Chapter 25

Discovering Causal Structure
from Observations

The last few chapters have, hopefully, convinced you that when you want to do causal
inference, knowing the causal graph is very helpful. We have looked at how it would
let us calculate the effects of actual or hypothetical manipulations of the variables in
the system. Furthermore, knowing the graph tells us about what causal effects we
can and cannot identify, and estimate, from observational data. But everything has
posited that we know the graph somehow. This chapter finally deals with where the
graph comes from.
There are fundamentally three ways to get the DAG:

e Prior knowledge
e Guessing-and-testing
e Discovery algorithms

There is only a little to say about the first, because, while it’s important, it’s
not very statistical. As functioning adult human beings, you have a lot of everyday
causal knowledge, which does not disappear the moment you start doing data analy-
sis. Moreover, you are the inheritor of a vast scientific tradition which has, through
patient observation and toilsome experiments, acquired even more causal knowledge.
You can and should use this. Someone’s sex or race or caste might be causes of the
job they get or their pay, but not the other way around. Running an electric cur-
rent through a wire produces heat at a rate proportional to the square of the current.
Malaria is due to a parasite transmitted by mosquitoes, and spraying mosquitoes with
insecticides makes the survivors more resistant to those chemicals. All of these sorts
of ideas can be expressed graphically, or at least as constraints on graphs.

We can, and should, also use graphs to represent scientific ideas which are not as
secure as Ohm’s law or the epidemiology of malaria. The ideas people work with
in areas like psychology or economics, are really quite tentative, but they are ideas
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Figure 25.1: A hypothetical causal model in which smoking is associated with lung
disease, but does not cause it. Rather, both smoking and lung disease are caused by
common genetic variants. (This idea was due to R. A. Fisher.) Smoking is also caused,
in this model, by stress.

about the causal structure of parts of the world, and so graphical models are implicit
in them.

All of which said, even if we think we know very well what’s going on, we will
often still want to check it, and that brings us the guess-and-test route.

25.1 Testing DAGs

A graphical causal model makes two kinds of qualitative claims. One is about direct
causation. If the model says X is a parent of Y, then it says that changing X will
change the (distribution of) Y. If we experiment on X (alone), moving it back and
forth, and yet Y is unaltered, we know the model is wrong and can throw it out.

The other kind of claim a DAG model makes is about probabilistic conditional
independence. If § d-separates X from Y, then X 1LY'|S. If we observed X, Y and S,
and see that X L Y'|S, then we know the model is wrong and can throw it out. (More:
we know that there is a path linking X and Y which isn’t blocked by S.) Thus in the
model of Figure 25.1, lungdiseaselLtar|smoking. If lung disease and tar turn out to
be dependent when conditioning on smoking, the model must be wrong.

This then is the basis for the guess-and-test approach to getting the DAG:

e Start with an initial guess about the DAG.
e Deduce conditional independence relations from d-separation.

o Test these, and reject the DAG if variables which ought to be conditionally
independent turn out to be dependent.

This is a distillation of primary-school scientific method: formulate a hypotheses (the
DAG), work out what the hypothesis implies, test those predictions, reject hypothe-
ses which make wrong predictions.
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Figure 25.2: As in Figure 25.1, but now tar in the lungs does cause lung disease.

It may happen that there are only a few competing, scientifically-plausible models,
and so only a few, competing DAGs. Then it is usually a good idea to focus on
checking predictions which differ between them. So in both Figure 25.1 and in Figure
25.2, stress-Ltar|smoking. Checking that independence thus does nothing to help us
distinguish between the two graphs. In particular, confirming that stress and tar are
independent given smoking really doesn’t give us evidence for the model from Figure
25.1, since it equally follows from the other model. If we want such evidence, we
have to look for something they disagree about.

In any case, testing a DAG means testing conditional independence, so let’s turn
to that next.

25.2 Testing Conditional Independence

Recall from §22.4 that conditional independence is equivalent to zero conditional
information: X1LY|Z if and only if 7[X;Y|Z] = 0. In principle, this solves the
problem. In practice, estimating mutual information is non-trivial, and in particular
the sample mutual information often has a very complicated distribution. You could
always bootstrap it, but often something more tractable is desirable. Completely
general conditional independence testing is actually an active area of research. Some
of this work is still quite mathematical (Sriperumbudur et 4l., 2010), but it has already
led to practical tests (Székely and Rizzo, 2009; Gretton et al., 2012; Zhang et al., 2011)
and no doubt more are coming soon.

If all the variables are discrete, one just has a big contingency table problem,
and could use a G? or y? test. If everything is linear and multivariate Gaussian,
XALY|Z is equivalent to zero partial correlation'. Nonlinearly, if X \LY|Z, then
E[Y|Z] =E[Y|X,Z], so if smoothing Y on X and Z leads to different predictions
than just smoothing on Z, conditional independence fails. To reverse this, and go
fromE[Y|Z] =E[Y|X,Z] to X1LY|Z, requires the extra assumption that Y doesn’t

!Recall that the partial correlation between X and Y given Z is the correlation between X and Y, after
linearly regressing each of them on Z separately. That s, it is the correlation of their residuals.
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depend on X through its variance or any other moment. (This is weaker than the
linear-and-Gaussian assumption, of course.)

The conditional independence relation X 1LY'|Z is fully equivalent to Pr(Y'|X, Z) =
Pr(Y|Z). We could check this using non-parametric density estimation, though we
would have to bootstrap the distribution of the test statistic. A more automatic, if
slightly less rigorous, procedure comes from the idea mentioned in Chapter 15: If
X is in fact useless for predicting Y given Z, then an adaptive bandwidth selection
procedure (like cross-validation) should realize that giving any finite bandwidth to X
just leads to over-fitting. The bandwidth given to X should tend to the maximum
allowed, smoothing X away altogether. This argument can be made more formal,
and made into the basis of a test (Hall et al., 2004; Li and Racine, 2007).

25.3 Faithfulness and Equivalence

In graphical models, d-separation implies conditional independence: if S blocks all
paths from U to V, then ULLV|S. To reverse this, and conclude that if U1LV|S then
S must d-separate U and V, we need an additional assumption, already referred to in
§22.2, called faithfulness. More exactly, if the distribution is faithful to the graph,
then if § does not d-separate U from V, U LV|S. The combination of faithfulness
and the Markov property means that ULLV|S if and only if S d-separates U and V.

This seems extremely promising. We can test whether UALV|S for any sets of
variables we like. We could in particular test whether each pair of variables is in-
dependent, given all sorts of conditioning variable sets S. If we assume faithfulness,
when we find that X1LY|S, we know that S blocks all paths linking X and Y, so
we learn something about the graph. If X LY[S for all S, we would seem to have
little choice but to conclude that X and Y are directly connected. Might it not be
possible to reconstruct or discover the right DAG from knowing all the conditional
independence and dependence relations?

This is on the right track, but too hasty. Start with just two variables:

X—-Y = XUy (25.1)
X<Y => XUy (25.2)

With only two variables, there is only one independence (or dependence) relation to
worry about, and it’s the same no matter which way the arrow points.
Similarly, consider these arrangements of three variables:

X =Y -7 (25.3)
X «Y «Z (25.4)
X «Y =7 (25.5)
X =Y «Z (25.6)

The first two are chains, the third is a fork, the last is a collider. It is not hard to check
(Exercise 1) that the first three DAGs all imply exactly the same set of conditional
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independence relations, which are different from those implied by the fourth?.

These examples illustrate a general problem. There may be multiple graphs which
imply the same independence relations, even when we assume faithfulness. When this
happens, the exact same distribution of observables can factor according to, and be
faithful to, all of those graphs. The graphs are thus said to be equivalent, or Markov
equivalent. Observational alone cannot distinguish between equivalent DAGs. Ex-
periment can, of course — changing Y alters both X and Z in a fork, but not a chain
— which shows that there really is a difference between the DAGs, just not one obser-
vational data can track.

25.3.1 Partial Identification of Effects

Chapters 23-24 considered the identification and estimation of causal effects under
the assumption that there was a single known graph. If there are multiple equivalent
DAG:s, then, as mentioned above, no amount of purely observational data can select
asingle graph. Background knowledge lets us rule out some equivalent DAGs’, but it
may not narrow the set of possibilities to a single graph. How then are we to actually
do our causal estimation?

We could just pick one of the equivalent graphs, and do all of our calculations as
though it were the only possible graph. This is often what people seem to do. The
kindest thing one can say about it is that it shows confidence; phrases like “lying by
omission” also come to mind.

A more principled alternative is to admit that the uncertainty about the DAG
means that causal effects are only partially identified. Simply put, one does the es-
timation in each of the equlvalent graphs, and reports the range of results*. If each
estimate is consistent, then this gives a consistent estimate of the range of p0531ble
effects. Because the effects are not fully identified, this range will not narrow to a sin-
gle point, even in the limit of infinite data, but admitting this, rather than claiming a
non-existent precision, is simple scientific honesty.

25.4 Causal Discovery with Known Variables

Section 25.1 talks about how we can test a DAG, once we have it. This lets us elimi-
nate some DAGs, but still leaves mysterious where they come from in the first place.
While in principle there is nothing wrong which deriving your DAG from a vision
of serpents biting each others’ tails, so long as you test it, it would be nice to have a
systematic way of finding good models. This is the problem of model discovery, and
especially of causal discovery.

n all of the first three, X .Z but X 1L Z|Y, while in the collider, X \LZ but X JLZ|Y. Remarkably
enough, the work which introduced the notion of forks and colliders, Reichenbach (1956), missed this —
he thought that X 1L Z|Y in a collider as well as a fork. Arguably, this one mistake delayed the development
of causal inference by thirty years or more.

31f we know that X, Y and Z have to be in either a chain or a fork, with ¥ in the middle, and we know
that X comes before Y in time, then we can rule out the fork and the chain X « Y — Z.

*Sometimes the different graphs will gave the same estimates of certain effects. For example, the chain
X — Y — Z and the fork X < Y — Z will agree on the effect of Y on Z.
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Causal discovery is silly with just one variable, and too hard for us with just two.’

With three or more variables, we have however a very basic principle. If there is
no edge between X and Y, in either direction, then X is neither Y’s parent nor its
child. But any variable is independent of its non-descendants given its parents. Thus,
for some set® of variables S, X ILY'|S (Exercise 2). If we assume faithfulness, then the
converse holds: if X1LY|S, then there cannot be an edge between X and Y. Thus,
there is no edge between X and Y if and only if we can make X and Y independent
by conditioning on some §. Said another way, there is an edge between X and Y if
and only if we cannot make the dependence between them go away, no matter what
we condition on’.

So let’s start with three variables, X, Y and Z. By testing for independence and
conditional independence, we could learn that there had to be edges between X and Y
and Y and Z, but not between X and Z. But conditional independence is a symmetric
relationship, so how could we orient those edges, give them direction? Well, to
rehearse a point from the last section, there are only four possible directed graphs
corresponding to that undirected graph:

e X - Y — Z (achain);

e X « Y « Z (the other chain);
e X Y —Z (afork on Y);

e X »Y «Z (acollisionat Y)

With the fork or either chain, we have X1LZ|Y. On the other hand, with the
collider we have X JLZ|Y. Thus X LZ|Y if and only if there is a collision at Y. By
testing for this conditional dependence, we can either definitely orient the edges, or
rule out an orientation. If X — Y — Z is just a subgraph of a larger graph, we can still
identify it as a collider if X WL.Z|{Y, S} for all collections of nodes S (not including X
and Z themselves, of course).

With more nodes and edges, we can induce more orientations of edges by con-
sistency with orientations we get by identifying colliders. For example, suppose we
know that X,Y, Z is either a chain or a fork on Y. If we learn that X — Y, then the
triple cannot be a fork, and must be the chain X — Y — Z. So orienting the X — Y
edge induces an orientation of the Y — Z edge. We can also sometimes orient edges
through background knowledge; for instance we might know that ¥ comes later in
time than X, so if there is an edge between them it cannot run from Y to X .* We can

5But see Janzing (2007); Hoyer et al. (2009) for some ideas on how you could do it if you’re willing to
make some extra assumptions. The basic idea of these papers is that the distribution of effects given causes
should be simpler, in some sense, than the distribution of causes given effects.

®Possibly empty: conditioning on the empty set of variables is the same as not conditioning at all.

7“No causation without association”, as it were.

8Some have argued, or at least entertained the idea, that the logic here is backwards: rather than order
in time constraining causal relations, causal order defines time order. (Versions of this idea are discussed
by, inter alia, Russell (1927); Wiener (1961); Reichenbach (1956); Pearl (2009b); Janzing (2007) makes a
related suggestion). Arguably then using order in time to orient edges in a causal graph begs the question,
or commits the fallacy of petitio principii. But of course every syllogism does, so this isn’t a distinctively
statistical issue. (Take the classic: “All men are mortal; Socrates is a man; therefore Socrates is mortal.”
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eliminate other edges based on similar sorts of background knowledge: men tend to
be heavier than women, but changing weight does not change sex, so there can’t be
an edge (or even a directed path!) from weight to sex, though there could be one the
other way around.

To sum up, we can rule out an edge between X and Y whenever we can make
them independent by conditioning on other variables; and when we havean X —Y —
Z pattern, we can identify colliders by testing whether X and Z are dependent given
Y. Having oriented the arrows going into colliders, we induce more orientations of
other edges.

Putting these three things — edge elimination by testing, collider finding, and
inducing orientations — gives the most basic causal discovery procedure, the SGS
(Spirtes-Glymour-Scheines) algorithm (Spirtes er al., 2001, §5.4.1, p. 82). This as-

sumes:
1. The data-generating distribution has the causal Markov property on a graph G.

The data-generating distribution is faithful to G.

Every member of the population has the same distribution.

All relevant variables are in G.

A

There is only one graph G to which the distribution is faithful.
Abstractly, the algorithm works as follows:

e Start with a complete undirected graph on all p variables, with edges between
all nodes.

e For each pair of variables X and Y, and each set of other variables S, see if
X1LY|S; if so, remove the edge between X and Y.

e Find colliders by checking for conditional dependence; orient the edges of col-
liders.

e Try to orient undirected edges by consistency with already-oriented edges; do
this recursively until no more edges can be oriented.

Pseudo-code is in Appendix F.

Call the result of the SGS algorithm G. If all of the assumptions above hold,
and the algorithm is correct in its guesses about when variables are conditionally
independent, then G = G. In practice, of course, conditional independence guesses
are really statistical tests based on finite data, so we should write the output as én,
to indicate that it is based on only 7 samples. If the conditional independence test is
consistent, then

lim Pr (G, #G) =0 (25.7)

n—oo

How can we know that a// men are mortal until we know about the mortality of this particular man,
Socrates? Isn’t this just like asserting that tomatoes and peppers must be poisonous, because they belong to
the nightshade family of plants, all of which are poisonous?) While these philosophical issues are genuinely
fascinating, this footnote has gone on long enough, and it is time to return to the main text.
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In other words, the SGS algorithm converges in probability on the correct causal
structure; it is consistent for all graphs G. Of course, at finite 7, the probability
of error — of having the wrong structure — is (generally!) not zero, but this just
means that, like any statistical procedure, we cannot be absolutely certain that it’s
not making a mistake.

One consequence of the independence tests making errors on finite data can be
that we fail to orient some edges — perhaps we missed some colliders. These unori-
ented edges in én can be thought of as something like a confidence region — they
have some orientation, but multiple orientations are all compatible with the data.’
As more and more edges get oriented, the confidence region shrinks.

If the fifth assumption above fails to hold, then there are multiple graphs G to
which the distribution is faithful. This is just a more complicated version of the
difficulty of distinguishing between the graphs X — Y and X « Y. All the graphs
in the equivalence class may have some arrows in common; in that case the SGS
algorithm will identify those arrows. If some edges differ in orientation across the
equivalence class, SGS will not orient them, even in the limit. In terms of the previous
paragraph, the confidence region never shrinks to a single point, just because the
data doesn’t provide the information needed to do this. The graph is only partially
identified.

If there are unmeasured relevant variables, we can get not just unoriented edges,
but actually arrows pointing in both directions. This is an excellent sign that some
basic assumption is being violated.

25.4.1 The PC Algorithm

The SGS algorithm is statistically consistent, but very computationally inefficient;
the number of tests it does grows exponentially in the number of variables p. This
is the worst-case complexity for any consistent causal-discovery procedure, but this
algorithm just proceeds immediately to the worst case, not taking advantage of any
possible short-cuts.

Since it’s enough to find one § making X and Y independent to remove their
edge, one obvious short-cut is to do the tests in some order, and skip unnecessary
tests. On the principle of doing the easy work first, the revised edge-removal step
would look something like this:

e Foreach X and Y, see if X 1LY’; if so, remove their edge.

e For each X and Y which are still connected, and each third variable Z,, see if
X1LY|Z; if so, remove the edge between X and Y.

o Foreach X and Y which are still connected, and each third and fourth variables
Z, and Z,, see if X ALY |Z,, Z,; if so, remove their edge.

%1 say “multiple orientations” rather than “all orientations”, because picking a direction for one edge
might induce an orientation for others.
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e For each X and Y which are still connected, see if X\LY| all the p — 2 other
variables; if so, remove, their edge.

If all the tests are done correctly, this will give the same result as the SGS procedure
(Exercise 3). And if some of the tests give erroneous results, conditioning on a small
number of variables will tend to be more reliable than conditioning on more (why?).

We can be even more efficient, however. If X 1LY|S for any S at all, then X 1LY'|S’,
where all the variables in S’ are adjacent to X or Y (or both) (Exercise 4). To see the
sense of this, suppose that there is a single long directed path running from X to Y. I
we condition on any of the variables along the chain, we make X and Y independent,
but we could always move the point where we block the chain to be either right next
to X or right next to Y. So when we are trying to remove edges and make X and ¥’
independent, we only need to condition on variables which are still connected to X
and Y, not ones in totally different parts of the graph.

This then gives us the PC!® algorithm (Spirtes et al. 2001, §5.4.2, pp. 84-88;
see also Appendix F). It works exactly like the SGS algorithm, except for the edge-
removal step, where it tries to condition on as few variables as possible (as above), and
only conditions on adjacent variables. The PC algorithm has the same assumptions
as the SGS algorithm, and the same consistency properties, but generally runs much
faster, and does many fewer statistical tests. It should be the default algorithm for
attempting causal discovery.

25.4.2 Causal Discovery with Hidden Variables

Suppose that the set of variables we measure is 7ot causally sufficient. Could we at
least discover this? Could we possibly get hold of some of the causal relationships?
Algorithms which can do this exist (e.g., the CI and FCI algorithms of Spirtes et al.
(2001, ch. 6)), but they require considerably more graph-fu. (The RFCI algorithm
(Colombo ez al., 2012) is a modern, fast successor to FCL.) The results of these algo-
rithms can succeed in removing some edges between observable variables, and defi-
nitely orienting some of the remaining edges. If there are actually no latent common
causes, they end up acting like the SGS or PC algorithms.

Partial identification of effects When all relevant variables are observed, all ef-
fects are identified within one graph; partial identification happens because multiple
graphs are equivalent. When some variables are not observed, we may have to use
the identification strategies to get at the same effect. In fact, the same effect my be
identified in one graph and not identified in another, equivalent graph. This is, again,
unfortunate, but when it happens it needs to be admitted.

25.4.3 On Conditional Independence Tests

The abstract algorithms for causal discovery assume the existence of consistent tests
for conditional independence. The implementations known to me mostly assume
either that variables are discrete (so that one can basically use the y? test), or that

10Peter-Clark
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they are continuous, Gaussian, and linearly related (so that one can test for vanishing
partial correlations), though the pcalg package does allow users to provide their
own conditional independence tests as arguments. It bears emphasizing that these
restrictions are not essential. As soon as you have a consistent independence test,
you are, in principle, in business. In particular, consistent non-parametric tests of
conditional independence would work perfectly well. An interesting example of this
is the paper by Chu and Glymour (2008), on finding causal models for the time series,
assuming additive but non-linear models.

25.5 Software and Examples

The PC and FCI algorithms are implemented in the stand-alone Java program Tet rad
(http://www.phil.cmu.edu/projects/tetrad/). Theyarealso implemented
in the pcalg package on CRAN (Kalisch et al., 2010, 2011). This package also in-
cludes functions for calculating the effects of interventions from fitted graphs, as-
suming linear models. The documentation for the functions is somewhat confusing;
rather see Kalisch et al. (2011) for a tutorial introduction.

It’s worth going through how pcalg works!!. The code is designed to take ad-
vantage of the modularity and abstraction of the PC algorithm itself; it separates ac-
tually finding the graph completely from performing the conditional independence
test, which is rather a function the user supplies. (Some common ones are built in.)
For reasons of computational efficiency, in turn, the conditional independence tests
are set up so that the user can just supply a set of sufficient statistics, rather than the
raw data.

Let’s walk through an example!?, using the mat hmarks data set you saw in the
second exam. There we had grades (“marks”) from 88 students in five mathematical
subjects, algebra, analysis, mechanics, statistics and vectors. All five variables are
positively correlated with each other.

library (pcalqg)

library (SMPracticals)

data (mathmarks)

suffStat <- list (C=cor (mathmarks), n=nrow (mathmarks))

pc.fit <- pc(suffStat, indepTest=gaussCItest, p=ncol (mathmarks),alpha=0.005

This uses a Gaussian (-and-linear) test for conditional independence, gaussCItest,
which is built into the pcalg package. Basically, it tests whether X 1LY|Z by testing
whether the partial correlation of X and Y given Z is close to zero. These partial
correlations can all be calculated from the correlation matrix, so the line before cre-
ates the sufficient statistics needed by gaussCItest — the matrix of correlations

A word about installing the package: yowll need the package Rgraphviz for drawing graphs,
which is hosted not on CRAN (like pcalg) but on BioConductor. Try installing it, and its depen-
dencies, before installing pcalg. See http://www.bioconductor.org/packages/2.10/bioc/
readmes/Rgraphviz/README for help on installing Rgraphviz.

12 After Spirtes et al. (2001, §6.12, pp. 152-154).
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Inferred DAG for mathmarks

I

o) i)

library (Rgraphviz)
plot (pc.fit, labels=colnames (mathmarks),main="Inferred DAG for mathmarks")

Figure 25.3: DAG inferred by the PC algorithm from the mathmarks data. Two-
headed arrows, like undirected edges, indicate that the algorithm was unable to orient
the edge. (It is obscure why pcalg sometimes gives an edge it cannot orient no heads
and sometimes two.)

and the number of data points. We also have to tell pc how many variables there are,
and what significance level to use in the test (here, 0.5%).

Before going on, I encourage you to run pc as above, but with verbose=TRUE,
and to study the output.

Figure 25.3 shows what it looks like. If we take it seriously, it says that grades in
analysis are driven by grades in algebra, while algebra in turn is driven by statistics
and vectors. While one could make up stories for why this would be so (perhaps
something about the curriculum?), it seems safer to regard this as a warning against
blindly trusting any algorithm —- a key assumption of the PC algorithm, after all, is
that there are no unmeasured but causally-relevant variables, and it is easy to believe
these are violated. For instance, while knowledge of different mathematical fields
may be causally linked (it would indeed be hard to learn much mechanics without
knowing about vectors), test scores are only imperfect measurements of knowledge.

The size of the test may seem low, but remember we are doing a lot of tests:

> summary (pc.fit)

Object of class ’"pcAlgo’, from Call:

skeleton (suffStat = suffStat, indepTest = indepTest, p = p, alpha = alpha,
verbose = verbose, fixedGaps = fixedGaps, fixedEdges = fixedEdges,
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- /

plot (pc(suffStat, indepTest=gaussCItest, p=ncol (mathmarks),alpha=0.05),
labels=colnames (mathmarks), main="")

Figure 25.4: Inferred DAG when the size of the test is 0.05.

NAdelete = NAdelete, m.max = m.max)

Nmb. edgetests during skeleton estimation:

Max. order of algorithm: 3
Number of edgetests fromm = 0 up tom =3 : 20 31 4 O

Graphical properties of skeleton:

Max. number of neighbours: 2 at node(s) 2
Avg. number of neighbours: 1

This tells us that it considered going up to conditioning on three variables (the maxi-
mum possible, since there are only five variables), that it did twenty tests of uncondi-
tional independence, 31 tests where it conditioned on one variable, four tests where
it conditioned on two, and none where it conditioned on three. This 55 tests in all,
so a simple Bonferroni correction suggests the over-all size is 55 x 0.005 = 0.275. This
is probably pessimistic (the Bonferroni correction typically is). Setting o = 0.05 gives
a somewhat different graph (Figure 25.4).

For a second example!®, let’s use some data on academic productivity among psy-

BFollowing Spirtes et al. (2001, §5.8.1, pp. 98-102).
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chologists. The two variables of ultimate interest were the publication (pubs) and
citation (cites) rates, with possible measured causes including ability (basically,
standardized test scores), graduate program quality grad (basically, the program’s
national rank), the quality of the psychologist’s first job, £irst, a measure of pro-
ductivity prod, and sex. There were 162 subjects, and while the actual data isn’t
reported, the correlation matrix is.

> rm

ability grad prod first sex cites pubs
ability 1.00 0.62 0.25 0.16 -0.10 0.29 0.18
grad 0.62 1.00 0.09 0.28 0.00 0.25 0.15
prod 0.25 0.09 1.00 0.07 0.03 0.34 0.19
first 0.16 0.28 0.07 1.00 0.10 0.37 0.41
sex -0.10 0.00 0.03 0.10 1.00 0.13 0.43
cites 0.29 0.25 0.34 0.37 0.13 1.00 0.55
pubs 0.18 0.15 0.19 0.41 0.43 0.55 1.00

The model found by pcalg is fairly reasonable (Figure 25.5). Of course, the linear-
and-Gaussian assumption has no particular support here, and there is at least one
variable for which it must be wrong (which?), but unfortunately with just the corre-
lation matrix we cannot go further.
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plot (pc(list (C=rm,n=162), indepTest=gaussCIltest,p=7,alpha=0.01),
labels=colnames (rm) ,main="")

Figure 25.5: Causes of academic success among psychologists. The arrow from cita-
tions to publications is a bit odd, but not impossible — people who get cited more
might get more opportunities to do research and so to publish.
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25.6 Limitations on Consistency of Causal Discovery

There are some important limitations to causal discovery algorithms (Spirtes et al.,
2001, §12.4). They are universally consistent: for all causal graphs G,'*

lim Pr (G, #G) =0 (25.8)
The probability of getting the graph wrong can be made arbitrarily small by using
enough data. However, this says nothing about how much data we need to achieve a
given level of confidence, i.e., the rate of convergence. Uniform consistency would
mean that we could put a bound on the probability of error as a function of » which
did not depend on the true graph G. Robins ez al. (2003) proved that 7o uniformly-
consistent causal discovery algorithm can exist. The issue, basically, is that the Ad-
versary could make the convergence in Eq. 25.8 arbitrarily slow by selecting a distri-
bution which, while faithful to G, came very close to being unfaithful, making some
of the dependencies implied by the graph arbitrarily small. For any given depen-
dence strength, there’s some amount of data which will let us recognize it with high
confidence, but the Adversary can make the required data size as large as he likes by
weakening the dependence, without ever setting it to zero.!

The upshot is that so uniform, universal consistency is out of the question; we
can be universally consistent, but without a uniform rate of convergence; or we can
converge uniformly, but only on some less-than-universal class of distributions. These
might be ones where all the dependencies which do exist are not too weak (and so not
too hard to learn reliably from data), or the number of true edges is not too large (so
that if we haven’t seen edges yet they probably don’t exist; Janzing and Herrmann,
2003; Kalisch and Biithlmnann, 2007).

It’s worth emphasizing that the Robins ez al. (2003) no-uniform-consistency result
applies to any method of discovering causal structure from data. Invoking human
judgment, Bayesian priors over causal structures, etc., etc., won’t get you out of it.

141f the true distribution is faithful to multiple graphs, then we should read G as their equivalence class,
which has some undirected edges.

BRoughly speaking, if X and Y are dependent given Z, the probability of missing this conditional
dependence with a sample of size 7 should go to zero like O(2-/X:Y12]), I being mutual information.
To make this probability equal to, say, @ we thus need » = O(—loga/I) samples. The Adversary can thus
make 7 extremely large by making / very small, yet positive.
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25.7 Further Reading

The best single reference on causal discovery algorithms remains Spirtes ez al. (2001).
A lot of work has been done in recent years by the group centered around ETH-
Ziirich, beginning with Kalisch and Bithimnann (2007), connecting this to modern
statistical concerns about sparse effects and high-dimensional data.

As already mentioned, the best reference on partial identification is Manski (2007).
Partial identification of causal effects due to multiple equivalent DAGs is considered
in Maathuis et al. (2009), along with efficient algorithms for liner systems, which are
applied in Maathuis et a/. (2010), and implemented in the pcalg package as ida ().

Discovery is possible for directed cyclic graphs, though since it’s harder to under-
stand what such models mean, it less well-developed. Important papers on this topic
include Richardson (1996) and Lacerda et a/. (2008).

25.8 Exercises

To think through, not to hand in.

1. Prove that, assuming faithfulness, a three-variable chain and a three-variable
fork imply exactly the same set of dependence and independence relations, but
that these are different from those implied by a three-variable collider. Are
any implications common to chains, forks, and colliders? Could colliders be
distinguished from chains and forks without assuming faithfulness?

2. Prove that if X and Y are not parent and child, then either X 1LY, or there
exists a set of variables S such that X1LY|S. Hint: start with the Markov
property, that any X is independent of all its non-descendants given its parents,
and consider separately the cases where Y a descendant of X and those where
it is not.

3. Prove that the graph produced by the edge-removal step of the PC algorithm
is exactly the same as the graph produced by the edge-removal step of the SGS
algorithm. Hint: SGS removes the edge between X ad Y when X1LY|S for
even one set S.

4. Prove that if X ILY|S for some set of variables S, then X LY|S’, where every
variable in §’ is a neighbor of X or Y.

5. When, exactly, does E[Y|X,Z] =E[Y|Z] imply Y 1LX|Z?

6. Would the SGS algorithm work on a non-causal, merely-probabilistic DAG? If
so, in what sense is it a causal discovery algorithm? If not, why not?

7. Describe how to use bandwidth selection as a conditional independence test.

8. Read pcalg-paper and write a conditional independence test function based
on bandwidth selection. Check that your test function gives the right size
when run on test cases where you know the variables are conditionally inde-
pendent. Check that your test function works with pcalg: :pc.



