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NPD Group Overview

● NPD Group is a Market research company
● “Raw data assets into insights”
● Specialize in general merchandise and food service
● Market leader

○ 8B+ B2B transactions / yr 
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Objective & Scope

● “...explore using unsupervised learning methods to help identify 

common data collection errors to help guide further analyst review.“

● Goals

○ Detect anomalies in time series datasets

○ Identify common data collection errors

○ Facilitate further data analyst review

○ Automate data error flagging processes

Source: Capstone Handout6



Data
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NPD Project Dataset Overview - Key Variables

● Merchant ID and Name
● Acquire Type ID 
● Receipt_count
● Sum_total_paid
● Item_total
● Sum_items_distinct
● Sum_item_spend
● Panelists
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● Source Data
○ 516 rows, 8 columns
○ Weekly values of the receipt_count, sum_total_paid, sum_items_distinct, 

sum_item_spend, panelists by 4 different data source types (iPhone, Android, 
Sift, and Receipt pal on device)

● Retailer Data
○ 983,953 rows, 11 columns
○ Weekly values of the receipt_count, sum_total_paid, sum_items_distinct, 

sum_item_spend, panelists by individual merchants and by different data 
sources

● Issue Data
○ 31 rows, 5 columns
○ Dataset of when (the Acquired date) and where (merchant name & source type) 

the data collecting error occurred

NPD Project Dataset Overview - Main Datasets
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EDA

10



● Existing Flags
○ Issues logged by client in the past 2 years were shared

● Data Preparation
○ Data sanity checks
○ Merged ‘Retailer Data’ with ‘Issue Data’

● EDA Plots
○ Generated time series visualizations for individual merchants and marked 

issues logged by client with a ‘Red Dot’ 
○ Start of Pandemic marked with a vertical line - March 11th, 2020
○ Highlighted potential unmarked anomalies

EDA
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EDA Example

● Anomalies right after start of 
COVID-19 not marked

● Dips with smaller amplitude 
detected but dips with bigger 
amplitude left unmarked

● Detection of rapid dips over 2-3 
weeks but not over 1 months

● Preference for marking dips over 
peaks

12

1

4

3

2

Partial



13

Variable Selection
● Out of 6 response columns in client’s data, following pairs of columns were 

observed to be correlated. The table below displays the correlation values: 

Pair of Columns Correlation

Receipt_count & Panelists 0.9937866

Sum_total_paid & Sum_item_spend 0.9990581

Item_total & Sum_items_distinct 0.9991476
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Variable Selection - Receipt Count vs Panelists

Example
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Variable Selection - Sum Total Paid vs Sum Item Spend

Example
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Variable Selection - Items Total vs Sum Items Distinct

Example



Methods
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First Difference Filter - Logic
● Calculating multiple quantiles for the first difference analysis 

○ First differences are calculated for a selected window size

○ Selected Quantile is calculated for all first differences

○ Outliers outside of calculated quantile are marked as anomaly

● Shifting Window 
○ For each point in the future (say at ‘t+1’), 4 filters will perform anomaly detection

○ Each filter has the same window size ‘n’ but covers different points in the past

■ Filter 1 covers points from ‘t-n’ till ‘t’

■ Filter 2 covers points from ‘t-n-1’ till ‘t-1’ and so on
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First Difference Filter - Sanity Check 
1/2
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First Difference Filter - Sanity Check 
2/2



Trimmed Moving Weighted Average Filter -
Logic

● Calculating robust estimate for moving weighted average 
○ Trimming

■ Median is calculated for a selected window size
■ Outliers (max 20% points) are removed based on ranked distance from the median

○ Weighted Average calculation for new set of points
■ Weights increase with increasing time (more weight to recent points)
■ Weights are generated from a half normal distribution

● Shifting Window 
○ For each point in the future (say at ‘t+1’), 4 filters perform anomaly detection
○ Each filter has the same window size ‘n’ but covers different points in the past

■ Filter 1 covers points from ‘t-n’ till ‘t’
■ Filter 2 covers points from ‘t-n-1’ till ‘t-1’ and so on
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MA Analysis - Filters Illustration
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MA Analysis - Drafted 
Visualization



Result
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Result Overview
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Select Input Data 
Select Filters:
First Difference 

Trimmed Weighted Average

Define parameters:
Window Size, Response 

Column, Trimming 
Proportion, Scaling

Anomaly Visualization 
& Report

A python package will be shared with the client. Its broad components are described below:

rerun analysis weekly



Next Steps
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Next Steps

● Finalizing results for both filtering methods

○ Use robust estimate for standard deviation

○ Clean up plots

● Integration of all developed functions into the user-interface

● Client Feedback

● IDMRAD Paper Documentation and Review
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Q&A
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THANK YOU!
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Appendix
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Issues logged Visualization
Explanation
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Preference for 
marking dips as 
issues
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● A peak of significant amplitude 
has not been marked as an issue

● A dip of similar amplitude has 
been marked as an issue



Anomalies right 
after Pandemic 
Start not marked
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● Detected drop near Christmas 
2020

● Did not detect drop near start 
of Covid-19



Anomalies right 
after Pandemic 
Start not marked
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● The anomalies after the 
Pandemic outbreak is not 
captured

○ Sudden Decrease
○ Sudden Increase

● We would like to know whether 
the current algorithm considers 
impact of COVID19 



Delayed 
detection of 
Sudden Shifts

35

● Anomalies are detected in 
delayed manners

○ The error was detected 3 
weeks after the first 
abnormal value



Detection of rapid dips 
over 2-3 weeks but not 
over 1 months

● Small, sharp drop of panelists 
using Sift around April 2019

● Bigger, consistent 1 month drop 
around pandemic time

● Do we want to detect long-term 
anormales?
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Smaller Amplitude 
of dips detected 
but not bigger 
ones

● Small, sharp drop of panelists 
using Sift around April 2019

● Huge, sharp drop from 
September to November 2020

● Drops were similar, but one is 
detected, the other is not
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Dips for all 
Acquire- Types not 
marked

● Dip in Android was marked as an 
issue 

● Dip in iPhone for a similar time 
period and amplitude, but was 
not marked
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Missing data -
Jersey Mike's

● Issues flagged for the dates that 
did not have data

● No definition given, assume 
missing data
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Date Retailer Data Present? Issue Found?

7/19/20 Yes No

7/26/20 No Yes

8/2/20 No Yes

8/9/20 No Yes

8/16/20 Yes No

8/23/20 Yes No

8/30/20 Yes No

9/6/20 No Yes

9/13/20 No Yes

9/20/20 No Yes

9/27/20 No Yes

10/4/20 Yes Yes

\vdots \vdots \vdots



Should Trends 
be Flagged?

● Many of the graphs had clear 
trends (slow drift) that were not 
detected.

● We see a shift starting from April 
2019 that increases until 
approximately November 2019

● Should we detect trends? If so, 
what kind of trends?
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Moving Average Prototype 
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Half Normal Distribution


