two major issues with this objective func-



tion guided approach. As mentioned before, each knowledge
component in a student model is an acquired unit of cognitive
function or structure that can be inferred from performance
on a set of related tasks [9]. If the student model is discov-
ered purely based on the fit to student performance data,
the KCs discovered may not be able to provide meaningful
instructional insights. For example, if human students found
both problems of the form −v = N and −N/v = N hard,
does that mean that the tutor should teach these problem
steps together? One possible way to address this issue is to
also include the problem content similarity measurement in
the objective function, so that the search is guided not only
by performance, but also by task similarity.

Another issue is that this objective function guided approach
often takes longer, as it has to fit the model with the data
on each node expansion during the search. Therefore, in
this paper, we take the clustering approach since it is more
efficient, and can find KCs that are easier to interpret. In the
next study, it would be interesting to compare the proposed
approach with the objective function guided approach.

5.4 Other Clustering Techniques
One additional possible study is to try other clustering tech-
niques. In this work, we only applied k-means to discover
student models. There are other clustering algorithms such
as hierarchical agglomerative clustering and spectral cluster-
ing [19]. These clustering algorithms have different proper-
ties, and may be better fit with the student model discovery
task. In the future, we would like to further explore in this
direction with other clustering techniques.

5.5 Generality
The last study we are interested in carrying out is to test
the generality of the proposed approach. The Pittsburgh
of Science of Learning Center’s DataShop contains over 200
datasets in algebra and other domains that could be used for
such cross-dataset or cross-domain validation. The current
study used a single dataset in a single domain. The general-
ity and validity of the proposed student-modeling technique
could be extended by clustering problem steps in one dataset
and applying the discovered KC model to other datasets.
For example, the dataset we used is associated with students
in one high school. It would be interesting to see whether
the generated student model applies to other high schools
at the same level.

In addition, we plan to apply this approach in other do-
mains such as stoichiometry, fraction addition and so on.
As we have mentioned above, it is possible that operational
features are also needed in these domains. In this case, ex-
tending the current approach with other learning techniques
such as SimStudent would be a promising future step. On
the other hand, the language learning domain does not re-
quire complex problem solving, but needs complex percep-
tual knowledge and large amounts of background knowledge.
An interesting future work is to apply existing linguistic
tools to English sentences, and then automatically generate
problem content features based on the parsed sentences.

6. RELATED WORK
The objective of this paper is using a clustering algorithm
to automatically construct student models. A lot of efforts

have also been put toward comparing the quality of alterna-
tive student models. LFA automatically discovers student
models, but is limited to the space of the human-provided
factors. SimStudent is less dependent on human-provided
factors, but still needs some knowledge engineering effort
in constructing the agent. Moreover, as we have shown in
the experiments, the clustering based algorithm is able to
find KCs that are better than those found by SimStudent.
Other works such as [16, 27] are less dependent on human
labeling, but may suffer from challenges in interpreting the
results. In contrast, the clustering-based approach has the
benefit that the acquired KCs usually have a straightforward
interpretation. Baffes and Mooney [2] apply theory refine-
ment to the problem of modeling incorrect student behavior.
Other systems [23, 3] use Q-matrix to find knowledge struc-
ture from student response data. Our approach also uses
machine learning algorithms to discover student models. In
addition to model student performance, we emphasize on the
interpretability of the models by adding content features to
the clustering approach.

There has also been considerable amount of research on us-
ing artificial intelligence and machine learning techniques to
model human students. Langley and Ohlsson’s [13] ACM
applies symbolic machine learning techniques to automat-
ically construct student models. Brown and Burton’s [5]
DEBUGGY, and Sleeman and Smith’s [20] LMS also make
use of artificial intelligent tools to construct models that ex-
plain student’s behavior in math domains. VanLehn’s [25]
Sierra models the impasse-driven acquisition of hierarchical
procedures for multi-column subtraction from sample solu-
tions. Research on models of high-level learning [12, 1, 22,
21, 24, 18] is also closely related to our work, but to the best
of our knowledge, has not been evaluated by the fit to stu-
dent learning curve data as we do in this work. In addition,
most of these work took a more symbolic approach, while
our algorithm is more statistical based.

Other research on creating simulated students [26, 7, 17] also
share some resemblance to our work. VanLehn [25] created
a learning system and evaluated whether it was able to learn
procedural “bugs” like real students. Biswas et al.’s [4] sys-
tem learns causal relations from a conceptual map created
by students. None of the above approaches except for the
SimStudent model discovery approach compared the system
with learning curve data. To the best of our knowledge, our
work is the very few who combines the two whereby we use
cognitive model evaluation techniques to assess the quality
of a simulated learner.

7. CONCLUSION
In this paper, we introduced an innovative application of a
machine learning algorithm for an automatic discovery of
student models. In order to discover KCs that are effective
in predicting human student performance, while being easy
to interpret, we added problem content features in the fea-
ture space, and applied a clustering algorithm to find student
models. Our evaluation demonstrated that discovering stu-
dent models based on problem content features was able to
produce models of good prediction accuracies, and showed
how the discovered model could provide important instruc-
tional implications. We further discussed possible extensions
to the existing approach, and described how a learning agent



such as SimStudent can be used to automatically generate
content features as well as operational features to improve
the generality of the proposed approach. This work is one
step forward in applying machine learning techniques to con-
struct student model. We believe that there are a lot of of
fruitful future steps in this direction. They are natural ex-
tensions under the current framework.
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[18] U. Schmid and E. Kitzelmann. Inductive rule learning
on the knowledge level. Cognitive System Research,
12(3-4):237–248, Sept. 2011.

[19] J. Shi and J. Malik. Normalized cuts and image
segmentation. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 22:888–905, 1997.

[20] D. H. Sleeman and M. J. Smith. Modeling students’
problem solving. Artificial Intelligence, 16:171–187,
1981.

[21] R. Sun. Cognitive social simulation incorporating
cognitive architectures. IEEE Intelligent Systems,
22(5):33–39, Sept. 2007.

[22] N. A. Taatgen and F. J. Lee. Production compilation:
A simple mechanism to model complex skill
acquisition. Human Factors, 45(1):61–75, 2003.

[23] K. K. Tatsuoka. Rule space: An approach for dealing
with misconceptions based on item response theory.
Journal of Educational Measurement, pages 345–354,
1983.

[24] J. B. Tenenbaum and T. L. Griffiths. Generalization,
similarity, and bayesian inference. Behavioral and
Brain Sciences, 24:629–640, 2001.

[25] K. VanLehn. Mind Bugs: The Origins of Procedural
Misconceptions. MIT Press, Cambridge, MA, USA,
1990.

[26] K. Vanlehn, S. Ohlsson, and R. Nason. Applications of
simulated students: an exploration. Journal of
Artificial Intelligence in Education, 5:135–175,
February 1994.

[27] M. Villano. Probabilistic student models: Bayesian
belief networks and knowledge space theory. In
Proceedings of the 2nd International Conference on
Intelligent Tutoring Systems, pages 491–498,
Heidelberg, 1992.


