Carnegie Mellon University

Project Progress Report

April 19th, 2021

Frank Kovacs, Ning Gao, Pragya Jain, Wonil Lee

Agenda

Introduction

- ≻ Team & Client Profile
- ➢ Project Scope
- Data & EDA
- Methods
 - ➢ Differences Filters
 - ➤ Trimmed Weighted Average Filters
- Results
- Next Steps
- ✤ Q&A

Introduction

Team

Frank Kovacs

- CMU Statistics & Machine Learning '19
- Software & Data Research
- Research with Delphi COVIDcast and ISLE

Ning Gao

- Georgia Tech Industrial & Systems Engineering '20
- Research with NSF LeapHi Program
- Past work experience in the telecom industry
- Past work experience in the insurance industry
- Associate Actuary
- B.E. from NSIT, New Delhi

Pragya Jain

 Past work experience in Consulting (2+ years)

Wonil Lee

- CMU Tepper & Statistics '18
- R, SQL, and Python

Carnegie Mellon University

4

NPD Group Overview

- NPD Group is a **Market research company**
- "Raw data assets into insights"
- Specialize in general merchandise and food service
- Market leader
 - **8B+** B2B transactions / yr

Objective & Scope

- "...explore using unsupervised learning methods to help identify common data collection errors to help guide further analyst review."
- Goals
 - **Detect anomalies in time series datasets**
 - Identify common data collection errors
 - Facilitate further data analyst review
 - Automate data error flagging processes

Data

NPD Project Dataset Overview - Key Variables

- Merchant ID and Name
- Acquire Type ID
- Receipt_count
- Sum_total_paid
- Item_total
- Sum_items_distinct
- Sum_item_spend
- Panelists

NPD Project Dataset Overview - Main Datasets

• Source Data

- 516 rows, 8 columns
- Weekly values of the receipt_count, sum_total_paid, sum_items_distinct, sum_item_spend, panelists by 4 different data source types (iPhone, Android, Sift, and Receipt pal on device)

• Retailer Data

- 983,953 rows, 11 columns
- Weekly values of the receipt_count, sum_total_paid, sum_items_distinct, sum_item_spend, panelists by individual merchants and by different data sources

• Issue Data

- 31 rows, 5 columns
- Dataset of when (the Acquired date) and where (merchant name & source type) the data collecting error occurred

EDA

• Existing Flags

• Issues logged by client in the past 2 years were shared

• Data Preparation

- Data sanity checks
- Merged 'Retailer Data' with 'Issue Data'

• EDA Plots

- Generated time series visualizations for individual merchants and marked issues logged by client with a 'Red Dot'
- Start of Pandemic marked with a vertical line March 11th, 2020
- Highlighted potential unmarked anomalies

Partial

EDA Example

- Anomalies right after start of COVID-19 not marked
- Dips with smaller amplitude detected but dips with bigger amplitude left unmarked
- Detection of rapid dips over 2-3 weeks but not over 1 months
- Preference for marking dips over peaks

Variable Selection

• Out of 6 response columns in client's data, following pairs of columns were observed to be correlated. The table below displays the correlation values:

Pair of Columns	Correlation
Receipt_count & Panelists	0.9937866
Sum_total_paid & Sum_item_spend	0.9990581
Item_total & Sum_items_distinct	0.9991476

Example

Variable Selection - Receipt Count vs Panelists

Carnegie Mellon University

14

Example

Variable Selection - Sum Total Paid vs Sum Item Spend

Example

Variable Selection - Items Total vs Sum Items Distinct

Carnegie Mellon University

16

Methods

First Difference Filter - Logic

- Calculating multiple quantiles for the first difference analysis
 - First differences are calculated for a selected window size
 - Selected Quantile is calculated for all first differences
 - Outliers outside of calculated quantile are marked as anomaly
- Shifting Window
 - For each point in the future (say at 't+1'), **4** filters will perform anomaly detection
 - Each filter has the same window size 'n' but covers different points in the past
 - Filter 1 covers points from 't-n' till 't'
 - Filter 2 covers points from 't-n-1' till 't-1' and so on

First Difference Filter - Sanity Check 1/2

Carnegie Mellon University

19

First Difference Filter - Sanity Check 2/2

Trimmed Moving Weighted Average Filter -Logic

- Calculating robust estimate for moving weighted average
 - Trimming
 - Median is calculated for a selected window size
 - Outliers (max 20% points) are removed based on ranked distance from the median
 - Weighted Average calculation for new set of points
 - Weights increase with increasing time (more weight to recent points)
 - Weights are generated from a half normal distribution
- Shifting Window
 - For each point in the future (say at 't+1'), **4** filters perform anomaly detection
 - Each filter has the same window size 'n' but covers different points in the past
 - Filter 1 covers points from 't-n' till 't'
 - Filter 2 covers points from 't-n-1' till 't-1' and so on

MA Analysis - Filters Illustration

MA Analysis - Drafted Visualization

Result

Result Overview

A python package will be shared with the client. Its broad components are described below:

Next Steps

Carnegie Mellon University ²⁶

Next Steps

- Finalizing results for both filtering methods
 - Use robust estimate for standard deviation
 - Clean up plots
- Integration of all developed functions into the user-interface
- Client Feedback
- IDMRAD Paper Documentation and Review

THANK YOU!

Appendix

Issues logged Visualization Explanation

Preference for marking dips as issues

- A peak of significant amplitude has not been marked as an issue
- A dip of similar amplitude has been marked as an issue

Anomalies right after Pandemic Start not marked

- Detected drop near Christmas 2020
- Did not detect drop near start of Covid-19

Anomalies right after Pandemic Start not marked

- The anomalies after the Pandemic outbreak is not captured
 - Sudden Decrease
 - Sudden Increase
- We would like to know whether the current algorithm considers impact of COVID19

Delayed detection of Sudden Shifts

- Anomalies are detected in delayed manners
 - The error was detected 3 weeks after the first abnormal value

Detection of rapid dips over 2-3 weeks but not over 1 months

- Small, sharp drop of panelists using Sift around April 2019
- Bigger, consistent 1 month drop around pandemic time
- Do we want to detect long-term anormales?

Smaller Amplitude of dips detected but not bigger ones

- Small, sharp drop of panelists using Sift around April 2019
- Huge, sharp drop from September to November 2020
- Drops were similar, but one is detected, the other is not

Dips for all Acquire- Types not marked

- Dip in Android was marked as an issue
- Dip in iPhone for a similar time period and amplitude, but was not marked

Missing data -Jersey Mike's

- Issues flagged for the dates that did not have data
- No definition given, assume missing data

Date	Retailer Data Present?	Issue Found?
7/19/20	Yes	No
7/26/20	No	Yes
8/2/20	No	Yes
8/9/20	No	Yes
8/16/20	Yes	No
8/23/20	Yes	No
8/30/20	Yes	No
9/6/20	No	Yes
9/13/20	No	Yes
9/20/20	No	Yes
9/27/20	No	Yes
10/4/20	Yes	Yes
\vdots	\vdots	\vdots

Should Trends be Flagged?

- Many of the graphs had clear trends (slow drift) that were not detected.
- We see a shift starting from April 2019 that increases until approximately November 2019
- Should we detect trends? If so, what kind of trends?

Moving Average Prototype

41

Half Normal Distribution

