Carnegie Mellon University

Effect of School Policies on COVID Transmission

PHIGHT COVID RESEARCH PROJECT

PHIGHT COVID: Seema Lakdawala, Annika Avery, Rebecca Nugent MSP Team: Cheyenne Ehman, Yixuan Luo, Zi Yang, Ziyan Zhu Faculty Advisor: Valerie Ventura

04/06/2021

Introduction - Questions

Main Research Questions:

- Does teaching method have effect on the COVID-19 transmission in Ohio?
 - How can we measure transmissibility with available data?
 - What other factors are affecting the transmission?
 - Is the effect still significant after we adjust for confounders and all possible covariates we can get?

Introduction - Motivation

Why Ohio?

- Counties are comparable with respect to public health interventions;
 - Most interventions are statewide,
 - Few are at county-level.
- But there is a wide range of school teaching methods so we can study their effect on covid infections.

Introduction - Motivation

% Daily cases under 29 years old peaks in late August, overlapping with school reopening

Data

• Data Sources

- Cases & Deaths: John Hopkins Open Source Data API
- K12 school policies: MCH.com
- Mobile Mobility: <u>SafeGraph.com</u> via <u>CMU DELPHI Group</u>
- Time Range: 01/22/2020 02/22/2021
- About Ohio State:
 - 86 counties (2 dropped due to missing data)
 - 11,755,535 Population
 - 1,615,134 student enrolled in K12 schools (13.7% of population)
 - 2,871 schools

Data - Relation

Data - Aggregation

County-wide variables

Death Incidence per 1000	Cumulative Deaths * 1000 / population	Counties	
Online Only Proportion	#Student went Online Only / County Student Enrollment	School	
Hybrid Proportion	#Student went Hybrid / County Student Enrollment	Districts	
On Premises Proportion	#Student went On Premises / County Student Enrollment	Schools	
Majority Teaching Method	Teaching method in county with highest proportion		
Percent Mobiles Stay Away Home for 6 hours +	Ought to suggest mobility of full-time workers/students		

* We use death counts as the response variable because it is more reliable than case counts.

Method

- Is there an effect of school teaching method? What are the other confounders and covariates?
 - Exploratory Data Analysis
 - Times series plot of cumulative death incidence
 - Boxplot of death incidence during fall semester
 - ANOVA and Post-hoc Testing of death incidence
 - Identify confounders based on the availability of data
 - Death incidence before the fall semester
 - \circ Adjust for confounders but realize a potential problem \int

Method

• How can we measure the transmission better?

Assume the disease follows an exponential growth and the process is stationary, then

$$E(logN_t) = N_0 + B imes t$$

Nt = number of new infections on day t

N0 = log number of new infections on day 0

B = exponential growth coefficient.

- Use New deaths + 1 as new infections (adjust for 0 new deaths)
- Time series plot of Log(New deaths + 1) and B for different teaching methods

Results - EDA (Time Series)

Are the county death trends significantly different by school teaching methods?

Starting mid-semester, death numbers increase faster for on premises counties

Results - EDA & ANOVA, Post-hoc Testing

How is teaching method related to death proportions?

Death Incidence in the Fall Semester

Death proportions averaged within red, green and blue counties are significantly different (p= .012)

Pairwise p-values come from Duncan pairwise comparison test

Results - Confounding Effect

Note:

- Low (high) death rates before the semester implies low (high) death rates during the semester
- Low (high) death rates before the semester implies mostly on premises (online) teaching

Death rates before the semester is a confounder

Results - Adjust for Confounder

Death proportions averaged within red, green and blue counties remain significantly different after adjusting for Y0 (p=.011)

Results - New Model

How can we better measure transmissibility?

$E(logN_t) = N_0 + B imes t$

Results - New Model

Results - Other Factors

Similar ordering in death numbers and cell phone mobility for on-premises & online-only counties

Discussion - Recap & Next Steps

- Does teaching method have effect on the COVID-19 transmission in Ohio?
 - Death proportions averaged within On-Premises, Hybrid and Online Only counties remain significantly different after adjusting for confounder Y0
 - We have not yet come to the conclusion, we have to adjust for other important factors like mobility
- What other factors are expected to affect the transmission?
 - Mobility, Population size, Urban/Rural Status, Testing volume
 - Incorporate serology data (time permitting)

Carnegie Mellon University

Thank you!

Carnegie Mellon University

Appendix

1111

COVID Death Trend in Ohio State

Distribution of Student Enrollments in Ohio by Teaching Method

Summary Statistics

Ohio State

- 88 Counties (86 counties enclosed in data)
- Depulation: 11,755,535
- Student enrollment:
 1,615,134 (13.7%)
- Number of schools:2,871

% Online Only

Urban Rural Status Large central metro Large fringe metro Medium metro Micropolitan Noncore Small metro

Metropolitan Status Metro Non-metro

60

40 20 0

Urban Rural Status Large central metro Large fringe metro Medium metro Micropolitan Noncore Small metro

Method (more details on the model)

- Are the county death trends significantly different by school teaching methods?
 - Exploratory Data Analysis
 - Pair Test with control for confounder
- How can we measure the transmission better? [Ongoing]

Assume the disease follows an exponential growth and the process is stationary, then

 $E(\log Nt) = N0+B*t$

Nt = number of new infections on day t, N0 = log number of infections on day 0, B = exponential growth coefficient.

- Step 1: Transform New Deaths: Log (New Deaths + 1)
- Step 2: Smoothing Splines on Log (New Deaths + 1) against time t
- Step 3: Compute the first derivative of Log (New Deaths + 1) to get death rate B
- What factors might contribute to the change in exponential growth coefficient B?

Correlation Plots for Proportions of Teaching Methods

Death numbers are different in In-person Counties

Death Incidence in the Fall Semester

Death numbers increase faster for in-person counties

Start of School - 3 weeks after Start of School 11/14/2020 - 12/05/2020 01/05/2021 - 01/26/2020 Anova, p = 0.98Anova, p = 0.018Anova, p = 0.11Death Incidence / 1,000 people ⁶⁰ 60 ⁶⁰ 60 0.0 major teaching Majority Teaching Method 🛑 On Premises 🚔 Hybrid 🚔 Online Only The first window looks at the 3 weeks after the start of school.

Death Incidence in 3 Key Windows

3 Week Windows

the second is the widndow around the point of intersection, and the last window is 3 weeks after the end of the fall semester.

Time Designation for Death Calculation

Student enrollments back to school

The peak in proportion of cases from 0-19 year olds is followed by a peak in total cases after the start of the fall semester

Yellow Area represents the fall semester

On premises counties have higher percent of cell phones away from home for 6 hours + in Fall

Part-time work -- different peaks?

Majority Teaching Method — On Premises — Hybrid — Online Only

Counties majority going online have more restaurant visits

Number of Restaurant Visit Normalized by Population Average over 7 days, no data for Hybrid counties

Pair Plots

Confounder vs Teaching Method

Y1 vs Confounders

Univariate Linear Regression

	Relation	Significance
Variables	Y1 ~ On Premises	<mark>.004</mark>
of Interest	Y1 ~ Online Only	.037
×	Y1 ~ Log Population	.004
Confounders	Y1 ~ % Away home for 6hrs+	.001
	Y1 ~ Average restaurant visits	<mark>.069</mark>

Insignificant Variables:

- Proportion of students do Hybrid
- Death incidence two months before school reopening
- Average Bar Visits

Schooling method is no longer significant after we adjust for possible confounders.

Y1 ~ On Premises + Online Only + Log Population + Avg. time at Work + Avg. restaurant visits

	Relation	Significance
Variables	On Premises	.262
of Interest	Online Only	.425
1	Log Population	.447
Confounders	% Away home for 6hrs+	.281
	Average restaurant visits	.439
	l	1

We adjust for confounders by including them as explanatory variables in statistical analyses

